

Abstract

A logic style known as Phased Logic(PL) is applied to arithmetic
circuits. Phased logic is a dual-rail LEDR logic style that allows
automatic translation from a clocked netlist to a self-timed
implementation. Bit level dataflow, early evaluation and automatic
filtering of transient computations within PL circuits can lead to
both increased performance and higher energy efficiency than the
original clocked netlist. Simulation results for a 16x16 iterative
multiplier based on a LUT4 design show a 23% speed improvement
and 20% energy improvement over the clocked design. A Y=
Y@1*a +b calculation using an array multiplier design shows a
15% performance decrease but is 2X more energy efficient than the
clocked counterpart.

1. Introduction

Throughout the ITRS-99 Roadmap on Design, continual
references are made to clock and timing related challenges facing
designers through and beyond 2005. Many of the problems stem
from simply taking the current design methodology for computing
systems (a global clock between components, with higher rate clocks
within components) and projecting this usage within the System-on-
a-Chip circa 2005 and beyond. In [1], [2] an innovative clockless
design methodology called Phased Logic (PL) was introduced.
Phased Logic is based upon LEDR signal encoding [6] and marked
graph theory [7]. One of the features of Phased Logic is that it
produces a clockless design via an automated translation from a
netlist of DFFs + combinational logic. This paper demonstrates
Phased Logic as applied to arithmetic circuits, principally addition
and multiplication.

2. A brief overview of Phased Logic

A phased logic netlist can be thought of as a marked graph with
data tokens flowing throughout the graph. Each data token has a
phase that is either even or odd. A data token is represented by a
dual-rail signal that uses LEDR encoding [4]. A phased logic gate
has an internal state bit used to represent the gate phase and a
phased logic gate fires whenever all of the phases of the inputs
matches the internal gate phase. In [1] Linder showed that for
correct operation of a phased logic system, its marked graph
equivalent had to be both live and safe. A live marked graph has an
active token on each directed circuit of the graph and every signal
must be part of a directed circuit. This essentially means that each
directed circuit in the phased logic netlist must have at least one PL
gate ready to fire at any time. A graph with a liveness problem will
result in no token circulation, and hence no activity in the PL
system. A safe marked graph is one in which each directed circuit
has only one active token on it at a time. This means that there can
only be one PL gate ready to fire within a given directed circuit. A

This work was supported in part by an internal grant from the MSU/NSF

Engineering Research Center.

graph with a safety problem will result in incorrect operation
because multiple tokens on a directed circuit can overwrite each
other. During a computation cycle along a directed circuit in a
phased logic netlist, all gates will change phase. Token circulation
continues in a PL system even if the value of the tokens are
unchanging; each computation cycle will simply change the phases
of the tokens and gates.

The mapping of a clocked netlist (D-Flip-Flops + combinational
logic) to a phased logic netlist consists of the following operations:

• All gates are replaced by PL gate equivalents. A PL gate
equivalent is the original combinational logic function
plus the control logic necessary for gate firing. A DFF in
the original netlist can be absorbed into the combinational
gate that provides the DFF’s input signal.

• Feedback signals are synthesized for the PL netlist to
ensure safety and liveness of the resulting netlist.
Feedback signals carry no value information, only phase
information and thus result in single wires. The details of
feedback generation are described in [1], [2], [3]. Muller
C-elements [9], [10] are used to concentrate feedbacks at
a particular gate when needed.

3. Phased Logic system design

3.1 A LUT4-based PL Gate

A four input PL gate (pl4gate) that uses a LookUp Table (LUT)
as a compute element is shown in Figure 1. (this is actually a
variation of a design presented in [8] that also used a LUT4 LEDR
computation element). The Muller C-element (C-gate) contains the
gate phase, and the toggling of this element activates the output
latches to capture the new output value from the LUT. The dly
block indicates a delay-matched path in which it is assumed that the
output of the LUT4 is stable when the output latch gate control is
asserted. From a power perspective, it is important to note that if
the value bits remain stable, then only the control elements switch
during a phase change. The gate shown in Figure 2 is the basic gate
used in the simulations presented in this paper. The fi input is used
as a dedicated feedback input. Unused inputs can also be used for
feedback inputs. It is assumed that each PL4gate will also have a 4-
input Muller C-element paired with it to be used as a resource for
feedback concentration for this gate or any other gate.

Arithmetic Logic Circuits using Self-timed Bit Level Dataflow and Early Evaluation

 Robert B. Reese Mitch A. Thornton Cherrice Traver
 Mississippi State University Mississippi State University Union College
 reese@ece.msstate.edu mitch@ece.msstate.edu traverc@doc.union.edu

3.2 Early evaluation
It can be seen from Figure 2 that the output latch delay is

included in the critical delay path of the gate. The ratio of the
output delay to compute block delay (in this case, the LUT4 delay)
will determine a gate-level performance penalty when comparing PL
systems to clocked systems. Fortunately, PL has some system level
features that allow it to overcome this gate level penalty. Early
evaluation is a speedup mechanism by which a PL gate is allowed to
fire when only a subset of its inputs has arrived. This allows PL
circuits to implement data dependent computation, which is a well-
known benefit of self-timed systems.

Figure 2 illustrates how two PL4gates (termed a master and a

trigger) can be combined to form one early evaluation PL4gate. The
master contains the normal evaluation function while the trigger
contains the early evaluation function. When the early evaluation
function is true, then the master gate is fired and the current value of
the master LUT4 is used. Obviously the trigger gate should be
based upon early arriving signals, and the trigger function should
depend upon a subset of the master function signals such that the
late arriving signals are don’t cares.

3.3 Bit Level Dataflow
Another system level speedup mechanism is bit-level dataflow.

Because of the fine-grained nature of the feedback signals, all
available parallelism within the PL system is used automatically
during its operation.

Figure 3 shows two systems whose only difference is the number
of parallel stages surrounding a ripple structure. The input and
output of both systems is word synchronized, but token flow occurs
at the bit level within the system. Because the input and outputs are
synchronized, the top circuit in Figure 4 can suffer from delays
imposed by synchronization. The addition of parallel stages before

and after the inputs serve to increase bit level dataflow and the
stages can simply be buffers or elements performing useful
computation. Simulation results indicate the average throughput of
the top system is 4 gate delays, while the average throughput of the
bottom system is 2.3 gate delays. Static figures cannot convey this
flow mechanism adequately; Macromedia Flash animations of these
two systems are available at [11].

4. Design examples
This section discusses three example designs used to compare

clocked and PL LUT4-based netlists for power and performance.
All designs were specified in VHDL RTL and synthesized to a
LUT4 netlist via Synopsys Design Compiler. The LUT4 VHDL
netlist was used as the basis of the clocked simulations. The LUT4
VHDL netlist was then converted to EDIF for input to our mapping
tool that outputs a VHDL netlist of pl4gates. Optimized LUT4
structures for addition and multiplication structures were installed in
a Synopsys DesignWare library.

One of our goals in implementing these examples was not only to
verify functionality of our mapping program, but also to get some
rough estimates of how a PL implementation compares to a clocked

 D Q

EN

R r-bit

Q

 D Q

EN

R r-bit

Q

D-latch

D-latch

 v_rbit

t_rbit reset

reset

new_t

new_v

out_phase = gate_phase

out_phase

LUT4

gate_phase

de
la

y

C

reset

fi
a_v
a_t
b_v
b_t
c_v
c_t
d_v
d_t

a_v
b_v
c_v
d_v

fo

fo_b

v

t

t_b

Input completion detection

G1

G2

G3

Figure 1: A LUT4-based PL Gate

pl4gate

master

A
B

F = C (A + B) + A B

pl4gate

F = AB + A’B’

C

efirefo

Cfi

fi

trigger

Fdbk from
master
destinations

Fdbk to
all
master
sources

Figure 2: Early Evaluation Pair

pl4gate

master

A
B

F = C (A + B) + A B

pl4gate

F = AB + A’B’

C

efirefo

Cfi

fi

trigger

Fdbk from
master
destinations

Fdbk to
all
master
sources

Figure 2: Early Evaluation Pair

Throughput = 4 gate delays

Throughput = 2.3 gate delays

Figure 3 : Bit Level Dataflow

Throughput = 4 gate delays

Throughput = 2.3 gate delays

Figure 3 : Bit Level Dataflow

implementation in terms of performance and power. Our examples
have all inputs and outputs registered, so the performance of the
clocked system will be the longest register-to-register path as
reported by Synopsys. A LUT4 was assigned a normalized delay of
1.0, with the sum of the Clock-To-Q (Tcq) DFF delay + DFF setup
delay (Tsu) also estimated as a LUT4 delay (1.0). Clock skew and
wiring delays were ignored for both systems. Ignoring wire delays
penalizes the PL systems in performance comparisons because wire
delays would only help reduce the PL4gate output latch delay
penalty as percentage of the total delay. The PL4gate delay was
estimated as 1.4 (ie., the output latch in the pl4gate adds a 40%
delay penalty). These ratios were chosen by using specifications
from the Altera and Xilinx data sheets for LUT4, TCQ and Tsu
ratios. The value of 1.4 is the average these values. Four-input
Muller C-elements were also used in the PL netlist for feedback
concentration, and these were assigned a delay value of 0.6.

The performance of the PL system is measured by simulating the
netlist using 600 input vectors and calculating the resultant average
computation delay. Variable computation delays are present in any
PL netlist using early evaluation. The input vector values are
digitized sine wave values that cover full range (in amplitude) and
several cycles -- each successive cycle used a different offset that
ensured that two cycles did not duplicate input vectors.

For power comparisons, the VHDL simulations are instrumented
to track compute and control signal transitions. A compute
transition is counted as any change of value on a LUT4 input
(simultaneous or near simultaneous arrivals were only counted
once). For the clocked netlist, an active clock edge arrival at a D-
Flip-Flop is a control transition. For the PL netlist, the firing of a PL
gate is a control transition. From Altera Apex [12] and Xilinx
Virtex [13] FPGA power estimation spreadsheets for 0.18µ
technologies, a LUT4 is estimated to switch approximately 1.05 pF,
and a D-Flip-Flop 0.14 pF. HSPICE simulations based on a 0.25µ
technology of the pl4gate control indicate that it switches
approximately 0.2 pF per firing (this value would be expected to
shrink somewhat for a 0.18µ process but we will use this somewhat
inflated value so as to help factor in the output token phase or ’t’ bit
wiring capacitance). Four-input Muller C-elements were found to
switch 0.75 pF per output change. The ’v’ bit (value bit) wiring
capacitances were ignored since the value wire switching
capacitance of the PL systems will be equal or less than that of the
clocked system (less if the clocked system has transient
computations). We can estimate the amount of capacitance switched
per computation using these control and compute capacitances in
conjunction with the transition counts. An energy figure of merit
(work per sample) can be obtained by multiplying the delay per
sample by the capacitance per sample. 16 bits of Y@1 is used). The
16 x 16 multiplier design used an un-optimized Carry-Select
Addition (CSA) array [14], with the final carry/sum merge
accomplished using a CLA in the clocked design and a ripple adder
with early evaluation in the PL design.

4.1 A 32-bit accumulator

The first design example is a 32-bit accumulator with a
synchronous clear. A carry look-ahead adder is used for the clocked
netlist and a ripple carry adder with early evaluation is used for the
PL netlist. The CLA adder was used in all clocked designs because
of its obvious performance advantage over a ripple adder.

4.2 A 32-bit Iterative Multiplier
Figure 4 shows the second design, a shift/add 16x16 iterative

multiplier using a single adder.

Figure 4: 16x16 Iterative Multiplier

Again, the clocked design used a CLA while the PL design used a

ripple adder with early evaluation. The PL design had an extra
speedup path in that a kill line was used to early fire every carry bit
in case the multiplier bit was ’0’.

4.3 Filter calculation Y = Y@1 * A + B

Figure 5 shows the datapath used for the third design example.
The 16 x 16 multiplier design used an un-optimized Carry-Select
Addition (CSA) array [14], with the final carry/sum merge
accomplished using a CLA in the clocked design and a ripple adder
with early evaluation in the PL design.

5. Design comparisons: clocked vs. PL

5.1 Performance, energy comparisons

Table 1 gives the delay, capacitance and energy per sample
measured from the VHDL gate level simulations. The delay values
are normalized to LUT4 delays. The energy value is simply a figure
of merit for work obtained by multiplying the capacitance column
times the delay column, and dividing by a constant scale factor. The
accumulator design is designated as ’acc’, the iterative multiplier as
’mult’, and filter calculation as ’filt’. In all cases, the PL designs are

Adder

LS
Product

MS
Product

MCAND MPLIER

16

16 16

16

LSB

shift
kill
(PL only)

shift

load

FSM

ordy

irdy

D
F
F
s

16 X

D
F
F
s

A Y

B

32

Figure 5: Y = Y@1*A + B

+
32

16
Y (LS)

D
F
F
s

16 X

D
F
F
s

A Y

B

32

Figure 5: Y = Y@1*A + B

+
32

16
Y (LS)

more energy efficient than the clocked designs. The PL iterative
multiplier actually switched slightly more capacitance than the
clocked design, but was more energy efficient due to higher
performance. The PL filter application was slower than the clocked
netlist, but was more energy efficient due to less capacitance
switched per sample.

Design dly(LUT4s) cap(fF) Energy %diff

Clk (acc) 12 205 24.7

PL (acc) 8.2 193.1 15.8 -36.0%

Clk (mult) 187 3415 6385

PL (mult) 151 3557 5357 -16.1%

Clk (filt) 29 2286 663

PL (filt) 33 976 322 -51.4%
Table 1: Performance values for Design Examples

In looking at the performance figures of Table 1, the ripple early

evaluation capability allows the PL designs to overcome the 40%
gate delay penalty and to outperform the clocked LUT4 netlists. We
are aware that both Xilinx and Altera include fast carry generation
logic within their cells, while our clocked netlists had the carry logic
as a dedicated LUT4. Obviously, the carry logic along with the
early evaluation for the carry could be integrated into the pl4gate
design. The exact effect upon the performance and capacitance
values in Table 1 is an area of future study.

In Table 1, the PL circuits switched less capacitance in 2 out of 3
designs due to a reduction in compute transitions. This reduction
comes from the different adder structures (CLA versus ripple) and
also from of filtering of transient computations. Table 2 shows the
total transition counts for the three designs.

Design Compute %diff Control Cgate

Clk (acc) 110133 38115 0

PL (acc) 81031 -26.4% 112135 80454

Clk (mult) 1806621 791863 0

PL (mult) 1155446 -36.0% 3735097 1750466

Clk (filt) 1273941 46960 0

PL (filt) 436545 -65.7% 439122 365142
 Table 2: Transition Counts for Design Examples

The large compute transition savings in the filter example is

mainly due to the CSA multiplier array, which tends to propagate
transient computations.

While PL designs can reduce compute transitions, PL
dramatically increases control transitions since there is now control
in every cell, and every cell changes phase during a compute cycle.
Because of this control overhead, it is critical that the ratio of
compute capacitance to control capacitance be large. In our LUT4
based pl4gate design, this ratio is 5 to 1 and we believe that this
might be near the lowest ratio in order for a PL system to be power
competitive with clocked control.

Design AvgDly MinDly MaxDly Std Dev

PL (acc) 8.2 4.2 20.2 2.4
PL (mult) 151 123 177 8.3
PL (filt) 33 27 42 2.4
Table 3: Delay Statistics on Phased Logic Simulations

All of the PL blocks used early evaluation and thus their
computations are data dependent. Table 3 shows the delay statistics
for the phased logic designs, where delay values are in LUT4 delays.
Obviously, if a PL system encounters worst-case data patterns for a
significant amount of the time, then a ripple adder with early
evaluation will not be the best choice. We have evaluated a few
different adders structures (carry-skip with early eval, and CLA with
early eval) that reduce worst-case delay. Unfortunately, these
structures tend to also negatively impact the average delay. This is
an area that also needs further study.

5.2 Delay Analysis
Table 4 shows the values in Table 3 in terms of pl4gate delays

instead of LUT4 delays (1 pl4gate delay = 1.4 LUT4 delays).

Design AvgDly AvgDly (Exp) MinDly MaxDly

PL (acc) 5.7 8.0 3.0 13.4
PL (mult) 107.9 (6.3) 170(10) 87.9 (5.2) 126.4 (7.4)
PL (filt) 23.6 24.0 19.3 30.0

Table 4: PL Example Design Delays in pl4gate delays

For the multiplier, the value in ’()’ is the single compute cycle
delay, which is the delay divided by 17 since it takes 17 clocks to
complete a multiplication. The MinDly column gives the straight-
line delay path through the PL design and represents the best case
where all carry gates do an early evaluation. The value of 3.0 for
the Accumulator represents the InputDFF + Sum + Mux LUT4s.
The MUX LUT4 is used for the synchronous clear, the output DFFs
were absorbed into this mux. The value of 5.2 for the multiplier
represents the InputDFF + 3 Mux LUT4s + SUM + a small amount
of additional delay from feedback signals. The 3 MUX LUT4s in
the multiplier data path were used for clearing, shifting functions.
The value of 19.3 for the multiplier represents Input DFF + 16
LUT4 delays for the CSA Array + Sum (carry/sum merge) + Sum of
final adder + small amount of feedback delay.The expected average
delay of designs is also shown in Table 4. This value is computed by
using the expected average delay of a ripple adder with early eval as
(log(N) + 1)[19] added to the other path delays in the design). The
accumulator is approximately 29% less than the expected value.

 To see if the better than expected performance was possibly be
due to favorable data patterns, the accumulator example was re-
simulated with 10K vectors, both sampled sinewaves (10 cycles)
and random. The average delay results were the same to one
decimal place (5.7) as the previous simulation. Figure 6 shows the
delay distributions of this simulation.

Figure 6: Accumulator Delay Distribution, 10K Random
and Sine Vectors

We believe that the better than expected average performance is

due to the bit-level pipelining feature of PL. The expected average
delay calculation of the iterative multiplier did not take into account
the speedup obtained via forcing the adder to early evaluate for each
multiplier ’0’ bit. This accounts for the measured performance being
better than the expected performance.

The expected average delay of the filter was: 1 (InputDFF) + 16
(CSA Array) + 5 (16-bit add for carry/sum merge) + 1 (Carry) + 1
(Sum) of final adder = 24 delays. Due to bit-level dataflow, two
adders in series do not add as 2*(log(n) + 1). This is because the
carry chain in the 2nd adder can start firing as soon any bit from the
1st adder arrives, so the carry chains essentially compute in parallel
with only a constant delay for each additional adder in series.

It can be seen from the maximum delay column that no vectors
exercised the worst case delay of N delays in the adder plus straight
line delays in the remainder of the datapath.

5.3 Cell count, wire count comparisons
No physical cell layouts of the pl4gate were done, so area

comparisons of clocked designs versus PL designs can only be done
on a cell count and wire count basis. It should be noted that
assuming the LUT4 dominates the active cell area, the complexity of
the pl4gate cell is about the same as an Altera or Xilinx LUT4 logic
cell.

Design LUT4s DFFs Sgates Cgates TotCells

Clk (acc) 179 65 0 0 179
PL (acc) 126 33 1 42 160
Clk (mult) 317 71 0 317
PL (mult) 150 50 103 121 303
Clk (filt) 697 80 697
PL (filt) 621 48 32 575 701

Table 5: Cell Counts for Example Designs

Table 5 gives the cell count comparisons for the three example
designs. The clocked designs only have LUT4s and DFFs. The
TotCells column for the clocked designs is only the LUT4s since it
is assumed that the DFFs are integrated into the logic cells as in
Xilinx and Altera designs. The PL designs have LUT4s, DFFs,
Sgates, and Cgates. The PL DFFs are actually any cells in the PL
netlist that act as a buffer function. It is assumed that these cells will
bypass the LUT4 in the cell and that only the control section of the
pl4gate is active.

 The mapping program attempts to absorb any DFFs present in
the clocked netlist into its corresponding driving cell in the PL
netlist. Input DFFs are not absorbed. The DFF absorption is why
the PL designs have less ’DFFs’ than the clocked designs. However,
these DFFs count against the PL cell count since the control circuitry
functionality is needed. The Sgates column is for splitter gates that
are added by the mapping program. For feedback generation to
work correctly, the mapping program inserts a buffer on any path in
the original clocked netlist that has a DFF output driving a DFF
input directly. These splitter gates are simply buffer functions, but
also count against the cell count since the control circuitry is needed.
The Cgates column is the number of 4-input Muller C-elements
added to the netlist by the mapping program for feedback
concentration. We assume that each pl4gate has an unassigned 4-
input Cgate to be used for feedback concentration so these gates do
not count towards the PL cell count. Thus, the PL cell count is the
sum of LUT4s, DFFs, and Sgates while the clocked cell count is the
LUT4 count only. It should be noted that early evaluation gates such

as used in the PL ripple adders require two LUT4s and count as two
cells.

The iterative multiplier has a high number of splitter gates due to
the shift register functions in the design. All designs are able to
absorb some of their DFFs into neighboring cells. The combination
of DFFs counting against PL cell counts and splitter gates can lead
to PL requiring more cells as in the filter design. PL will only use
less gates in the case where it can use a structure like an early eval
ripple adder that saves cells over a carry lookahead adder.

Table 6 shows the wire count comparisons for the three designs.
The signal net column is the number of signal nets in the original
netlist, and for clocked designs is also the number of total wires
(ignoring the clock net and reset net). The FBnets column is the
number of feedback nets added to the PL design by the mapping
program. The total nets column for the PL design is the sum of the
signal nets and feedback nets. The number of total wires in the PL
design is the signal nets multiplied by 2 because of the dual rail
signaling, plus the feedback nets (feedback signals are single rail).

Design Signal Nets FBnets Tot Nets Tot Wires

Clk (acc) 194 0 194 194
PL (acc) 160 171 331 491
Clk (mult) 252 0 252 252
PL (mult) 303 366 669 972
Clk (filt) 704 0 704 704
PL (filt) 701 1230 1931 2632

Table 6: Wire Count Comparisons for Example Designs

Feedback wiring is probably the largest challenge for efficient

implementation of PL-based programmable logic. Feedback nets
represent a new routing resource that must be dealt with. The
number of feedback nets are high in all three of the example designs
for several reasons: a) a small amount of logic between DFFs
requires a lot of feedback nets since a feedback net cannot cover a
long path (as in the accumulator example); b) large fanout will
require large feedback concentration at a node which will require
building trees of C-elements that will be expensive in terms of
feedback wiring required. The last case of feedback wiring due to
trees of Muller C-elements can be somewhat reduced by including a
larger C-element for feedback concentration in each cell (e.g., an 8-
input element).

6. Comparisons to other work

A self-timed FPGA based upon LUT3s and using LEDR encoding
was presented in [8]. The cell design presented in Figure 2 is a
variation of the cell design used in [8]. In [8], three feedback inputs
are included in each cell, so the Muller C-element has 6 inputs (3
data, 3 acknowledge). The author uses the cell in the context of
Sutherland’s micropipelines [15] and self-timed iterative rings [16].
Both methods require a feedback signal for each output destination.
The PL methodology removes the need for a feedback for every
output signal destination as multiple output signals can be covered
by the same feedback signal, and some output signals need no
feedback signal if they are already part of a loop. No performance
or power analyses are made of designs using the LUT3 cell.

An FPGA-based architecture for asynchronous logic is also
proposed in [17]. This FPGA architecture was aimed at
accommodating a range of asynchronous design styles, and allowed
for mixed synchronous and asynchronous designs. All signals were
single rail. By contrast, our proposed function block is only

intended for supporting the PL design style, and thus implements PL
designs more efficiently than [17].

The asynchronous design methodology known as Null Convention
Logic (NCL) also offers automated synthesis of asynchronous
designs using commercial synthesis tools [18]. A restriction with
the NCL methodology is that while the design can be coded in
VHDL RTL, the user must write the RTL such that combinational
logic and registers are separated. In comparing physical
implementation characteristics, NCL has some delay sensitivity
between NCL gates whereas PL has no delay sensitivity between PL
gates. Both NCL and PL use dual rail signals, where NCL uses a
NULL/DATA/NULL encoding instead of LEDR. NCL has the same
advantage of eliminating transient computations as PL, and does not
have the disadvantage of the PL control overhead. The computation
blocks in PL are the same as their synchronous counterparts with
only a different control scheme, while NCL computation blocks are
quite different from their synchronous equivalents. NCL designs
have been shown to be well suited for standard cell implementation
technologies. NCL mapping to a LUT4-based technology would
require a conservative estimate of 2X the number of LUT4 gates as
the clocked netlist due to the dual rail encoding of the data values
and the NCL implementation using m-of-n threshold gates. A
thorough investigation is needed to determine if the extra compute
switched capacitance required by an NCL LUT4 implementation
will offset the control switched capacitance in a PL design.

There are many examples of self-timed adder structures in the
literature. A good summary and analysis of these approaches can be
found in [19]. Two interesting conclusions are reached in [19], a)
asynchronous adders can give performance improvement over
Conditional Sum Adders in only limited conditions, and b) large
variations in processing time of an addition limits the speed of an
asynchronous pipeline. It is somewhat difficult to compare our
results against these conclusions (especially ’a’) since we used
LUT4s for implementation, while [19] used primitive two input
gates, and we used a more conventional CLA structure for our
synchronous adders instead of a CSA structure. However, some
general comments can be made. The conclusions in [19] are all
based on asynchronous adders for ASIC technologies in which a
completion signal is generated for the entire adder result. Our
feedback signals for the LUT4 pl4gate work at the bit level, so this
allows more parallelism via bit level dataflow. Our iterative
multiplier design can be regarded as a ’deep’ asynchronous pipeline
since it takes 16 clocks to produce one result, where each addition is
dependent on the previous result forming a long dependency chain.
If some set of bits within an addition is slow in producing a result
because of a non-favorable early evaluation pattern, this does not
inhibit the other bits from proceeding in the calculation due to the
bit-level dataflow nature of Phased Logic. If the coarseness of the
compute block needs to be increased due to compute/control
capacitance concerns, the coarseness can still be limited to
something less than a word level (eg., groupings of 4 bits) in order
to promote more parallel dataflow.

A speculative-completion carry-lookahead adder is presented in
[20] . This technique is well suited for an ASIC implementation
but its reliance on matched delays and a bundled datapath makes an
FPGA LUT4 implementation questionable. Applying general
speculative completion techniques within a PL system is an area that
needs further study.

7. Summary
In this paper, we have shown the application of a self-timed logic

style called Phased Logic to three example arithmetic circuits. The
circuits were simulated using a LUT4-based gate (pl4gate) that
implemented the Phased Logic protocol. All three circuits were
more energy efficient than their clocked counterparts due to
transient computation filtering and increased performance. Two of
the three designs had higher performance than the clocked designs
despite a 40% gate level penalty performance of the LUT4-based
pl4gate cell. The increased performance of the PL netlists was due
principally to the use of early evaluation in the adder circuits. An
early evaluation PL gate is formed by using a pair of normal PL
gates, where one gate provides the early evaluation function and one
gate provides the normal evaluation function.

 We believe a natural application of PL gates is a LUT-based
FPGA technology. The high ratio of compute to control capacitance
allows PL netlists to be competitive with clocked netlists in terms of
total switched capacitance. Areas of future work involve looking at
compute blocks suitable for programmable logic other than a LUT4
and examining the same performance/energy comparisons on larger
design examples that have multiple functional units and complex
control.

8. References
[1] Daniel H. Linder and James C. Harden, “Phased Logic: Supporting the

Synchronous Design Paradigm with Delay-insensitive Circuitry.” IEEE
Transactions on Computers, Vol 45, No 9, September 1996.

[2] Daniel H. Linder, Phased Logic: A Design Methodology for Delay-
Insensitive Synchronous Circuitry, PhD thesis, Mississippi State Univ.,
1994.

[3] R. Reese, and C. Traver, "Synthesis and Simulation of Phased Logic
Systems", Technical Report MSSU-COE-ERC-00-09, MSU/NSF
Engineering Research Center, June 2000. Presented at International
Workshop on Logic Synthesis (IWLS 2000), Dana Point, CA, June 2,
2000.

[4] D. B. Armstrong, A.D.Friedman, and P.R.Menon, “Design of
Asynchronous Circuits Assuming Unbounded Gate Delays,” IEEE
Transactions of Computers, vol. 18, December 1969.

[5] A.J. McAuley, “Four State Asynchronous Architectures,” IEEE
Transactions on Computers, vol. 41, February 1992.

[6] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-Timing with
Level-Encoded 2-Phase Dual-Rail (LEDR),” in Advanced Research in
VLSI, 1991.

[7] F. Commoner, A. W. Hol, S. Even, A. Pneuel, "Marked Directed Graphs",
J. Computer and System Sciences, vol. 5, pp. 511-523, 1971.

[8] Dana L. How, “A Self Clocked FPGA for General Purpose Logic
Emulation”, in proceedings of IEEE 1996 Custom Integrated Circuits
Conference, 1996, pp. 148-151.

[9] D.E. Muller and W. S. Bartky, "A Theory of Asynchronous Circuits", in
Proc. Int. Symp. on Theory of Switching, vol. 29, pp.204-243, 1959.

[10] Tzyh-Yung Wuu and Sarma B. K. Vrudhula, "A Design of a Fast and Area
Efficient Mult-Input Muller C-element", IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol 1, No. 2, June 1993.

[11] http://www.ece.msstate.edu/~reese/phased_logic FLASH Animations.
[12] Altera Apex Power Estimator,

http://www.altera.com/html/products/power_calc.html
[13] Xilinx Virtex Power Estimator,

http://www.xilinx.com/support/techsup/powerest/index.htm
[14] Rabaey, Jan M., Digital Integrated Circuits: A Design Perspective,

Prentice Hall, pp 408-412.
[15] I. Sutherland, “Micropipelines”, Communications of the ACM, Vol 32,

No. 6, June 1989, pp. 720-738.
[16] M.R. Greenstreet, T.E. Williams, and J . Staunstrup, "Self-Timed

Iteration", VLSI ’87, C. H. Sequin (Ed.), Elsevier Science Publishers, 1988,
pp. 309-322.

[17] Scott Hauck, Steven Burns, Gaetano Borriello, Carl Ebeling, “An FPGA
for Implementing Asychronous Circuits”, IEEE Design and Test of
Computers, Fall 1994, pp. 60-69.

[18] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, Alex
Kondratyev, "Asynchronous Design Using Commercial HDL Synthesis

Tools", In Sixth Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems (Async 2000), Eilat, Israel, April 2000.

[19] D. J. Kinniment, "An Evaluation of Asynchronous Addition", IEEE Trans.
On Very Large Scale Integration (VLSI) Systems, Vol. 4, No 1., March
1996.

[20] S. M. Nowick, "Design of a low-latency asynchronous adder using
speculative completion", II Proc. Comput. Digit. The., Vol 143, No 5,
Septembert 1996, pp. 301-307.

