
Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

An Iterative Combinational Logic Synthesis
Technique Using Spectral Information

Mitchell Aaron Thornton, V. S. S. Nair

Department of Computer Science and Engineering
Southern Methodist University

Abstract

The spectral information of a Boolean function pro-
11ides data regarding the con-elation between the input
11ariables and the output of the function. Thi, pa­
per introduce, a 1pectral based methodology for com­
binational logic synthe,is using linear transforms. An
analysis of the propenies of the spectra obtained from
these transforms is provided and a synthe,is algorithm
using spectral techniques is presented. This result is
significant since it provides an algebraic method for
including XOR gates in the synthesis process without
resoning to manipulation of symbolic Boolean equa­
tions.

1 Introduction

The design and development of digital systems is
becoming increasingly complex and automated. As
fabrication technology evolves, a greater amount of
circuitry per single chip results. This trend requires
the designer to place more emphasis on optimization
and efficiency during the chip design phase. Spectral
based design techniques offer the advantage of provid­
ing for the design of a circuit of minimal size for a
given functionality. These techniques are highly me­
thodical and are ideal for incorporation into an auto­
mated environment. In the past literature, there have
been a significant amount of results in the use of var­
ious spectral techniques for both binary-valued logic
(l] (7] and multi-valued, or threshold logic (2] (3] (4].
Our approach differs from the previous works in that
we allow the synthesized circuit to be composed of any
of several types of sub-functions (i.e. AND, OR, com­
binations of AND/OR), whereas, the previous work
focused on the realization of logic circuitry with pre­
dominately a single type of gate as the basic building
block. It has been shown that the Rademacher-Walsh
transform provides Boolean function output correla­
tion measures with respect to various combinations
of input variables added together via modulo-2 arith-

0-8186-4350-l/93 $3.00 © 1993 IEEE
358

metic [5]. This paper builds upon the fundamentals
of spectral techniques and describes how they may be
applied to the synthesis of general combinational logic
circuits.

Typically, designers generate Boolean expressions
at some point in the logic circuit design process re­
gardless of the technique used. In fact, many logic
design techniques are considered to be accomplished
upon the realization of a Boolean function that is min­
imized in some sense. In reality, circuits are built from
a schematic diagram or some other form of hardware
description such as a wire-list or standard CAD tool
file format. The synthesis technique discussed in this
report does not require an intermediate Boolean func­
tion to be realized. Since there is no need for any sym­
bolic manipulation, this technique is especially well
suited for implementation as a computer program.
Furthermore, the XOR gate is fully exploited as a po­
tential candidate for incorporation into the design in
addition to the AND and OR gates. Most design tech­
niques require symbolic manipulation of Boolean func­
tions to achieve inclusion of the XOR gate in the final
circuit since numerical algebraic techniques are typi­
cally not well suited for this purpose. The algebraic
methods presented here are rigorously developed and
are very well suited for XOR type circuits.

The rest of the paper is organized as follows. Sec­
tion 2 of this paper defines and describes the concept
of the spectrum of a Boolean function. In this section,
spectral properties that are important for the devel­
opment and motivation for the synthesis technique are
given. The synthesis method is developed and two ex­
amples are given in section 3. In section 4, a discussion
of the implementation issues for the synthesis method­
ology is provided. Finally, the conclusions from this
work are presented in section 5.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

2 Spectrum of a boolean function

First, the following terms are defined:

• Output Vector of a Boolean Function: A
concatenation of all poaible outputs of the func­
tion where all "O" values have been changed to a
"l" and all " l" values have been changed to "-1".

• Spectrum of a Boolean function: A linear
transformation of the output vector of the func­
tion. Thia transformed quantity is the "spectral
vector" of the transformed function. The compo­
nents of the the spectral vector are referred to as
"spectral coefficients".

• Transformation Matrix: The matrix used to
perform the linear mapping of a functions' output
vector to its spectral vector.

• Constituent Functions: Boolean functions
whose output vectors are used as the rows of the
transformation matrix.

The transformations uaed in this approach are linear
and they are conveniently visualized as vector-matrix
products although the implementation may not neces­
sarily be realized as a aeries of vector-matrix products.
Multiplication and addition operations are performed
over the field of integer numbers, not over the binary
field. Using "l" and "-1" instead of "0" and "l" for
the binary valued digits allows the zero-valued func­
tion outputs to accumulate in each spectral quantity.

Each spectral coefficient in the transformed out­
put vector provides a measure of correlation between a
particular constituent function and the original func­
tion, F(z). Thia is the underlying principle that is
exploited in the synthesis procedure described in this
paper.

In general, any set of constituent functions may be
used for this technique as long as they form a func­
tionally complete set of operators for Boolean algebra.
The transformation matrix must be full rank for con­
vergence of this algorithm to be guaranteed. It has
been shown that a transform using the Exclusive--OR
operator as the primitive operation for the constituent
functions results in the Rademacher-Walsh transform
matrix. The Rademacher-Walsh transform matrix is
orthogonal with well known properties [2). In this pa­
per, we construct transforms using the OR and AND
operators in addition to the XOR to form the con­
stituent functions. The resulting transforms are not
necessarily orthogonal but our technique does not re-­
quire the use of orthogonal transformations.

The notion of an output vector of a boolean func­
tion was described earlier. A qualitative discussion of

the derivation of the transform matrices extends . this
notion such that the rows of the transformation matrix
are viewed as output vectors of constituent functions.
The constituent functions are generally simple func­
tions using only a single operator (although they need
not be). For instance, if it is desired to compute the
correlation between a constituent function, z • JI, and
a function to be transformed, one row of the trans­
formation matrix would consist of the output vector
of the constituent function, z • 11· The spectral co­
efficient resulting from the dot product of this row
and the function output vector provides a measure of
correlation between the overall function and the con­
stituent function, z • 11· In fact, a measure of cor­
relation with any arbitrary constituent function may
be computed in this manner. Each conelation mea­
sure (or spectral coefficient) contains the information
of the exact number of matching outputs between the
constituent function and the transformed function for
a given common set of inputs. Before giving a precise
relationship between the spectral coefficients and the
number of matching outputs, the following parameters
are defined.

1. n - the number of input variables of a Boolean
function

2. N - all possible combinations of the input vari­
ables of the binary-valued Boolean function, N =
2"

2. Nm - the number of matches between the outputs
of a constituent function and the function to be
synthesized for the same input values

3. Nmm - the number of mismatches between the
outputs of a constituent function and the function
to be synthesized

4. Sr[Fc(z)] - the spectral coefficient of F(z) that
corresponds to the constituent function, Fc(z)

5. Sr(l) - the spectral coefficient of F(z) corre­
sponding to Fc(z) = 1

6. {Fc(z)} - a set of constituent functions

7. ,&[{Fc(z)}] - a vector of spectral values com­
puted over the set of constituent functions,
{Fc(z)}

Next, some properties of the spectral coefficients
are derived and they will be used for the development
of the synthesis technique given in this paper.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

Lemma 1 For a gi•e• fo,actioa F(:r:) aacf a given con­
stitaent fanction F0(:,;) t/ae renlfing spectral coefficient
is given 6r,:

SF(Fe(:r:)) = 2" - 2Nmm = 2Nm - 2" (1)

Where :,; is a n-onler vector of 6inar, •alaed inpats
to 6ot/a F(:r:) and F0(:i:).

Lemma 2 TAe following propen11 of qectral coeffi­
cients holds:

(2)

The proofs for these lemmas are given in (8).

S Synthesis method

The input required for this synthesis method con­
sists of the truth table of the function, F(:i:), the maxi­
mum number of inputs per gate, N,n,, and preferences
of the types of gates, {Gt}, to be used. The two op­
tional parameters, N,n,, and the set {Gt} are used to
determine the set of constituent functions, { Fe(:r:)} to
be used in the formation of the transformation matrix.
For the sake of generality, we will first assume that the
optional parameters are not supplied, however, we will
use them in the subsequent synthesis example.

The following list gives a detailed description of
each synthesis step.

1. Convert the input truth table to l's and -1 's using
a 1 to denote a logic" 0" and a -1 to denote a logic
"l".

2. Compute the transformation matrix using the
constituent functions.

3. Compute the spectral coefficients via vector­
matrix multiplication between the transformation
matrix and the output vector of the function to
be synthesized.

4. Choose the largest (in magnitude) spectral coef­
ficient.

5. Realize the function F0 (:i:) that corresponds to the
chosen coefficient in step 4.

6. Compute the error function, e(:,;) = F0 (:i:) • F(z)
with respect to some operator, *·

7. If e(z) indicates that there are w or fewer errors,
go to step 8. Otherwise iterate on the synthesis by
going to step 3 and use e(z) as the next function
to be synthesized.

360

8. Combine all the intermediate realizations of the
various chosen Fc(:i:) functions using the• oper­
ator and directly realize the function e(z) for the
remaining w or fewer errors.

This technique can be used to generate two-level
and multi-level tree-type circuits. For two-level real­
izations, each chosen F0(:r:) can be realized in the first
stage of the circuit with one multi-input logic gate.
The second stage consists of a single combination gate
that uses the outputs of all of the chosen constituent
functions as its' inputs. The circuits resulting from
this synthesis technique are completely fan-out free
(CFOF) and have the desirable property ofrequiring
a set of test vectors equal to the number of circuit in­
puts to test all possible single stuck-at faults [6). As
discussed in [7], the use of spectral design techniques
for logic synthesis is known for the ability to produce
easily tested circuits. The diagram in Figure 1 in­
dicates how the two-level circuit is constructed with
each iteration.

If a multi-level circuit is desired, the same design
procedure is used but the error function computation
is performed slightly differently. The difference is that
a new combination gate is used in each iteration. This
also allows for changing the operator used to define
the error function (i.e., the combination operator) at
each iteration. The diagram in Figure 2 illustrates the
design procedure for a multi-level circuit. Although
it is apparent that the transformation matrix grows
in size proportional to the size of the z vector, the
space complexity of the matrix is O(n2) if the design
is restricted to using only two-input gates [8).

·The following theorem states the properties neces­
sary to ensure the convergence of this synthesis algo­
rithm.

Theorem 1 An11 given boolean function, F(:r:), may
he realized with the proposed synthesis technique i/ the
transformation matri:i: used for the synthesis is of full
rank.

The prooffor this theorem is given in [8]. Now some
examples of this synthesis technique are given. In the
first example, a two-level circuit will be designed and
we will assume that there are no restrictions on the
number of inputs per logic gate and on the type of
logic gate used. The second example shows how a
multi-level circuit can be realized with the constraints
that only two-input gates should be used and that the
gate type should be OR as much as possible.

Consider the realization of the following function:

F(z) = z1zs + z1z2zs + z1z2 + z2zs (3)

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

18-- 1W

=>

Figure 1: Diagram of Two-Level Synthesis Technique

First, the function truth table is computed. Table 1
shows the contents of the computed truth table.

Zt Z2 Z3 F
1 1 1 -1
1 1 -1 1
1 -1 1 -1
1 -1 -1 -1

-1 1 1 1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

Table 1: Truth Table of the Function

Next, the transformation matrix is computed in terms
of OR, AND, and XOR operations since we have no
constraints on gate types. Also, for each gate type we
compute Fc(z) functions for all pOBBible combinations
of two or more inputs since we have no restrictions on
the maximum number of inputs per gate. The trans­
formation matrix is computed as:

361

⇒
114

Figure 2: Diagram of Multi-Level Synthesis Technique

1 1 1 1 1 1 1 1 1
Zt 1 1 1 1 -1 -1 -1 -1
Z2 1 1 -1 -1 1 1 -1 -1
Z3 1 -1 1 -1 1 -1 1 -1

z1E0z2 1 1 -1 -1 -1 -1 1 1
Z1$Z3 1 -1 1 -1 -1 1 -1 1
Z3$Z3 1 -1 -1 1 1 -1 -1 1

z1EDz2EDzs 1 -1 -1 1 -1 1 1 -1
z1+z2 1 1 -1 -1 -1 -1 -1 -1
z1+zs 1 -1 1 -1 -1 -1 -1 -1
z2+zs 1 -1 -1 -1 1 -1 -1 -1

z1 +z2+zs 1 -1 -1 -1 -1 -1 -1 -1
z1z2 1 1 1 1 1 1 -1 -1
Z1Z3 1 1 1 1 1 -1 1 -1
Z3Z3 1 1 1 -1 1 1 1 -1

z1z2zs 1 1 1 1 1 1 1 -1

The resulting spectral coefficient vector is:

.sj[{Fc(z)}]=[-2, -2, 2, -2, 2,-2, 2,-6,2,

-2,2,2,-2,-2,-2,-4) (4)

Since the Fe(z) = z1 E9 z2 E9 zs has the largest magni­
tude spectral coefficient, it is chosen and the first por­
tion of the circuit is realized with an exclusive-NOR
as shown in Figure 3. The enor function is computed
with respect to an exclusive-OR operator since it is the
most robust in terms of the possible operators avail­
able for providing the combining stage in the circuit.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

11-..r--,
12
13--,___J

P(I)

Figure 3: Fint Iteration of Two-Level Synthesis

This robustness is due to the fact that an XOR can
be used to change a O to 1 error as well 88 a 1 to 0
error. The following list describes the properties that
determine which gate type may be used 88 an error
operator.

1. XOR : z $ 1 = s, erron may be 1-+0 or 0-+l

2. AND : zl = z and zO = 0, all erron must be
1-+0

3. OR: z + 1 = 1 and z + 0 = z, all errors must be
0-+l

Returning to the synthesis example, the following ta­
ble is computed:

z1 z2 Z3
1 1 1 -
1 1 -1 1
1 -1 1 1
1 -1 -1 -1

-1 1 1 1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

Table 2: Table of the Function and Error Function

Since there is only 1 disagreement between F(z) and
F'(z), the terminal condition has been reached and
the remaining term is realized directly. The complete
circuit is given in Figure 4. The multi-level realization

F(x)

Figure 4: Final Circuit in Example I

of the same circuit with the restriction that all gates
are two-input and must be OR type gates as much as
poaible (inverten are also allowed) is given for the
second example. The OR and NOT operator cannot

be used to form a functionally complete set of opera­
tors for Boolean algebra. Therefore, at least one other
type of gate is needed for the synthesis.

The transformation matrix is computed in terms of
the Chow parameten and two input OR expressions
only. The following spectrum results:

~[{Fc(z)}] = [-2, -2, 2, -2, 2, -2, 2) (5)

In this case, all spectral coefficients have equal mag­
nitudes. The constituent function Fe(z) = z1 + z2 is
arbitrarily chosen as a starting point for the synthesis.
It is also desirable to use an OR operation for the er­
ror function operator since this circuit is to be realized
with predominately OR-type gates. By examining the
truth table it is seen there are O to 1 and 1 to O dis­
crepancies which restrict the error operator to be of
type XOR. Table 3 contains the truth table in terms
of the function to be realized a.nd the error function.

z1 z2 zs F(z ez
1 1 1 -1 -1
1 1 -1 1 1
1 -1 1 -1 1
1 -1 -1 -1 1

-1 1 1 1 -1
-1 1 -1 -1 1
-1 -1 1 -1 1
-1 -1 -1 1 -1

Table 3: Table of the Function and Error Function

Next, the spectrum for e(z) is computed, resulting in
the following vector of spectral coefficients:

S;[{Fc(z)}] = [2, 2, -2,-4, -2,-2,-6} (6)

The constituent function corresponding to -6 is cho­
sen since it is a maximum (in magnitude) which is
Fc(z) = z-2 + zs. There is a discrepa.ncy in only one
place in the truth table, hence we can use a NOR to
directly realize this term. The resulting circuit is given
in Figure 5. Note that the only real difference between

11
ll2

x3

Figure 5: Final Circuit in Example 2

the two-level and multi-level synthesis techniques is in

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 19,2023 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.

the choice of new error operators at each iteration.
This allows for greater :flexibility when it is desired to
use one gate type as much as possible since that type
may be able to be used for the error operator in each
iteration.

4 Implementation issues of the synthe­
sis method

Although using repeated vector-matrix multiplica­
tions is a convenient way to analyze and understand
spectral techniques for boolean function synthesis, it
is not necessarily the most efficient way to implement
these techniques. In particular, the computation of
the Chow parameters may easily be performed by ac­
cumulating a single sum for each input of the function
as the truth table is read in from a file and applying
equation 1 to calculate the spectral value.

In general, all spectral coefficients may be com­
puted efficiently as a simple accumulation of sums of
the results of comparisons with transformation matrix
rows and the current output vector being transformed.

In addition, it is quite easy to add extensions to
this technique to produce output with desired proper­
ties. For instance, if only two-input gates are desired,
all constituent functions in the transformation matrix
are restricted to functions of two-inputs only. Also, by
restricting the constituent function operators to a cer­
tain type allows the resulting circuit to contain only
those operator (gate) types.

If optimization for circuit speed is desired, each
spectral coefficient may be weighted by the inverse
of the corresponding constituent function delay. This
will result in the use of constituent functions with the
least delay and highest correlation.

Existing standard cell logic libraries may also be
used with this synthesis technique. All that is required
is the output vector of each standard logic cell to be
used as a row in the transformation matrix. This al­
lows the synthesis technique presented here to be eas­
ily interfaced to existing design environments without
the need for changing anything other than the "syn­
thesis engine" itself.

5 Conclusions

We have presented a spectral based synthesis tech­
nique for general combinational logic circuits.. Al­
though this synthesis method has been developed
within the framework of spectral analysis techniques,
it may easily be considered to be a method ofrepeated

363

correlation analysis. The spectral coefficients for a
Boolean function have been defined and some of their
properties have been derived. An iterative algorithm
for the synthesis of combinational circuits has been
developed and illustrated with examples. The algo­
rithm has been proven to converge when the transfor­
mation matrix is of full rank. The proposed method
can be implemented to produce circuits with optimiza­
tions such as gate count minimization and circuit de­
lay minimization, or, to enforce restrictions such as
the type of gate used and the number of inputs per
gate. This synthesis methodology is significant since
it allows for complete exploitation of the XOR gate as
well as other gate types without resorting to symbolic
manipulation of Boolean algebraic equations. Finally,
some guidelines for the implementation of the logic
circuit synthesis technique have been provided.

References

(1] Lloyd, A.M. Design of multiplexor universal-logic­
module networks using spectral techniques, IEE
Proc. vol. 127, pt. E, no. 1 (1980).

(2] Edwards, C.R. The Application of the
Rademacher-Walsh Transform to Boolean Func­
tion Classification and Threshold Logic Synthesis,
IEEE '.Irans. Comp., (1975).

(3] Damarla, T. Generalized Transforms for Multiple
Valued Circuits and their Fault Detection IEEE
'.Irans. Comp. vol. C-41, no. 9 (1992).

(4] Picton, P.O. Realisation of multi threshold thresh­
old logic networks using the Rademacher-Walsh
transform, IEE Proc. vol. 128, pt. E, no. 3
(1981).

(5] Hurst, S.L. The application of Chow parameters
and Rademacher-Walsh matrices in the synthesis
of binary functions, Comput. J. vol. 16 no. 2
(1973).

[6] Pradham, D. K. (editor), Fault-Tolerant Com­
puting Theory and Techniques Volume I En­
glewood Cliffs, NJ.:Prentice-Hall, (1986).

[7) Edwards, C.R. The design of easily tested circuits
using mapping and spectral techniques, Radio and
Elec. Eng. vol. 47, no. 7 (1977).

[8) Thornton, M.A., Nair, V.S.S., Iterative Combina­
tional Logic Synthesis Techniques Using Spectral
Data, Tech. Rep. 99-CSE-8, SMU , (1993).

