
Table �� Processing Activity Under Transformed
Thread Sequenced Prescheduling

Clock Ready
Cycle PE� PE� Threads

� � � A
� A�cm � �
� A�cm � �
	 A�� � �

 A�� � �
� A�	 � �
� A�
 � DCF� BE
� DCF�ch�� BE�cm� �
 DCF�� BE�cm �
� DCF�	 BE�cm �
�� DCF�
 BE�� �
�� DCF�� BE�� �
�� DCF�� BE�	 �
�	 DCF�� BE�
 �
�
 DCF� BE�� �
�� DCF�� BE�� �
�� DCF��� BE�� �
�� DCF��� BE� �
� DCF��� BE�� �
�� DCF��	 BE��� �
�� DCF��
 BE��� �
�� DCF��� � �
�� G�ch�� � G
�	 G�� � �
�
 H�cm � H
�
 H�cm � �
�� H�� � �
�� H�� � �

chy for their application� These results are also very
important in the further re�nement and de�nition of
the parallel architecture brie�y described in this pa�
per� The data dependency graph analysis phase dur�
ing compile time will provide important con�guration
information for the architecture� and may be exploited
for use in recon�gurable multiprocessor systems�

References

��� Chang� M��C� and Lai� F�� E�cient Exploitation of
Instruction�Level Parallelism for Superscalar Pro�
cessors by the Conjugate Register File Scheme�
IEEE Transactions on Computers� vol� 
�� no� 	�
pp� ����	�

��� Andrews� D� L�� Application Speci�c Analysis of
Parallel Computing Systems� Ph�D� Dissertation�
Syracuse University� �����

�	� Sarkar� V�� Partitioning and Scheduling Parallel
Programs for Execution on Multiprocessors� Tech�
Rep� CSL�TR�������� Stanford University� ����

�
� Feo� J� T�� An Analysis of the Computational
and Parallel Complexity of the Livermore Loops�
Parallel Computing� Elsevier Science Publish�
ers ��������� July ��� pp� ��	����

��� IF� An Intermediate Form for Applicative

Languages� Reference Manual Version ���� M�
���� University of California�Davis� July 	�� ����

��� SISAL� Streams and Iteration in a Sin�

gle Assignment Language� Language Refer�
ence Manual Version ���� M��
�� University of
California�Davis� March �� ����

��� Evripidou� P� and Gaudiot� J�L�� A Decou�
pled Graph�Computation Data�Driven Architec�
ture with Variable�Resolution Actors� �		
 Inter�
national Conference on Parallel Processing�

�� Kuck� D�� et� al�� Dependence Graphs and Com�
piler Optimizations� Proceedings of the th ACM
Symposium on Principles of Programming Lan�
guages� January ���� pp� �������

��� Sarkar� V� and Hennessy� J�� Compile�Time Parti�
tioning and Scheduling of Parallel Programs� Pro�
ceedings of the SIGPLAN �� Symposium on Com�
piler Construction� July ���� pp� ������

���� Graham� R� L�� Bounds on Multiprocessing Tim�
ing Anomalies� SIAM Journal on Applied Mathe�
matics� ������ March �����

���� Gilbert� E� J�� An Investigation of the Partition�
ing of Algorithms Across an MIMD Computing
System� Tech� Rep� Note No� ���� Computer Sys�
tems Laboratory� Stanford University� May ����

���� Hornig� D� A�� Automatic Partitioning and
Scheduling on a Network of Personal Computers�
Ph�D� Dissertation� Carnegie�Mellon University�
��
�

��	� Simons� B�� Sarkar� V�� Breternitz Jr�� M� and
Lai� M�� An Optimal Asynchronous Scheduling
Algorithm for Software Cache Consistency� Pro�
ceedings of the Hawaii International Conference
on Systems Sciences� pp� �������� ���
�



Table 	� Processing Activity Under Thread
Prescheduling

Clock Ready
Cycle PE� PE� PE� Threads

� � � � A
� A�cm � � �
� A�cm � � �
	 A�� � � �

 A�� � � �
� A�	 � � �
� D�ch�� C�cm B�cm B�C�D
� D�� C�cm B�cm �
 D�	 C�� B�� �
� D�
 � B�� �
�� D�� � B�	 �
�� D�� � B�
 �
�� D�� � B�� �
�	 D� � B�� �
�
 D�� � B�� �
�� D��� � B� �
�� F�cm � E�ch�� E�F
�� F�cm � E�� �
� F�� � E�	 �
�� F�� � � �
�� F�	 � � �
�� F�
 � � �
�� F�� � � �
�	 G�ch�� � � G
�
 G�� � � �
�� G�� � � �
�� H�ch�� � � H
�� H�� � � �
� H�� � � �

in that only one additional thread sequence is present
after the critical path has been found� Following the
transformation� the thread sequences are presched�
uled as depicted in Table 
�

Table 
� Prescheduling for Transformed Thread Se�
quences

PE Thread Sequence
PE� A� DCF � G� H
PE� BE

As in the above examples� Table � illustrates the
execution of the transformed graph�

With the graph transformation and preschedul�
ing method� a further reduction in overall runtime is
achieved� resulting in ttrans � ��� The total runtime
incurred a memory latency penalty of 
 clock cycles
caused by L� cache misses by PE� at clock cycles
������ and �	 in Table �� Two of the cycles �numbers

A G H

B,E

D,C,F

dA = 3
dD,C,F = max {dC,dD} + dF = max {1,10} + 5 = 15
dB,E = dB + dE = 8 + 3 = 11
dG = 2
dH = 2

tA = 4
rA = 4
Sa = 0

aABE  = 6

aADCF = 0 aACFG = 0

tBE = 15
rBE =  21
SBE = 6

tDCF = 19
rDCF =  19
SDCF = 0

tH = 23
rH =  23
S0 = 0

aDCFH = 2

tG = 21
rG = 21
SG = 0

a BEH
 = 0

Figure � Transformed Example Program Graph

� and �� were due to cache cold start misses and are
unavoidable� Note� also that the required computa�
tion resources were reduced while the overall runtime
was improved �i�e� the available parallelism was re�
duced from 	 to ��� Improved load balancing can also
result from these transformations as illustrated by this
example� The theoretical speedup is further reduced
and is computed in Equation ���

Sp �
ttrans

ttheor
�

��

��
� ��� ����

The corresponding performance increase with re�
spect to the single PE case� ptrans� is computed and
given in Equation �	�

ptrans �
tscalar � ttrans

ttrans
���� �

	
� ��

��
���� � 	���

��	�

� Conclusion

This paper has presented a method for analyzing a
data dependency graph in order to compute the the�
oretical best runtime and to estimate the required
maximum number of PEs for a given parallel com�
puter architecture� These results were then used to
develop static pre�runtime scheduling and transforma�
tion methods for reducing the overall runtime by min�
imizing memory latency penalties� These methods are
e�cient and thus can provide a practical optimization
phase in the compiler for the de�ned architecture�

Further areas of improvement include the develop�
ment of additional transformation rules and a hierar�



Table �� Processing Activity Under FIFO Scheduling

Clk Ready FIFO
Cyc PE� PE� PE� Threads Cont�

� � � � A ����	
� A�cm � � A ��	��
� A�cm � � � ��	��
	 A�� � � � ��	��

 A�� � � � ��	��
� A�	 � � � ��	��
� D�ch�� C�cm B�cm B�C�D ��	��
� D�� C�cm B�cm � ��	��
 D�	 C�� B�� � ��	��
� D�
 � B�� � ��	��
�� D�� � B�	 � ��	��
�� D�� � B�
 � ��	��
�� D�� � B�� � ��	��
�	 D� � B�� � ��	��
�
 D�� � B�� � ��	��
�� D��� � B� � ��	��
�� � F�cm E�ch�� E�F ����	
�� � F�cm E�� � ����	
� � F�� E�	 � ����	
�� � F�� � � ����	
�� � F�	 � � ����	
�� � F�
 � � ����	
�� � F�� � � ����	
�	 G�cm � � G ��	��
�
 G�cm � � � ��	��
�� G�� � � � ��	��
�� G�� � � � ��	��
�� � H�cm � H 	����
� � H�cm � � 	����
�� � H�� � � 	����
	� � H�� � � 	����

essentially �marked� with a PE identi�er and can be
executed as soon as all predecessor threads have ter�
minated execution� The threads are marked in such a
way as to minimize L� cache miss penalties in an at�
tempt to reduce overall runtime by minimizing mem�
ory access overhead�

Using this method� three thread sequences are iden�
ti�ed in the example dag and assigned to particular
PE as indicated by Table �� Note that it is still pos�
sible to incur a cache miss penalty when a particular
thread in one sequence depends upon data computed
in a thread from another sequence�

The following table is of the same format as that
in the FIFO scheduling example and illustrates exe�
cution events for the prescheduling approach�

The thread sequence prescheduling approach re�
duced the overall runtime to tpresch � �� The run�
time reduction results in further decreasing the theo�
retical speedup as calculated in Equation ���

Table �� Various PE�s and Their Thread Sequence
Assignments

PE Thread Sequence
PE� A� D � F � G� H
PE� C
PE� B � E

Sp �
tpresch

ttheor
�

�

��
� ���� ����

The corresponding performance increase with re�
spect to the single PE case� ppresch� is computed and
given in Equation ���

ppresch �
tscalar � tpresch

tpresch
���� �

	
� �

�
���� � ���
�

����

��� Prescheduling after Transformation

In this technique� threads are prescheduled as
above� but only after additional compile time process�
ing is accomplished on the dag� By exploiting the
allowable latency values� aij� various threads can be
combined through graph transformation rules without
a�ecting the theoretical runtime� These transforma�
tions are applied to the graph prior to prescheduling if
they will result in decreasing memory access latencies�

So far� we have identi�ed three simple transforma�
tion rules� However� appropriate graph transforma�
tion rules will vary depending on the multiprocessor
architecture� The rules given below apply to the sim�
ple architecture described in Section 	�

�� If a predecessor thread has more than one con�
sumer thread� transfer as many instructions in
the producer thread forward to consumer threads
as possible� This will increase parallelism by al�
lowing the �bottleneck� producer thread to con�
tain as few instructions as possible�

�� If multiple predecessor threads have a single com�
mon consumer thread� transfer as many instruc�
tions back to the predecessor threads as possible�

	� Combine all tandem threads into a single thread�

Using these rules� the example dag can be trans�
formed as shown in Figure � Note that after graph
transformation� the exploitable parallelism is reduced



Like the rti values� these quantities can be computed
through the use of a backward traversal through the
dag incurring a computational cost of O�jV j � jEj��
The governing equation is�

aij � �rtj � CPTj� � rti ���

� Thread Scheduling

The parameters de�ned in the previous section gave
overall and intermediate execution times without re�
gard to clock cycles expended due to memory access
overhead� In this section� we will analyze overall run�
time considering memory latencies for three thread
scheduling models�

�� FIFO PE scheduling

�� PE thread assignment prescheduling method

	� Thread assignment after graph transformation

Each of these scheduling methods will be de�ned
and associated overall runtimes and parallelism mea�
sures will be computed in the following subsections�
To simplify these results� the following assumptions
will apply to each example�

�� Cache miss penalties are � clock cycles

�� A cache miss will occur if a PE executes a thread
when that same PE did not execute the threads�
immediate predecessor

	� A 	 PE architecture is utilized since maximum
available parallelism is 	 for the example graph
shown in Figure 


Obviously� these are simplistic assumptions and de�
pend upon other parameters such as the presence of
the multi�level cache hierarchy and the size and line
�ll lengths of the L� caches� Nevertheless� the overall
trend is illustrated� Similar methods have been used
in the past for partitioning and scheduling for MIMD
machines ���� and distributed computers �����

��� FIFO Scheduling

This method is intuitively simplistic and allows ex�
ploitation of available parallelism to occur on a purely
data�driven basis� Whenever a thread is ready for ex�
ecution� a PE is allocated for its execution by access�
ing a FIFO structure containing pointers to idle pro�
cessors� This concept has been proposed in the past

for various architectures similar to the one described
here ���� In this scheduling scheme� the instruction
template and required data may not necessarily be
present in the allocated PE�s L� cache causing a pos�
sible cache miss penalty in overall execution time�

Table � depicts the activity present in the architec�
ture for each clock cycle� The �rst column indicates
the current clock cycle and the next three columns
contain thread identi�ers corresponding to those in
Figure 	 which indicate current execution on a given
PE� Some of the thread identi�ers have �cm� or �ch�
next to them� This indicates whether the data was
present �ch � cache hit�� or� not present �cm � cache
miss� in the respective PE�s L� cache� Each thread
identi�er also has a number next to it which repre�
sents the o�set of the PE�s program counter register
relative to the beginning of the threads� code tem�
plate� The �Ready Threads� column contains a list
of threads that are ready for execution based upon all
data dependencies being satis�ed� The last column
entitled �FIFO Contents� contains the queue contents
in order from left to right that indicate which PE will
be scheduled for the next available thread�

The execution data presented in Table � represents
the parallel execution of the example program where
the various threads are scheduled using a FIFO and
are executed in a purely data�driven manner� Using
this approach� it is seen that the theoretical speedup
has decreased from that assuming a single PE �given
in Equation 	� and is computed by dividing the total
runtime using FIFO scheduling� tfifo� by the ideal
case as shown in Equation �

Sp �
tfifo

ttheor
�

	�

��
� ��	� ��

This decrease in theoretical speedup can alterna�
tively be viewed as a performance increase� pfifo�
when compared to the single PE as computed in
Equation ��

pfifo �
tscalar � tfifo

tfifo
���� �

	
� 	�

	�
���� � �	�	�

���

��� PE Thread Prescheduling

In this technique� the parameters de�ned in the
previous section are computed at compile time and
used to determine thread sequences in the dag� Each
of the thread sequences are assigned to a particular
PE in the architecture resulting in a PE preschedul�
ing scheme� Each thread� or vertex� in the dag is



that are not contained in any previously formed
thread� As an example� the critical path in Fig�
ure � will be marked as thread sequence �
 the �rst
execution of the while loop� The remaining nodes
C�B�E will then be traversed the second execution
of the while loop to �nd the critical path of the nodes
remaining� Nodes B�E will be contained in thread
sequence ��� and the remaining node C will form
thread sequence ��� After thread sequence �� has
been formed� no nodes remain� and the program ter�
minates� Note thread sequence �� and thread sequence
�� cannot initiate execution until node A has com�
pleted as given in the original dependence graph� Note
this analysis also yields the maximum available par�
allelism by determining the total number of thread
sequences which is present in the variable� i in the
pseudo�code shown above�

A

D

C

B

F G H

E

thread[0]

thread[1]

thread[2]

Figure �� Example Program Graph with Thread Se�
quences Identi�ed

� Compile�time Analysis

Once a dag representing a program has been for�
mulated by the compiler� pre�runtime analysis may
be undertaken to determine the critical path as de�
�ned in the previous section� This section contains
the development of a set of parameters and methods
for their computation to determine the critical path
and other relevant measures� The quantities to be
computed are�

� CPTi � clocks per thread for the ith thread� This
represents the total execution time required for
one instance of a single thread �or equivalently
dag node�

� ti � cumulative execution time required when a
particular thread has completed execution� This
value disregards latencies introduced by memory
accesses and considers only the CPTi and data
dependence parameters in the dag�

� rti � required cumulative execution time� This
is the minimum necessary value of the execution

time disregarding memory access latencies such
that the theoretical runtime can be achieved�

� aij � allowable latency� The allowable latency
is assigned to each dag edge and represents the
total amount of latency allowable between exe�
cution completion of thread i and the initiation
of execution of thread j such that the theoretical
runtime is not a�ected�

Each node or vertex in the dag has a required ex�
ecution time� CPTi� associated with the ith thread
length� Data dependencies among the various threads
are represented by the dag edges� thus a thread j that
depends on or consumes data computed in thread i

exists in a path from the ith node to the jth node�
The cumulative execution time� tj� becomes the sum
of all CPT values for predecessor nodes� This simple
sum must be modi�ed slightly in the instance when
a consumer node has dependence on two or more im�
mediate predecessors� In this case� the maximum of
all predecessor ti values must be taken to ensure all
required data is available� Clearly� the tn value for
the terminal nth node in the dag will be the theoret�
ical runtime� or� execution time of the critical path�
Mathematically� the cumulative execution time can be
stated as�

ti � CPTi � maxftjg��vj � vi� � E ���

Where E is the set of all edges in the dag and vi is
a particular vertex in the dag� The ti values can be
computed for each vertex through a single forward
traversal algorithm with computational complexity�
O�jV j � jEj�� where jV j and jEj represent the total
number of vertices and edges present in the dag re�
spectively�

The required cumulative execution time� rti � can
likewise be computed via a backward traversal of
the dag also incurring a computational complexity of
O�jV j � jEj�� The relationship used to de�ne this
quantity is given as�

rti � minfrtj � CPTjg�jj�vi� vj� � E ���

Finally� the allowable latencies� aij � can be com�
puted for each dag edge in the set E� This com�
putation depends on the required cumulative execu�
tion times� rti� and thus must necessarily occur after
they have been computed� The aij values represent
the total amount of latency that may occur between
the execution termination of thread i and the execu�
tion initiation of thread j� hence these values provide
important information for pre�runtime optimizations�



node0

node1 node2

node3

node4

0

a

node0

node1 node2

node3

node4

0

1

b

node0

node1 node2

node3

node4

0

1

2

c

node0

node1 node2

node3

node4

0

11

2

d

node0

node1 node2

node3

node4

0

11

2

2

e

node0

node1 node2

node3

node4

0

11

3

2 re-assignment

f

node0
node1
node2

node1
node4

node1 node3 node4

Figure �� Diagram of Stack and Level Assignments During a Traversal

Lemma � The computational complexity of the
graph traversal algorithm is dependent on the number
of predecessors for each node� For a directed acyclic

graph� the maximum number of predecessors is n�n���
� �

for a graph with n edges� The proof follows�

Proof�

�� Consider a graph G � �N�E� with N nodes�
Each node can have at most N � � predecessors
�edges� giving at most N �N � �� edges for graph
G�

�� Consider two arbitrary nodes ni and nj in graph
G� If node ni has N � � predecessors� then node
nj must be an immediate predecessor of node ni�
If we constrain graph G to be acyclic �i�e�� no
cycles�� then node nj cannot have ni as a pre�
decessor or a cycle would exist between the two
nodes� Therefore an antisymmetric relation ex�
ists between the two nodes�

	� Suppose node ni is from an antisymmetric graph
G � �N�E� and has N � � edges� Then a second
arbitrary node nj can have at most N � � edges�
a third node nk at most N � 	 edges� etc� The
maximum number of edges is given by the series�

kEk �
NX

i��

i �
N �N � ��

�
�
�

�

The graph traversal algorithm considers all forward
paths in the graph� The number of forward paths can�
not be greater than the number of edges in the graph�
Therefore� the worst case computational complexity

is O�E� �� O�n�n���� ��

��� Thread Sequence Formation

Once the critical path is found� the theoretical best
execution time ttheor� is computed� and the critical
path is marked as the graphs� controlling thread se�
quence�
� The remaining portion of the graph can
now be re�evaluated for partitioning onto the remain�
ingN�� processors shown in Figure �� The algorithm
can be stated in pseudo code as�

i��

while�nodes��

thread�sequence �i	 
� critical�path��

i �� � �

where the function critical � path�� �nds and
marks the critical path from the graph for all nodes



A

D

C

B

F

E

G H

dA = 3
dB = 8
dC = 1
dD = 10

dE = 3
dF = 5
dG = 2
dH = 2

Figure 
� Arbitrary Program Graph

Where n is equal to the number of nodes contained
within the graph� Assuming no communications costs�
execution of this graph on a scalar machine would take
tscalar � 	
 machine cycles�

Now consider executing the same graph on the ma�
chine model shown in Figure 	 with unlimited num�
bers of processors� and no penalty for communica�
tions� For these assumptions� the ideal execution time
of this graph will be given by the critical path as
shown in Figure ��

A

D

C

B

F

E

G H

dA = 3
dB = 8
dC = 1
dD = 10

dE = 3
dF = 5
dG = 2
dH = 2

Figure �� Arbitrary Program Graph with Critical
Path Denoted

The execution time of the graph cannot be any
faster than the critical path� even with the addition
of more processors� This is a general result that can
be veri�ed by the following lemma�

Lemma � The execution time of a weighted directed
acyclic graph with no communications overhead cost
is bounded by the critical path through the graph�

Proof�

For any given path� pi� present in the graph from
the initial node� a� to the terminal node� n� the to�
tal execution time� Tpi � along that path disregarding
any communication costs is equivalent to the sum of
the individual execution times of each node present in
pi� Tpi � da � � � � � dn� The graph may be viewed
as a collection of such paths� fp�� p�� � � � � pi� � � � � pmg�

Hence� the overall program runtime� Toverall must be
at least equal to the maximum value of the total ex�
ecution time of all paths forming the graph since it
is necessary that all paths �or thread sequences� �n�
ish execution for the program to terminate� Since
these execution times are computed without regard
to communication overhead� the maximum value is a
lower bound on the program�s execution time given
by Toverall � maxfT�� T�� � � � � Ti� � � � � Tmg� �

For the graph given above the critical path is given
by nodes A� D � F � G� H and is given as

ttheor � 	 � �� � � � � � � � �� ���

Therefore� the theoretical speedup achievable on
this program is given as�

Sp �
tscalar

ttheor
�

	


��
� ���� �	�

This is the theoretical best case execution time and
speedup for the arbitrary program represented by the
graph above� The addition of more processors or re�
sources cannot provide additional speedup�

��� Critical Path Analysis

The critical path can easily be computed using a
stack based� depth �rst traversal of the data depen�
dency graph� This approach is shown in Figure ��
Figure � shows a simple data dependence graph� and
the corresponding stack contents as the graph is tra�
versed� The �rst diagram in Figure � shows how the
stack is initialized by assigning the top node of the
graph a level of zero and then pushing the entry on
to the stack� The second diagram shows the state
of the stack after the top node has been visited by
the traversal algorithm� In this case� nodes � and �
were identi�ed as the predecessor nodes of the stack
top node� and will be considered for further traversal�
The traversal continues by comparing the predecessors
current level� given by the integer value shown in each
node with di plus the level of the stack top node� A
predecessor may contain a previously assigned higher
level as shown in Figure � if it has already been refer�
enced during an earlier traversal� If the existing level
is greater than di plus the level of the successor node�
then the previously assigned level remains valid and
the node is not pushed onto the stack� Otherwise�
the predecessor node is assigned one plus the succes�
sor node�s level� and pushed onto the stack� Figure �
shows the stack and level assignments during a traver�
sal�



i

RangeGenerator

1

ASetL

Forall 1

n a i b

AGather

1

ASetL

Forall 1

n a b

Call

Mmult Call

Gen
n

k

RangeGenerator

1
n

Times

AElement AElement

AElement AElement

a i b k j

Reduce

SUM 0.0D0

Figure �� Data Dependence Graph of Program Example

type TwoDim � array � array � double�real 	 	
function Gen� n 
 integer returns

TwoDim� Twodim �
for i in �� n cross j in �� n
returns array of double�real�i��double�real�j�

array of double�real�i��double�real�j�
end for
end function � Gen

function Mmult� n 
 integer
A� B 
 TwoDim returns TwoDim �

for i in �� n cross j in �� n
c 
� for k in �� n

t 
� A�i�k	 � B�k�j	
returns value of sum t
end for

returns array of c
end for
end function � Mmult

function main� n 
 integer returns TwoDim �
let A� B 
� Gen� n �
in Mmult� n� A� B �

end let
end function � main

Figure �� SISAL Code Sequence Example to Illustrate

Parallelism

from both L� and L� caches� as well as any intercon�
nect network contention�

� Ideal Execution Time Prediction

The directed graph shown in Figure 
 below shows
the data dependencies between operations for an arbi�
trary program� The graph can be transformed into a

Data Memory

L2 Cache

L1 Cache

PE

L1 Cache

PE

L1 Cache

PE

L1 Cache

PE

Interconnection Network

o o o

Figure 	� Architecture Block Diagram

weighted acyclic graph by appending execution times
for each node� The edges of the graph represent data
movements� An ideal execution time can be computed
for the graph by assuming no communication costs be�
tween operations� Although unrealistic� this ideal as�
sumption is critical as it provides a hard lower bound
on execution time for the graph that can be used for
comparisons when actual communications times are
introduced� Similar approaches have been used in the
past for the computation of runtime bounds �����

As an example� consider the graph in Figure 

where the execution time for node x is given as dx�
The total number of cycles required to compute this
graph on a single CPU is given by the sum of the
individual node execution times as�

tscalar �
nX

i��

di ���



algorithms to the graph in order to produce more ef�
�cient run times� and the ability to graphically dis�
play the program based on data dependencies instead
of an arti�cial ordering of operations determined by
the placement of an instruction in a textual format�
The data dependence graph is a � calculus based de�
scription of a program�s dependencies and attributes�
Some compilers automatically generate these graphs
in intermediate optimization stages� One intermedi�
ate graphical form that is used by several di�erent
compilers is IF� ���� A program can be represented in
IF� as�

De�nition � A program is the set of function de�ni�
tions� PROG � fp�� p�� � � � png � where function pi de�
�nes a complete graph representing function i�s com�
putations� execution times� data dependencies� and
operands�

De�nition � A graph is a � � tuple � N � P � C� Nc�
Ec�

De�nition � N � fnjn � fNs 	Nc	Bgg is a set of
nodes where� Ns � fnpjnp � machine primitive op�
eration g is the set of simple nodes� Nc � fncjnc �
compound operation g is the set of compound nodes
where each node nc in Nc is composed of a set of func�
tion de�nitions fp�� p�� � � � � png� B � f
��g is the set
of boundary nodes� Boundary nodes are special lexi�
cal separator nodes� Note that a compound node may
be composed of any combination of simple� compound�
and boundary nodes�

De�nition � � N � �  is a partially ordered set
�poset� consisting of the set N and the partial ordering
� representing data and control dependencies between
nodes in the node set N �

De�nition 	 P � f�ninj�jni � nj� i� jg is the edge
set of the precedence relation in De�nition ��

De�nition 
 Nc � N � Z� such that nc is equal
to the cost of node nc� For simple nodes� nc is the
�relative� number of machine cycles required to per�
form the operation� For compounds and the boundary
node 
� nc represents the total number of machine cy�
cles required to perform all operations in Ci such that
nc � Ci�

De�nition � Ec � P � Z� such that ec�pij� repre�
sents the communication cost of edge pij � �ni� nj��

The set of simple nodes represent processor primi�
tive operations including arithmetic� control� boolean�

and other indivisible sequential operations� The set
of compound nodes consists of conditional constructs�
parallel constructs� and iterative constructs� The
boundary nodes provide separation between logical
groupings of nodes� The precedence relation provides
an explicit interpretation of both data and control de�
pendencies� Precedence constraints are directly vis�
ible in languages with explicit parallelism� and are
easily determined from functional languages with no
side e�ects from explicit data dependencies� Although
translation of computations expressed in imperative
languages expressible in the � calculus into a graph
form is guaranteed� the translation may require sub�
stantial dependence analysis to reveal possible paral�
lelism� The analysis may also include a transforma�
tion process that �rst assumes sequential execution�
and removes those dependencies which are provably
redundant�

Communication edges represented by the prece�
dence relation � are graphical translations of the data
dependencies explicitly determined in functional lan�
guages adhering to the single assignment rule� How�
ever� a communication transformation has to be ap�
plied to imperative languages using global storage and
reassignment of data values�

As an example� consider the code sequence given in
Figure � from the Livermore Loops �
� written in the
SISAL language ���� The parallelism in the original
source language is not obvious� However� the paral�
lelism is immediately obvious from the data depen�
dence graph version of the same program shown in
Figure �� The graph is presented hierarchically� with
the graph for the main program showing the calls
to function Gen�args� and function Mmult�args��
Function Mmult�args� contains nested forall con�
structs� implying all code contained within the body
of the construct can be executed in parallel� A
range generator computes the instantiation numbers
for each parallel copy of the body code�

� Architecture De�nition

The block diagram of a simpli�ed tightly coupled
architecture is shown in Figure 	� Each process�
ing element� PE� contains a local data cache con�
nected across a single interconnection network� Data
is shared using global memory� Accessing data from
a L� cache is assumed to introduce no communica�
tion overhead� Accesses from the L� cache incurs an
overhead of a cache miss from the L� cache� and any
delays due to the contention across the interconnect
network� Accesses from the data memory incur a miss



Graph Analysis and Transformation Techniques for Runtime

Minimization in Multi�Threaded Architectures

M� A� Thornton� D� L� Andrews

University of Arkansas

Fayetteville� AR ����������

Abstract

This paper describes a method of analysis for de�
tecting and minimizing memory latency using a di�
rected data dependency graph produced from a com�
piler� These results are applicable to the develop�
ment of methods for the optimal generation of instruc�
tion threads to be executed on a multi�threaded� data�
driven architecture� The resulting runtime reductions
are accomplished by minimizing memory access times
by individual processing elements� Additionally� these
analysis methods can be used to predict measures of
achievable parallelism for a given program graph which
can be exploited by a recon�gurable� multi�threaded ar�
chitecture�

	 Introduction

This paper describes a method for the detection
and minimization of memory latencies in a data�
driven� multi�threaded architecture using a directed
graph which contains program data dependency in�
formation� This method consists of �rst analyzing
the data dependency graph followed by the applica�
tion of transformation rules that modify the content
of various instruction threads� The data dependency
graph is a directed acyclic graph �dag� where the ver�
tices consist of instruction threads and the edges cor�
respond to interdependencies among the threads� By
accounting for memory latencies due to the transfer
of data among the vertices� the content of the threads
can often be modi�ed� The overall result is that in�
stead of relying only upon the inherent parallelism
present in the directed graph for runtime minimiza�
tion� the additional analysis and subsequent program
graph transformations allow for further reductions in
program runtime by decreasing overall memory access
times by individual processing elements�

The analysis and graph transformation methods
are shown to have acceptable costs in terms of compu�

tational and spatial complexities and are thus practi�
cal to implement in the optimization stage of the com�
piler�loader portion of the system software� Further�
this method is devised such that runtime will never be
increased through its application in the worst case the
overall program runtime will remain the same�

These results are directly applicable to the develop�
ment of methods for the optimal generation of instruc�
tion threads for the architecture discussed here by
statically scheduling the threads prior to program ex�
ecution through the graph analysis phase and by par�
titioning the instruction threads to minimize memory
latency penalties� Additionally� these analysis meth�
ods can be used to predict measures of achievable par�
allelism for a given program graph before execution�
This information can be valuable for the determina�
tion of a good organization of processor assets in a
recon�gurable� multi�threaded architecture� Similar
approaches have been used by other researchers for
related applications ��� �� ��� ��	��

The remainder of the paper is organized as follows�
The next section will present the de�nitions used for
the mathematical description of the directed acyclic
graph used to represent data dependencies among var�
ious instruction threads� Next� a brief description of
the architecture the methods developed here apply to
is included� Sections 
 and � discuss the dag analysis
methods used to calculate the ideal runtime and the
compile�load time optimizations respectively� The ap�
plication of the analysis results is described in the fol�
lowing section entitled �Thread Scheduling�� Finally�
conclusions and areas of further work are included�


 Graphical Representation

This section presents the mathematical foundation
taken from ��� �	� for representing programs as di�
rected acyclic graphs �dag�� Several advantages exist
for expressing programs as directed graphs� includ�
ing the ability to apply standard graphical analysis



Copyright �		� IEEE� Published in the Proceed�
ings of the Hawaii International Conference on Sys�
tem Sciences �HICSS��
�� January �� �		�� Wailea�
Hawaii� U� S� A�

Personal use of this material is permitted� How�
ever� permission to reprint�republish this material for
advertising or promotional purposes or for creating
new collective works for resale or redistribution to
servers or lists� or to reuse any copyrighted component
of this work in other works� must be obtained from
the IEEE� Contact� Manager� Copyrights and Per�
missions�IEEE Service Center���� Hoes Lane�P�O�
Box �����Piscataway� NJ 
���������� U� S� A� Tele�
phone� � Intl� 	
�������	��


