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Abstract 
A technique for automatic insertion of slack matching buffers for 
performance enhancement in the asynchronous design style known 
as Phased Logic (PL) is described.  A description of how slack 
matching buffers can offer throughput increases in PL circuitry is 
presented and is supported through the use of a simulation tool 
developed for modeling the timing behavior of PL circuits. A 
description of the architecture of the simulator and its 
implementation is also discussed.  Based on the analysis of results 
provided by the simulator and the topological characteristics of a 
PL circuit, an algorithm for automatic slack matching buffer 
placement is devised.  Examples of the buffer insertion technique 
are given and the effectiveness of the technique is evaluated 
through a set of experimental results. 

Categories and Subject Descriptors 
B.6.1 [1] : Design Styles; B.2.2 [Arithmetic and Logic 
Structures]: Performance Analysis and Design Aids 

General Terms 
Performance, Design, Experimentation 

 Keywords 
Phased Logic, Asynchronous, Slack Matching Buffer Insertion 
 

1. Introduction 
Asynchronous circuits have been proposed as an alternative to 
synchronous circuits based on the potential for decreased power 
dissipation, increased performance, reductions in Electromagnetic 
Interference (EMI), and other characteristics.  Although 
asynchronous design styles have been the focus of research for 
several decades since the seminal work in [1,2] widespread usage 
has not been adopted by the design community.  There are several 
reasons this has not occurred.  In general, issues such as increased 
area and the lack of mature and standard design automation tools  
are major factors.  Another reason that asynchronous circuits have 
not appeared in mainstream designs is that actual realization of 
increased performance has been elusive in many cases. 
 

Because the performance of asynchronous circuits is based on 
the fundamental fact that overall circuit throughput depends on 
average-case delay rather than worst-case delay (as is the case 
with synchronous circuits) many performance optimization 
techniques used for synchronous circuit design have little 
relevance to asynchronous design.  This motivates the 
investigation of alternative performance optimization methods 
for asynchronous circuit design. 
 
The work presented here describes a performance enhancement 
technique for a particular asynchronous design style referred to 
as Phased Logic (PL) [3].  Specifically, a method for the 
automatic insertion of slack matching buffers is described.   
Slack matching buffers perform no logical operation on the data 
signals. They serve as intermediate signal storage locations in a 
circuit and allow other portions of the circuit to continue to 
process available data signals, thus decreasing the number of 
localized “stall” situations.  The idea of using slack matching 
buffers for asynchronous circuit performance enhancement is 
not new and has been described in past work[4,5].  In terms of 
PL, slack matching buffer insertion was identified as a viable 
performance enhancement method in [6]; however, an 
automated process for buffer insertion was not devised.  In 
subsequent PL design efforts, slack matching buffer insertion 
was accomplished manually via ad hoc methods based on the 
designer’s detailed knowledge of the circuit functionality [7,8]. 
 
The contribution of the work presented here is the development 
of a technique for automatic buffer insertions.  The technique 
was devised through the use of a custom PL circuit timing 
simulator.  This simulator models the performance 
characteristics of a PL circuit only and does not provide any 
functional information.  Active portions of the circuit at any 
instant in time are represented as the flow of “tokens” 
representing the data, request, and acknowledge signals.   This 
approach allows the simulator to have significantly faster 
runtimes as compared to a traditional functional simulator.  The 
simulator is also efficient since it exploits the inherent structure 
present in PL circuits and is thus less general but more efficient 
than a generic Petri net modeling tool. 
 
Based on the analysis of PL circuits using the simulator, an 
automated method for slack matching buffer insertion is 
formulated that allows buffers to be inserted based solely on the 
topology of the PL circuit.  Because the automatic buffer 
insertion technique utilizes the token flow simulations, a crucial 
aspect of this work is the efficiency of the custom simulator tool. 
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The remainder of this paper consists of a brief overview of PL 
asynchronous circuits, a discussion of the PL token flow simulator, 
and a discussion of the automatic buffer placement technique.  
Examples of the performance enhancement of PL circuits based on 
buffer placement are given followed by a set of experimental 
results that illustrate the viability of the method.  
 

2. Phased Logic 
PL circuitry may be viewed as an implementation of 
micropipelines [9] with two-phase Level Encoded Dual Rail 
(LEDR) signaling [10].  A method for automatically mapping 
synchronous netlists to equivalent asynchronous circuits referred 
to as PL was devised in [3].  In the PL mapping process, 
techniques were identified to ensure preservation of functionality 
based on marked graph theory [11].  This mapping model was 
implemented using a fine-grain, self-timed approach [6] and was 
subsequently modified as a coarse-grain approach by replacing 
individual LEDR signals with bundled data LEDR-style signaling 
[7].  The coarse-grain approach allowed for significant area 
savings as compared to the fine-grain approach at the expense of 
requiring point-to-point delay matched internal busses. 
 
The chief advantage offered by PL designs is the capability to 
provide performance improvement when comparing average case 
throughput to synchronous circuit throughput.  In addition to the 
performance enhancement provided by automatic slack matching 
buffer insertion that is the focus of the work provided here, two 
other performance enhancement techniques have been developed 
and are referred to as Early Evaluation and Time Borrowing [7].  
Another key feature that motivated research for the PL style of 
asynchronous circuit implementation is the lack of dependence of 
specialized synthesis tools.  This was a motivating factor in 
pursuing further research in the PL style designs that were initially 
devised in 1994 as this was a well-known pitfall of most 
asynchronous circuit design approaches.  More recently, other 
asynchronous design styles have emerged that are capable of using 
standard commercial synthesis tools to various extents [12, 13, 14].   
 

3. Slack Matching Buffering 
As defined in [4], the slack of an asynchronous pipeline is the 
number of tokens that may be placed in the pipeline before it stalls.  
Additionally, the modification of slack properties in asynchronous 
pipelines may change the performance of the circuitry; this type of 
modification is a well-known optimization technique referred to as 
slack matching in [5].  This essentially means avoiding the 
situation where one pipeline is stalled while waiting for another 
pipeline to catch up.  In terms of PL, we wish to be able to adjust 
the property of slack in order to improve performance by 
maximizing available parallelism between various paths.  The goal 
of this work is to characterize where slack matching buffers can 
improve performance and then to automatically insert them into 
the netlist. 
 

4. PL Token Flow Simulator 
Marked Graphs introduced in [11] are a specific type of Petri net 
which model resource allocation problems.  The theory behind 
such graphs is used as a basis for the automated synchronous to 
PL-style asynchronous mapping technique.  A notion of tokens, 
and token firing, is used to represent data movement within a 
digital system. 

 
In order to better understand the behavior of token movement 
with respect to the topology of a marked graph, a simulator was 
developed.  The simulator allows for direct manipulation of 
token placement as well as nodes.  This allows for the setup of 
experiments to characterize the behavior of the placement of 
token buffers with a given topology. 
 
As there are numerous Petri net based simulators and 
asynchronous circuit design tools [15], the contribution of this 
simulator is the ability to measure latency and throughput of a 
PL graph.  To do this, we have to add source and sinks to the 
marked graph that represent overall token producers and 
consumers of the entire circuit.  Whenever a source fires, it 
provides a tag along with the token it places on the output.  The 
tag contains information such as firing time and source id.  This 
tag will propagate through the netlist and join with other tags 
from other sources, if encountered, to form larger tags.  Once the 
tag reaches a sink, information such as latency may be computed 
using the tag. 
 
The simulator uses an event-driven approach.  A queue is 
maintained that keeps track of nodes that are ready to fire.  A 
node is ready to fire when all its inputs have a token.  Before the 
simulation starts, the queue is populated with nodes that are 
ready to fire based on the initial token mapping.  The nodes of a 
marked graph may be either transitions or places as described in 
standard Petri net theory.  These correspond to gates and signals 
of a physical circuit.  Due to the nature of physical circuits, gates 
and signals may both have non-zero delay.  We allow the 
possibility for varying delay of these components in the 
simulator.  
 
The approach for inserting slack matching buffers is reliant on 
throughput and latency information provided by the simulator.  
To get this information, several simulation cycles must be done.  
However, the data quickly converges to stable values that may 
be used for slack matching buffer insertion. 
 
To justify the use of a simulator in a synthesis tool, the simulator 
must be very fast.  Let us assume a marked graph with t 
transitions and p places.  An upper bound for nodes ready to fire 
is t+p.  So the simulator must perform t+p firing operations.  A 
firing operation consists of checking whether to add the node 
driven needs to go into a queue.   We know that a place may 
only input into one transition, so that is one check.  If we 
suppose the transitions form a t-complete graph, we need t-1 
checks for each transition.  These means t(t-1)= t2-t checks.  In 
total, there are t2-t+p checks, giving a O(t2) complexity for firing 
checks per iteration.  If we assume more realistic graphs, such as 
transitions with a maximum of a fanout of 4 we would get 
O(4t+p). 
 
For realistic circuits, each simulation cycle has linear time 
complexity.  However we only need to run the simulator to get 
latency and throughput times, which converge fairly quickly.  
Empirical results suggest as few as 10 iterations may provide 
good results.  Additionally, 10 iterations frequently take less 
than a second, even for large graphs. 
 
 
 



5. Results 
A gates’ feedback wait time at cycle i, w

i
, is the difference 

between the time that all data tokens are available at the inputs of a 
PL gate and the time when all feedbacks are available.  If all 
feedbacks are available before the data, then we say w

i
=0.   During 

a simulation a gate may fire n times.  We denote a gate’s average 
feedback wait time as Sw

i
/n = d.  The rule to add token buffers 

depends on a gate’s average feedback wait time. 
 
A branch and bound procedure used to determine slack matching 
buffer placement is the following: 
 

1. Run the simulator on a topology to get d for each gate. 
2. Collect the gates with high d, call it set C. 
3. Determine a candidate for buffering from C. 
4. Add slack matching buffer and ensure the resulting 

topology is a marked graph 
5. Re-run the simulator 

a. If the buffer does not improve performance, remove 
the buffer. 

b. If the buffer improves performance, keep the buffer. 
6. Repeat steps until some threshold is met. 

 
In step 3, we need rules to determine a candidate from the set C.  
The priority for selecting gates is based on: 
 

• Feedback latency 
• Fan-out 
 

Feedback latency, fli,j, is the time for the jth feedback to become 
available after all data inputs have arrived on a given gate at cycle 
i.  If the jth feedback arrives before all data inputs then fli,j=0.  
This means that w

i
=max(fli,j) for a given gate.  Fanout is a good 

indicator of slack matching buffer placement since a signal that 
fans out will result in more feedbacks needing to return to the gate.  
This increases the odds that the gate will have to wait on a 
feedback. 
 
For the gates that have a high waiting time on feedbacks, a method 
for determining if a slack-matching buffer would be beneficial is 
the following: 
 

a. Find the cycle that shares the feedback and a data output 
of the gate 

b. If the gate that the data output is driving is waiting for 
other data, then place a slack-matching buffer on the data 
output.  If the output fans out, place the buffer on the 
path between the output and the next gate on the cycle. 

c. Re-run the simulator to make sure throughput and 
latency have improved. 

 
We will use the following examples to denote how these rules are 
applied.  Let us examine figure 1 with latency L=4 and throughput 
T=4.  Notice that D2 has a wait time of d=2.  In addition it is a fan-
out point of two pipelines.  However, D2 cannot evaluate until the 
acknowledge signal is received from G3 and is thus stalled.  This 
implies that the slack-matching buffer should be placed between 
D2 and G3.  If we add a slack-matching buffer at the output of D2, 
as shown in Figure 2, the delay characteristics improve.  One may 
notice that B is now waiting; however, insertion of another buffer 
adds no performance improvement.  Another example is shown in 
Figure 3. 

 
 

Figure 1: Example Topology with L=4 and T=4 
 

 
 

Figure 2: Example Circuit with Slack Matching Buffer 
 
The latency is L=8 and average throughput is T=2.5 for the 
circuit represented in Figure 3.  If we apply our rules, candidates 
for application of slack matching buffers at the outputs are G2, 
G5, and GD.  It turns out that token buffers on G2 and G5 help 
performance, while a token buffer on GD does not.  Figure 4 
contains the topology of the circuit depicted in Figure 3 with the 
slack matching buffers included. 
 

 
 

Figure 3: Second Example PL Circuit Topology 
  

 

 
 

Figure 4: Second Example with Slack Matching Buffers 
 



Topologies that do not benefit from slack matching buffer 
insertion are those that are purely serial in nature, or simple 
pipeline structures.  An example of such a topology is shown in 
Figure 5.  No matter where a buffer is placed, the throughput and 
latency do not improve.  This is because there is no parallelism to 
take advantage of. 
 

 
 

Figure 5: Single Pipeline Topology 
 
Table 1 provides results of the slack buffer insertion algorithm.  
Six benchmark circuits topologies were chosen for these 
experiments.  The circuits were initially mapped into PL circuits 
without any performance enhancements and were later modified to 
contain slack matching buffers using the technique described 
above.  The table contains the name of the benchmark circuit, and, 
in columns two and three, the initial throughput T and latency L.  
After application of the buffer insertion technique, columns three, 
four, and five contain the number of buffers inserted and the new 
throughput and latency values.  The overall percentage of 
throughput improvement computed as 100[(T-T’)/T] is given in 
the last column of Table 1.  Over the set of benchmarks, an 
average improvement in throughput of 21% was achieved. 

 
Table 1.  Experimental Results 

Circuits 
Original 

Latency L 

Original 
Throughput 

T 
Buffers 
added 

New 
Latency 

L’ 
New 

Throughput T’ 

% of 
Throughput 

Improvement 

4pipe 4 3.5 6 4 2 43% 

Tb3 10 2.33 2 10 2 14% 

T336 6 2.67 2 7 2 25% 

Tb 4 4 1 4 3 25% 

C17 4.5 2.5 1 4 2 20% 

S27 11 6 1 13 5 17% 

Average      21% 

 

6. Conclusions 
We have presented a technique for automatically determining the 
placement of slack matching buffers within a PL design.  Details 
of the structure and implementation of a custom simulator for PL 
circuit throughput prediction are given and some simple examples 
illustrating the rules for automatic buffer insertion are provided.  
Experimental results are given that validate the approach and 
illustrate the performance enhancement that can be achieved using 
this technique.  Through the examples and experimental results, it 
is shown that the automatic slack matching buffer insertion 
technique can enhance the throughput of a PL system.   
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