
Performance Enhancement in Phased Logic Circuits Using
Automatic Slack-matching Buffer Insertion

Kenneth Fazel, Lun Li,
Mitch Thornton

Southern Methodist University
Computer Science & Engr.

{kfazel,lli,mitch}@engr.smu.edu

Robert B. Reese

Mississippi State University
Electrical & Computer Engr.

reese@ece.msstate.edu

Cherrice Traver

Union College
Electrical & Computer Engr.

traverc@doc.union.edu

Abstract
A technique for automatic insertion of slack matching buffers for
performance enhancement in the asynchronous design style known
as Phased Logic (PL) is described. A description of how slack
matching buffers can offer throughput increases in PL circuitry is
presented and is supported through the use of a simulation tool
developed for modeling the timing behavior of PL circuits. A
description of the architecture of the simulator and its
implementation is also discussed. Based on the analysis of results
provided by the simulator and the topological characteristics of a
PL circuit, an algorithm for automatic slack matching buffer
placement is devised. Examples of the buffer insertion technique
are given and the effectiveness of the technique is evaluated
through a set of experimental results.

Categories and Subject Descriptors
B.6.1 [1] : Design Styles; B.2.2 [Arithmetic and Logic
Structures]: Performance Analysis and Design Aids

General Terms
Performance, Design, Experimentation

 Keywords
Phased Logic, Asynchronous, Slack Matching Buffer Insertion

1. Introduction
Asynchronous circuits have been proposed as an alternative to
synchronous circuits based on the potential for decreased power
dissipation, increased performance, reductions in Electromagnetic
Interference (EMI), and other characteristics. Although
asynchronous design styles have been the focus of research for
several decades since the seminal work in [1,2] widespread usage
has not been adopted by the design community. There are several
reasons this has not occurred. In general, issues such as increased
area and the lack of mature and standard design automation tools
are major factors. Another reason that asynchronous circuits have
not appeared in mainstream designs is that actual realization of
increased performance has been elusive in many cases.

Because the performance of asynchronous circuits is based on
the fundamental fact that overall circuit throughput depends on
average-case delay rather than worst-case delay (as is the case
with synchronous circuits) many performance optimization
techniques used for synchronous circuit design have little
relevance to asynchronous design. This motivates the
investigation of alternative performance optimization methods
for asynchronous circuit design.

The work presented here describes a performance enhancement
technique for a particular asynchronous design style referred to
as Phased Logic (PL) [3]. Specifically, a method for the
automatic insertion of slack matching buffers is described.
Slack matching buffers perform no logical operation on the data
signals. They serve as intermediate signal storage locations in a
circuit and allow other portions of the circuit to continue to
process available data signals, thus decreasing the number of
localized “stall” situations. The idea of using slack matching
buffers for asynchronous circuit performance enhancement is
not new and has been described in past work[4,5]. In terms of
PL, slack matching buffer insertion was identified as a viable
performance enhancement method in [6]; however, an
automated process for buffer insertion was not devised. In
subsequent PL design efforts, slack matching buffer insertion
was accomplished manually via ad hoc methods based on the
designer’s detailed knowledge of the circuit functionality [7,8].

The contribution of the work presented here is the development
of a technique for automatic buffer insertions. The technique
was devised through the use of a custom PL circuit timing
simulator. This simulator models the performance
characteristics of a PL circuit only and does not provide any
functional information. Active portions of the circuit at any
instant in time are represented as the flow of “tokens”
representing the data, request, and acknowledge signals. This
approach allows the simulator to have significantly faster
runtimes as compared to a traditional functional simulator. The
simulator is also efficient since it exploits the inherent structure
present in PL circuits and is thus less general but more efficient
than a generic Petri net modeling tool.

Based on the analysis of PL circuits using the simulator, an
automated method for slack matching buffer insertion is
formulated that allows buffers to be inserted based solely on the
topology of the PL circuit. Because the automatic buffer
insertion technique utilizes the token flow simulations, a crucial
aspect of this work is the efficiency of the custom simulator tool.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI ’04, April 26-28, 2004, Boston, MA, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

The remainder of this paper consists of a brief overview of PL
asynchronous circuits, a discussion of the PL token flow simulator,
and a discussion of the automatic buffer placement technique.
Examples of the performance enhancement of PL circuits based on
buffer placement are given followed by a set of experimental
results that illustrate the viability of the method.

2. Phased Logic
PL circuitry may be viewed as an implementation of
micropipelines [9] with two-phase Level Encoded Dual Rail
(LEDR) signaling [10]. A method for automatically mapping
synchronous netlists to equivalent asynchronous circuits referred
to as PL was devised in [3]. In the PL mapping process,
techniques were identified to ensure preservation of functionality
based on marked graph theory [11]. This mapping model was
implemented using a fine-grain, self-timed approach [6] and was
subsequently modified as a coarse-grain approach by replacing
individual LEDR signals with bundled data LEDR-style signaling
[7]. The coarse-grain approach allowed for significant area
savings as compared to the fine-grain approach at the expense of
requiring point-to-point delay matched internal busses.

The chief advantage offered by PL designs is the capability to
provide performance improvement when comparing average case
throughput to synchronous circuit throughput. In addition to the
performance enhancement provided by automatic slack matching
buffer insertion that is the focus of the work provided here, two
other performance enhancement techniques have been developed
and are referred to as Early Evaluation and Time Borrowing [7].
Another key feature that motivated research for the PL style of
asynchronous circuit implementation is the lack of dependence of
specialized synthesis tools. This was a motivating factor in
pursuing further research in the PL style designs that were initially
devised in 1994 as this was a well-known pitfall of most
asynchronous circuit design approaches. More recently, other
asynchronous design styles have emerged that are capable of using
standard commercial synthesis tools to various extents [12, 13, 14].

3. Slack Matching Buffering
As defined in [4], the slack of an asynchronous pipeline is the
number of tokens that may be placed in the pipeline before it stalls.
Additionally, the modification of slack properties in asynchronous
pipelines may change the performance of the circuitry; this type of
modification is a well-known optimization technique referred to as
slack matching in [5]. This essentially means avoiding the
situation where one pipeline is stalled while waiting for another
pipeline to catch up. In terms of PL, we wish to be able to adjust
the property of slack in order to improve performance by
maximizing available parallelism between various paths. The goal
of this work is to characterize where slack matching buffers can
improve performance and then to automatically insert them into
the netlist.

4. PL Token Flow Simulator
Marked Graphs introduced in [11] are a specific type of Petri net
which model resource allocation problems. The theory behind
such graphs is used as a basis for the automated synchronous to
PL-style asynchronous mapping technique. A notion of tokens,
and token firing, is used to represent data movement within a
digital system.

In order to better understand the behavior of token movement
with respect to the topology of a marked graph, a simulator was
developed. The simulator allows for direct manipulation of
token placement as well as nodes. This allows for the setup of
experiments to characterize the behavior of the placement of
token buffers with a given topology.

As there are numerous Petri net based simulators and
asynchronous circuit design tools [15], the contribution of this
simulator is the ability to measure latency and throughput of a
PL graph. To do this, we have to add source and sinks to the
marked graph that represent overall token producers and
consumers of the entire circuit. Whenever a source fires, it
provides a tag along with the token it places on the output. The
tag contains information such as firing time and source id. This
tag will propagate through the netlist and join with other tags
from other sources, if encountered, to form larger tags. Once the
tag reaches a sink, information such as latency may be computed
using the tag.

The simulator uses an event-driven approach. A queue is
maintained that keeps track of nodes that are ready to fire. A
node is ready to fire when all its inputs have a token. Before the
simulation starts, the queue is populated with nodes that are
ready to fire based on the initial token mapping. The nodes of a
marked graph may be either transitions or places as described in
standard Petri net theory. These correspond to gates and signals
of a physical circuit. Due to the nature of physical circuits, gates
and signals may both have non-zero delay. We allow the
possibility for varying delay of these components in the
simulator.

The approach for inserting slack matching buffers is reliant on
throughput and latency information provided by the simulator.
To get this information, several simulation cycles must be done.
However, the data quickly converges to stable values that may
be used for slack matching buffer insertion.

To justify the use of a simulator in a synthesis tool, the simulator
must be very fast. Let us assume a marked graph with t
transitions and p places. An upper bound for nodes ready to fire
is t+p. So the simulator must perform t+p firing operations. A
firing operation consists of checking whether to add the node
driven needs to go into a queue. We know that a place may
only input into one transition, so that is one check. If we
suppose the transitions form a t-complete graph, we need t-1
checks for each transition. These means t(t-1)= t2-t checks. In
total, there are t2-t+p checks, giving a O(t2) complexity for firing
checks per iteration. If we assume more realistic graphs, such as
transitions with a maximum of a fanout of 4 we would get
O(4t+p).

For realistic circuits, each simulation cycle has linear time
complexity. However we only need to run the simulator to get
latency and throughput times, which converge fairly quickly.
Empirical results suggest as few as 10 iterations may provide
good results. Additionally, 10 iterations frequently take less
than a second, even for large graphs.

5. Results
A gates’ feedback wait time at cycle i, w

i
, is the difference

between the time that all data tokens are available at the inputs of a
PL gate and the time when all feedbacks are available. If all
feedbacks are available before the data, then we say w

i
=0. During

a simulation a gate may fire n times. We denote a gate’s average
feedback wait time as Sw

i
/n = d. The rule to add token buffers

depends on a gate’s average feedback wait time.

A branch and bound procedure used to determine slack matching
buffer placement is the following:

1. Run the simulator on a topology to get d for each gate.
2. Collect the gates with high d, call it set C.
3. Determine a candidate for buffering from C.
4. Add slack matching buffer and ensure the resulting

topology is a marked graph
5. Re-run the simulator

a. If the buffer does not improve performance, remove
the buffer.

b. If the buffer improves performance, keep the buffer.
6. Repeat steps until some threshold is met.

In step 3, we need rules to determine a candidate from the set C.
The priority for selecting gates is based on:

• Feedback latency
• Fan-out

Feedback latency, fli,j, is the time for the jth feedback to become
available after all data inputs have arrived on a given gate at cycle
i. If the jth feedback arrives before all data inputs then fli,j=0.
This means that w

i
=max(fli,j) for a given gate. Fanout is a good

indicator of slack matching buffer placement since a signal that
fans out will result in more feedbacks needing to return to the gate.
This increases the odds that the gate will have to wait on a
feedback.

For the gates that have a high waiting time on feedbacks, a method
for determining if a slack-matching buffer would be beneficial is
the following:

a. Find the cycle that shares the feedback and a data output
of the gate

b. If the gate that the data output is driving is waiting for
other data, then place a slack-matching buffer on the data
output. If the output fans out, place the buffer on the
path between the output and the next gate on the cycle.

c. Re-run the simulator to make sure throughput and
latency have improved.

We will use the following examples to denote how these rules are
applied. Let us examine figure 1 with latency L=4 and throughput
T=4. Notice that D2 has a wait time of d=2. In addition it is a fan-
out point of two pipelines. However, D2 cannot evaluate until the
acknowledge signal is received from G3 and is thus stalled. This
implies that the slack-matching buffer should be placed between
D2 and G3. If we add a slack-matching buffer at the output of D2,
as shown in Figure 2, the delay characteristics improve. One may
notice that B is now waiting; however, insertion of another buffer
adds no performance improvement. Another example is shown in
Figure 3.

Figure 1: Example Topology with L=4 and T=4

Figure 2: Example Circuit with Slack Matching Buffer

The latency is L=8 and average throughput is T=2.5 for the
circuit represented in Figure 3. If we apply our rules, candidates
for application of slack matching buffers at the outputs are G2,
G5, and GD. It turns out that token buffers on G2 and G5 help
performance, while a token buffer on GD does not. Figure 4
contains the topology of the circuit depicted in Figure 3 with the
slack matching buffers included.

Figure 3: Second Example PL Circuit Topology

Figure 4: Second Example with Slack Matching Buffers

Topologies that do not benefit from slack matching buffer
insertion are those that are purely serial in nature, or simple
pipeline structures. An example of such a topology is shown in
Figure 5. No matter where a buffer is placed, the throughput and
latency do not improve. This is because there is no parallelism to
take advantage of.

Figure 5: Single Pipeline Topology

Table 1 provides results of the slack buffer insertion algorithm.
Six benchmark circuits topologies were chosen for these
experiments. The circuits were initially mapped into PL circuits
without any performance enhancements and were later modified to
contain slack matching buffers using the technique described
above. The table contains the name of the benchmark circuit, and,
in columns two and three, the initial throughput T and latency L.
After application of the buffer insertion technique, columns three,
four, and five contain the number of buffers inserted and the new
throughput and latency values. The overall percentage of
throughput improvement computed as 100[(T-T’)/T] is given in
the last column of Table 1. Over the set of benchmarks, an
average improvement in throughput of 21% was achieved.

Table 1. Experimental Results

Circuits
Original

Latency L

Original
Throughput

T
Buffers
added

New
Latency

L’
New

Throughput T’

% of
Throughput

Improvement

4pipe 4 3.5 6 4 2 43%

Tb3 10 2.33 2 10 2 14%

T336 6 2.67 2 7 2 25%

Tb 4 4 1 4 3 25%

C17 4.5 2.5 1 4 2 20%

S27 11 6 1 13 5 17%

Average 21%

6. Conclusions
We have presented a technique for automatically determining the
placement of slack matching buffers within a PL design. Details
of the structure and implementation of a custom simulator for PL
circuit throughput prediction are given and some simple examples
illustrating the rules for automatic buffer insertion are provided.
Experimental results are given that validate the approach and
illustrate the performance enhancement that can be achieved using
this technique. Through the examples and experimental results, it
is shown that the automatic slack matching buffer insertion
technique can enhance the throughput of a PL system.

7. References

[1] D. A. Huffman, "Design of Hazard -free Switching Circuits",

Journal of the ACM, vol. 4, pp. 47-62, January 1957.

[2] D. E. Muller and W. S. Bartky, "A Theory of
 Asynchronous Circuits," Proc. Int. Symp. on Theory of
 Switching, vol. 29, pp. 204-243, 1959.

[3] D. H. Linder and J. C. Harden, "Phased Logic: Supporting

the Synchronous Design Paradigm with Delay-Insensitive
Circuitry," IEEE Transactions on Computers, vol. 45, pp.
1031-1044, 1996.

[4] A. M. Lines, "Pipelined Asynchronous Circuits," M.S.

Thesis, Caltech, 1995.

[5] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P.

Penzes, R. Southworth, U. Cummings, and T. K. Lee, "The
Design of an Asynchronous MIPS R3000 Microprocessor,"
presented at Proc. 17th Conference on Advanced Research
in VLSI, 1997.

[6] R. B. Reese, M. A. Thornton, and C. Traver, "Arithmetic

Logic Circuits using Self-Timed Bit-Level Dataflow and
Early Evaluation," Proceedings of the 2001 International
Conference on Computer Design, pp. 18-23, 2001.

[7] R. B. Reese, M. A. Thornton, and C. Traver, "A Coarse-

Grain Phased Logic CPU," Proceedings of the IEEE
International Symposium on Asynchronous Circuits and
Systems, pp. 2-13, 2003.

[8] R. B.Reese, M. A. Thornton, and C. Traver, Technical

Report, MSU.

[9] I. Sutherland, "Micropipelines," Communications of the

ACM, vol. 32, pp. 720-738, 1989.

[10] M. E. Dean, T. E. Williams, and D. L. Dill, "Efficient Self-

Timing with Level-Encoded 2-Phase Dual-Rail (LEDR),"
Advanced Research in VLSI, pp. 55-70, 1991

 [11] F. Commoner, A. W. Hol, and A. Pneuli, "Marked

Directed Graphs," J. Computer and System Sciences, vol. 5,
pp. 511-523, 1971.

[12] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A.
 Kondratyev, "Asynchronous Design Using Commercial
 HDL Synthesis Tools," Proceedings of the IEEE
 International Symposium on Asynchronous Circuits and
 Systems, 2000.

[13] C.P. Sotiriou and L. Lavagno, "Desynchronization:

Asynchronous Circuits from Synchronous Specifications",
Proceedings of the IEEE International SOC Conference,
2003.

[14] A. Branover, R. Kol, and R. Ginosar, "Asynchronous

Design By Conversion: Converting Synchronous Circuits
into Asynchronous Ones," Proceedings of the 2004 Design,
Automation and Test Conference in Europe, 2004.

[15] "Petri Nets Tools Database Quick Overview," vol. 2003:
 Petri Net World. http://www.daimi.au.dk/PetriNets/

 tools/quick.html.

