
PLFire: A Visualization Tool for Asynchronous Phased Logic Designs

K. Fazel, M. A. Thornton R. B. Reese
 Department of Computer Science and Engineering Department of Electrical and Computer Engineering
 Southern Methodist University Mississippi State University

 Dallas, TX 75275 Mississippi State, MS 39762
 {kfazel, mitch}@engr.smu.edu reese@ece.msstate.edu

Abstract

 We present a visualization tool called PLFire, which
allows a user to observe the behavior of a Phased Logic
(PL) circuit. Phased logic is a technique for realizing
self-timed circuitry that is delay-insensitive and requires
no global clock. One advantage of self-timed circuits is
that throughput is based on average propagation delays
and not worst-case delay. By being able to visualize the
operation of a PL circuit, including the token flow, a
designer gets a better understanding of what features of a
design have the greatest impact on performance.

1 Introduction
 Phased Logic (PL) is an asynchronous design
methodology devised in [1] that produces delay-
insensitive circuits that do not require a global clock
signal. An implementation of a basic PL [2, 3] gate has
resulted in a circuit that is well-suited for implementation
in a Field Programmable Gate Array (FPGA) type of
device. A major advantage of the PL design
methodology is that it allows designers to use current
synthesis tools and design styles for synchronous digital
circuits.
 With regards to PL optimizations, as different
optimization techniques are implemented for PL, it
becomes increasingly difficult to gauge the effectiveness
of a technique without the use of some visualization tool.
This is what our visualization tool, PLFire, addresses.
Current optimization techniques such as Early Evaluation
[10] and Gated PL change the flow of data tokens with a
PL circuit. Being able to visualize these changes allows a
researcher to better understand how these techniques
affect a circuit on a global level.

2 Phased Logic
 A PL netlist can be thought of as a marked graph with
data tokens flowing throughout the graph. Each data
token has a phase that is either even or odd. A data token
is represented by a dual-rail signal that uses Level
Encoded Dual Rail (LEDR) encoding [4]. A PL gate has
an internal state bit used to represent the gate phase and a
phased logic gate fires whenever all of the phases of the
inputs matches the internal gate phase.

2.1 PL Design Cycle

 The methodology for mapping a clocked design to a
PL design is:

1) An RTL VHDL description of a clocked circuit
is generated.

2) A commercial synthesis tool (Synopsys Design
Compiler) is used to synthesize the RTL to an
EDIF netlist of D-flip-flops and combinational
gates.

3) A mapping program, called plmapper [8], is
used to convert the EDIF netlist to a PL netlist in
VHDL format.

3 Visualization Tool

 As the size of circuits that are being investigated in PL
research grows, mentally keeping track of a design's PL
structure and behavior becomes increasingly difficult.
The purpose of the visualization tool, PLFire, is to help a
designer visualize the behavior of a PL circuit. Fig. 1
provides a screenshot of the program.

Figure 1. Screenshot of PLFire

 Moreover, the use of PLFire aids in the development
of optimization techniques and tools. As different
optimization techniques are implemented for PL,
verifying whether an optimization truly has an impact on
the overall circuit is desirable. Current optimization
techniques center on the ability to maximize throughput
of token flow and are implemented as global and local
transformations of the netlist. Being able to see these
optimizations gives the researcher some understanding of

their overall effect. Furthermore, this tool allows the
investigation of the interoperability of these techniques.
 In order to use the tool, two previously generated files
are needed: a viznet file and a viztiming file. The viznet
file contains the netlist information of the PL design. The
viznet file is generated by the mapping program that
converts a synchronous circuit in EDIF format to a PL
circuit in VHDL format. The viztiming file contains the
firing information of a PL design. The viztiming file is
generated when the VHDL file is simulated.

4 Implementation
 PLFire is written in C/C++ and uses the Qt
windowing libraries and OpenGL. Qt is a free set of
libraries provided by [5] that allows a programmer to
create graphical user interface (GUI) programs for the
UNIX/Windows/Macintosh platforms. OpenGL [6] is a
free, standardized set of graphics libraries that many
platforms support.
 The current design environments are Sun Solaris using
Qt 3.0.1 and Mesa3D libraries [7]. Also, Microsoft
VC++ 6.0 is used for additional testing under the
Windows platform.
 The infrastructure of the program was designed with
object-oriented techniques to allow for future revisions
and additions to the code. In particular, a set of classes to
represent the various aspects of a PL circuit was
implemented. Using such techniques, data structures
were implemented with the mindset that components
should be easily modified and replaceable, and that future
components and enhancements should be easily
implemented.

5 Example
 To illustrate the use of PLFire, an analysis of the
behavior of a 4-bit ripple carry adder is provided. In
Figure 2, the structure of the PL 4bit adder (PL4B) as
displayed by PLFire is shown. The PL gates are grouped
as input/output registers, the summing logic, and the carry
out logic.

Figure 2. 4-bit adder in PLFire

 The display shows various aspects of the circuit,
including the tokens, feedback signals, and current phase
of the gates and signals. It is seen that the mapper has

placed the initial tokens on the sum and carry
components. As the circuit simulation is visualized, the
display will update these components and the tokens to
reflect the current state of the circuit.
 To visualize the simulation of the circuit, buttons
formatted like a VCR panel are used. When the circuit is
visualized, the token flow that dictates the behavior of the
circuit is evident. Also, the gates are color coded to
indicate which cycle they are currently in. As time
advances and the colors change, one can see the rippling
of data through the adder circuitry in PLB4 as expected.

6 Conclusion
 In this description we introduced a phased logic
visualization tool, PLFire, which allows a designer to
visualize the behavior of a PL circuit. The visualization
tool, other PL tools, and information about our research
can be found at [8].

References

[1] D.H. Linder, Phased Logic: A Design Methodology for
Delay Insensitive Synchronous Circuitry. PhD Dissertation,
Mississippi State University, 1994

[2] R. B. Reese, M. A. Thornton, and C. Traver. Arithmetic

logic circuits using self-timed bit-level dataflow and early
evaluation. In Int’l Conf. on Comp. Design, pages 18-23,
2001

[3] R. B. Reese and C. Traver. Synthesis and simulation of

phased logic systems. In International Workshop on Logic
Synthesis, pages 255-259, Dana Point, California, 2001.

[4] M. E. Dean, T. E. Williams, and D. L. Dill. Efficient self-

timing with level-encoded 2-phase dual-rail (ledr). In
Advanced Research in VLSI, 1991.

[5] Trolltech Homepage. http://www.trolltech.com

[6] SGI: OpenglGL Homepage. http://www.sgi.com

[7] Mesa3D Graphics Library Homepage.

http://www.mesa3d.org

[8] Phased Logic Homepage.
http://www.erc.msstate.edu/mpl/projects/phased_logic

[9] M. Ligthart, K. Fant, R. Smith, A Taubin, and A.

Kondratyev. Asynchronous design using commercial HDL
synthesis tools. In Advanced Research in VLSI, 2000.

[10] M. A. Thornton, K. Fazel, R. B. Reese and C. Traver,

Generalized Early Evaluation in Self-timed Circuits, In
Proceedings of the Conference on Design, Automation and
Test in Europe, pages 255-259, 2002.

