
 
 

  

Abstract 
 

A logic style known as Phased Logic(PL) is applied to arithmetic 
circuits.  Phased logic is a dual-rail LEDR logic style that allows 
automatic translation from a clocked netlist to a self-timed 
implementation.  Bit level dataflow, early evaluation and automatic 
filtering of transient computations within PL circuits can lead to 
both increased performance and higher energy efficiency than the 
original clocked netlist.  Simulation results for a 16x16 iterative 
multiplier based on a LUT4 design show a 23% speed improvement 
and 20% energy improvement over the clocked design. A  Y= 
Y@1*a +b  calculation using an array multiplier design shows a 
15% performance decrease but is 2X more energy efficient than  the 
clocked counterpart. 

 
1. Introduction 

Throughout the ITRS-99 Roadmap on Design, continual 
references are made to clock and timing related challenges facing 
designers through and beyond 2005.  Many of the problems stem 
from simply taking the current design methodology for computing 
systems (a global clock between components, with higher rate clocks 
within components) and projecting this usage within the System-on-
a-Chip circa 2005 and beyond. In [1], [2] an innovative clockless 
design methodology called Phased Logic (PL) was introduced.  
Phased Logic is based upon LEDR signal encoding [6] and marked 
graph theory [7].  One of the features of Phased Logic is that it 
produces a clockless design via an automated translation from a 
netlist of DFFs + combinational logic.  This paper demonstrates 
Phased Logic as applied to arithmetic circuits, principally addition 
and multiplication.  
 
2.  A brief overview of Phased Logic 

A phased logic netlist can be thought of as a marked graph with 
data tokens flowing throughout the graph.   Each data token has a 
phase that is either even or odd.  A data token is represented by a 
dual-rail signal that uses LEDR encoding [4]. A phased logic gate 
has an internal state bit used to represent the gate phase and a 
phased logic gate fires whenever all of the phases of the inputs 
matches the internal gate phase. In [1] Linder showed that for 
correct operation of a phased logic system, its marked graph 
equivalent had to be both live and safe. A live marked graph has an 
active token on each directed circuit of the graph and every signal 
must be part of a directed circuit. This essentially means that each 
directed circuit in the phased logic netlist must have at least one PL 
gate ready to fire at any time. A graph with a liveness problem will 
result in no token circulation, and hence no activity in the PL 
system. A safe marked graph is one in which each directed circuit 
has only one active token on it at a time.  This means that there can 
only be one PL gate ready to fire within a given directed circuit.  A 
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graph with a safety problem will result in incorrect operation 
because multiple tokens on a directed circuit can overwrite each 
other. During a computation cycle along a directed circuit in a 
phased logic netlist, all gates will change phase.  Token circulation 
continues in a PL system even if the value of the tokens are 
unchanging; each computation cycle will simply change the phases 
of the tokens and gates. 

The mapping of a clocked netlist (D-Flip-Flops + combinational 
logic) to a phased logic netlist consists of the following operations: 

• All gates are replaced by PL gate equivalents. A PL gate 
equivalent is the original combinational logic function 
plus the control logic necessary for gate firing.  A DFF in 
the original netlist can be absorbed into the combinational 
gate that provides the DFF’s input signal. 

• Feedback signals are synthesized for the PL netlist to 
ensure safety and liveness of the resulting netlist.  
Feedback signals carry no value information, only phase 
information and thus result in single wires.  The details of 
feedback generation are described in [1], [2], [3].  Muller 
C-elements [9], [10] are used to concentrate feedbacks at 
a particular gate when needed. 

 
3. Phased Logic system design 
 
3.1 A LUT4-based PL Gate 

A four input PL gate (pl4gate) that uses a LookUp Table (LUT) 
as a compute element is shown in Figure 1. (this is actually a 
variation of a design presented in [8] that also used a LUT4 LEDR 
computation element).  The Muller C-element (C-gate) contains the 
gate phase, and the toggling of this element activates the output 
latches to capture the new output value from the LUT.  The dly 
block indicates a delay-matched path in which it is assumed that the 
output of the LUT4 is stable when the output latch gate control is 
asserted.  From a power perspective, it is important to note that if 
the value bits remain stable, then only the control elements switch 
during a phase change. The gate shown in Figure 2 is the basic gate 
used in the simulations presented in this paper.  The fi input is used 
as a dedicated feedback input.  Unused inputs can also be used for 
feedback inputs.  It is assumed that each PL4gate will also have a 4-
input Muller C-element paired with it to be used as a resource for 
feedback concentration for this gate or any other gate.    
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3.2 Early evaluation 
It can be seen from Figure 2 that the output latch delay is 

included in the critical delay path of the gate.  The ratio of the 
output delay to compute block delay (in this case, the LUT4 delay) 
will determine a gate-level performance penalty when comparing PL 
systems to clocked systems.  Fortunately, PL has some system level 
features that allow it to overcome this gate level penalty.  Early 
evaluation is a speedup mechanism by which a PL gate is allowed to 
fire when only a subset of its inputs has arrived.  This allows PL 
circuits to implement data dependent computation, which is a well-
known benefit of self-timed systems.    

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 illustrates how two PL4gates (termed a master and a 

trigger) can be combined to form one early evaluation PL4gate.  The 
master contains the normal evaluation function while the trigger 
contains the early evaluation function.   When the early evaluation 
function is true, then the master gate is fired and the current value of 
the master LUT4 is used.  Obviously the trigger gate should be 
based upon early arriving signals, and the trigger function should 
depend upon a subset of the master function signals such that the 
late arriving signals are don’t cares.   

 

3.3 Bit Level Dataflow 
Another system level speedup mechanism is bit-level dataflow.  

Because of the fine-grained nature of the feedback signals, all 
available parallelism within the PL system is used automatically 
during its operation.  

Figure 3 shows two systems whose only difference is the number 
of parallel stages surrounding a ripple structure. The input and 
output of both systems is word synchronized, but token flow occurs 
at the bit level within the system.  Because the input and outputs are 
synchronized, the top circuit in Figure 4 can suffer from delays 
imposed by synchronization.  The addition of parallel stages before 

and after the inputs serve to increase bit level dataflow and the 
stages can simply be buffers or elements performing useful 
computation.  Simulation results indicate the average throughput of 
the top system is 4 gate delays, while the average throughput of the 
bottom system is 2.3 gate delays. Static figures cannot convey this 
flow mechanism adequately; Macromedia Flash animations of these 
two systems are available at [11].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Design examples 
This section discusses three example designs used to compare 

clocked and PL LUT4-based netlists for power and performance.  
All designs were specified in VHDL RTL and synthesized to a 
LUT4 netlist via Synopsys Design Compiler.  The LUT4 VHDL 
netlist was used as the basis of the clocked simulations.  The LUT4 
VHDL netlist was then converted to EDIF for input to our mapping 
tool that outputs a VHDL netlist of pl4gates. Optimized LUT4 
structures for addition and multiplication structures were installed in 
a Synopsys DesignWare library.   

One of our goals in implementing these examples was not only to 
verify functionality of our mapping program, but also to get some 
rough estimates of how a PL implementation compares to a clocked 
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implementation in terms of performance and power.  Our examples 
have all inputs and outputs registered, so the performance of the 
clocked system will be the longest register-to-register path as 
reported by Synopsys.  A LUT4 was assigned a normalized delay of 
1.0, with the sum of the Clock-To-Q (Tcq) DFF delay + DFF setup 
delay (Tsu) also estimated as a LUT4 delay (1.0).  Clock skew and 
wiring delays were ignored for both systems.  Ignoring wire delays  
penalizes the PL systems in performance comparisons because wire 
delays would only help reduce the PL4gate output latch delay 
penalty as percentage of the total delay. The PL4gate delay was 
estimated as 1.4 (ie., the output latch in the pl4gate adds a 40% 
delay penalty).  These ratios were chosen by using specifications 
from the Altera and Xilinx data sheets for LUT4, TCQ and Tsu 
ratios. The value of 1.4 is the average these values. Four-input 
Muller C-elements were also used in the PL netlist for feedback 
concentration, and these were assigned a delay value of 0.6.   

The performance of the PL system is measured by simulating the 
netlist using 600 input vectors and calculating the resultant average 
computation delay. Variable computation delays are present in any 
PL netlist using early evaluation.  The input vector values are 
digitized sine wave values that cover full range (in amplitude) and 
several cycles -- each successive cycle used a different offset that 
ensured that two cycles did not duplicate input vectors. 

For power comparisons, the VHDL simulations are instrumented 
to track compute and control signal transitions.  A compute 
transition is counted as any change of value on a LUT4 input 
(simultaneous or near simultaneous arrivals were only counted 
once).  For the clocked netlist, an active clock edge arrival at a D-
Flip-Flop is a control transition. For the PL netlist, the firing of a PL 
gate is a control transition.   From Altera Apex [12] and Xilinx 
Virtex [13] FPGA power estimation spreadsheets for 0.18µ 
technologies, a LUT4 is estimated to switch approximately 1.05 pF, 
and a D-Flip-Flop 0.14 pF. HSPICE simulations based on a 0.25µ 
technology of the pl4gate control indicate that it switches 
approximately 0.2 pF per firing (this value would be expected to 
shrink somewhat for a 0.18µ process but we will use this somewhat 
inflated value so as to help factor in the output token phase or  ’t’ bit 
wiring capacitance). Four-input Muller C-elements were found to 
switch 0.75 pF per output change. The ’v’ bit (value bit) wiring 
capacitances were ignored since the value wire switching 
capacitance of the PL systems will be equal or less than that of the 
clocked system (less if the clocked system has transient 
computations).  We can estimate the amount of capacitance switched 
per computation using these control and compute capacitances in 
conjunction with the transition counts.  An energy figure of merit 
(work per sample) can be obtained by multiplying the delay per 
sample by the capacitance per sample. 16 bits of Y@1 is used). The 
16 x 16 multiplier design used an un-optimized Carry-Select 
Addition (CSA) array [14], with the final carry/sum merge 
accomplished using a CLA in the clocked design and a ripple adder 
with early evaluation in the PL design.  

 
4.1 A 32-bit accumulator 

The first design example is a 32-bit accumulator with a 
synchronous clear.  A carry look-ahead adder is used for the clocked 
netlist and a ripple carry adder with early evaluation is used for the 
PL netlist.  The CLA adder was used in all clocked designs because 
of its obvious performance advantage over a ripple adder. 

 
 

 
 
 
 
 
 
 

4.2   A 32-bit Iterative Multiplier 
Figure 4 shows the second design, a shift/add 16x16 iterative 

multiplier using a single adder.  
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4: 16x16 Iterative Multiplier 
 
Again, the clocked design used a CLA while the PL design used a 

ripple adder with early evaluation.  The PL design had an extra 
speedup path in that a kill line was used to early fire every carry bit 
in case the multiplier bit was ’0’.  

 
4.3 Filter calculation Y = Y@1 * A + B 

Figure 5 shows the datapath used for the third design example.  
The 16 x 16 multiplier design used an un-optimized Carry-Select 
Addition (CSA) array [14], with the final carry/sum merge 
accomplished using a CLA in the clocked design and a ripple adder 
with early evaluation in the PL design.  

 
 
 
 
 
 
 
 
 
 
 
 

5. Design comparisons: clocked vs. PL 
 
5.1 Performance, energy comparisons 

Table 1 gives the delay, capacitance and energy per sample 
measured from the VHDL gate level simulations.  The delay values 
are normalized to LUT4 delays.  The energy value is simply a figure 
of merit for work obtained by multiplying the capacitance column 
times the delay column, and dividing by a constant scale factor. The 
accumulator design is designated as ’acc’, the iterative multiplier as 
’mult’, and filter calculation as ’filt’.  In all cases, the PL designs are 
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more energy efficient than the clocked designs. The PL iterative 
multiplier actually switched slightly more capacitance than the 
clocked design, but was more energy efficient due to higher 
performance.   The PL filter application was slower than the clocked 
netlist, but was more energy efficient due to less capacitance 
switched per sample. 

Design dly(LUT4s) cap(fF) Energy %diff 

Clk (acc) 12 205 24.7   

PL (acc) 8.2 193.1 15.8 -36.0% 

Clk (mult) 187 3415 6385   

PL (mult) 151 3557 5357 -16.1% 

Clk (filt) 29 2286 663   

PL (filt) 33 976 322 -51.4% 
Table 1:  Performance values for Design Examples 

 
In looking at the performance figures of Table 1, the ripple early 

evaluation capability allows the PL designs to overcome the 40% 
gate delay penalty and to outperform the clocked LUT4 netlists.  We 
are aware that both Xilinx and Altera include fast carry generation 
logic within their cells, while our clocked netlists had the carry logic 
as a dedicated LUT4.  Obviously, the carry logic along with the 
early evaluation for the carry could be integrated into the pl4gate 
design.   The exact effect upon the performance and capacitance 
values in Table 1 is an area of future study. 

In Table 1, the PL circuits switched less capacitance in 2 out of 3 
designs due to a reduction in compute transitions. This reduction 
comes from the different adder structures (CLA versus ripple) and 
also from of filtering of transient computations.  Table 2 shows the 
total transition counts for the three designs. 

 

Design Compute %diff Control Cgate 

Clk (acc) 110133   38115 0 

PL (acc) 81031 -26.4% 112135 80454 

Clk (mult) 1806621   791863 0 

PL (mult) 1155446 -36.0% 3735097 1750466 

Clk (filt) 1273941   46960 0 

PL (filt) 436545 -65.7% 439122 365142 
 Table 2: Transition Counts for Design Examples 

 
The large compute transition savings in the filter example is 

mainly due to the CSA multiplier array, which tends to propagate 
transient computations.  

While PL designs can reduce compute transitions, PL 
dramatically increases control transitions since there is now control 
in every cell, and every cell changes phase during a compute cycle.  
Because of this control overhead, it is critical that the ratio of 
compute capacitance to control capacitance be large. In our LUT4 
based pl4gate design, this ratio is 5 to 1 and we believe that this 
might be near the lowest ratio in order for a PL system to be power 
competitive with clocked control.  

 

Design AvgDly MinDly MaxDly Std Dev 

PL (acc) 8.2 4.2 20.2 2.4 
PL (mult) 151 123 177 8.3 
PL (filt) 33 27 42 2.4 
Table 3: Delay Statistics on Phased Logic Simulations 

 

All of the PL blocks used early evaluation and thus their 
computations are data dependent. Table 3 shows the delay statistics 
for the phased logic designs, where delay values are in LUT4 delays. 
Obviously, if a PL system encounters worst-case data patterns for a 
significant amount of the time, then a ripple adder with early 
evaluation will not be the best choice.  We have evaluated a few 
different adders structures (carry-skip with early eval, and CLA with 
early eval) that reduce worst-case delay. Unfortunately, these 
structures tend to also negatively impact the average delay.  This is 
an area that also needs further study. 

 

5.2 Delay Analysis 
Table 4 shows the values in Table 3 in terms of pl4gate delays 

instead of LUT4 delays (1 pl4gate delay = 1.4 LUT4 delays). 
 

Design AvgDly AvgDly (Exp) MinDly MaxDly 

PL (acc) 5.7 8.0 3.0 13.4 
PL (mult) 107.9 (6.3)         170(10) 87.9 (5.2) 126.4 (7.4) 
PL (filt) 23.6 24.0 19.3 30.0 

Table 4: PL Example Design Delays in pl4gate delays 
 

For the multiplier, the value in ’()’ is the single compute cycle 
delay, which is the delay divided by 17 since it takes 17 clocks to 
complete a multiplication.  The MinDly column gives the straight-
line delay path through the PL design and represents the best case 
where all carry gates do an early evaluation.  The value of 3.0 for 
the Accumulator represents the InputDFF + Sum + Mux LUT4s.  
The MUX LUT4 is used for the synchronous clear, the output DFFs 
were absorbed into this mux.  The value of 5.2 for the multiplier 
represents the InputDFF + 3 Mux LUT4s + SUM  + a small amount 
of additional delay from feedback signals.  The 3 MUX LUT4s in 
the multiplier data path were used for clearing, shifting functions. 
The value of 19.3 for the multiplier represents Input DFF +  16 
LUT4 delays for the CSA Array + Sum (carry/sum merge) + Sum of 
final adder +  small amount of feedback delay.The expected average 
delay of designs is also shown in Table 4. This value is computed by 
using the expected average delay of a ripple adder with early eval as  
(log(N) + 1)[19] added to the other path delays in the design).  The 
accumulator is approximately 29% less than the expected value.  

  To see if the better than expected performance was possibly be 
due to favorable data patterns, the accumulator example was re-
simulated with 10K vectors, both sampled sinewaves (10 cycles) 
and random.  The average delay results were the same to one 
decimal place (5.7) as the previous simulation.  Figure 6 shows the 
delay distributions of this simulation.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Accumulator Delay Distribution, 10K Random 
and Sine Vectors 

We believe that the better than expected average performance is 



 
 

due to the bit-level pipelining feature of PL.  The expected average 
delay calculation of the iterative multiplier did not take into account 
the speedup obtained via forcing the adder to early evaluate for each 
multiplier ’0’ bit.  This accounts for the measured performance being 
better than the expected performance. 

The expected average delay of the filter was: 1 (InputDFF) + 16 
(CSA Array) + 5 (16-bit add for carry/sum merge) + 1 (Carry) + 1 
(Sum) of final adder = 24 delays.  Due to bit-level dataflow, two 
adders in series do not add as 2*( log(n) + 1).  This is because the 
carry chain in the 2nd adder can start firing as soon any bit from the 
1st adder arrives, so the carry chains essentially compute in parallel 
with only a constant delay for each additional adder in series.  

It can be seen from the maximum delay column that no vectors 
exercised the worst case delay of N delays in the adder plus straight 
line delays in the remainder of the datapath. 

 

5.3 Cell count, wire count comparisons 
No physical cell layouts of the pl4gate were done, so area 

comparisons of clocked designs versus PL designs can only be done 
on a cell count and wire count basis.  It should be noted that 
assuming the LUT4 dominates the active cell area, the complexity of 
the pl4gate cell is about the same as an Altera or Xilinx LUT4 logic 
cell.  

 

Design LUT4s DFFs Sgates Cgates TotCells 

Clk (acc) 179 65 0 0 179 
PL (acc) 126 33 1 42 160 
Clk (mult) 317 71 0   317 
PL (mult) 150 50 103 121 303 
Clk (filt) 697 80    697 
PL (filt) 621 48 32 575 701 

Table 5: Cell Counts for Example Designs 
 

Table 5 gives the cell count comparisons for the three example 
designs. The clocked designs only have LUT4s and DFFs.  The 
TotCells column for the clocked designs is only the LUT4s since it 
is assumed that the DFFs are integrated into the logic cells as in 
Xilinx and Altera designs.  The PL designs have LUT4s, DFFs, 
Sgates, and Cgates.  The PL DFFs are actually any cells in the PL 
netlist that act as a buffer function. It is assumed that these cells will 
bypass the LUT4 in the cell and that only the control section of the 
pl4gate is active. 

 The mapping program attempts to absorb any DFFs present in 
the clocked netlist into its corresponding driving cell in the PL 
netlist.  Input DFFs are not absorbed.  The DFF absorption is why 
the PL designs have less ’DFFs’ than the clocked designs. However, 
these DFFs count against the PL cell count since the control circuitry 
functionality is needed.  The Sgates column is for splitter gates that 
are added by the mapping program.  For feedback generation to 
work correctly, the mapping program inserts a buffer on any path in 
the original clocked netlist that has a DFF output driving a DFF 
input directly.  These splitter gates are simply buffer functions, but 
also count against the cell count since the control circuitry is needed.  
The Cgates column is the number of 4-input Muller C-elements 
added to the netlist by the mapping program for feedback 
concentration.  We assume that each pl4gate has an unassigned 4-
input Cgate to be used for feedback concentration so these gates do 
not count towards the PL cell count.  Thus, the PL cell count is the 
sum of LUT4s, DFFs, and Sgates while the clocked cell count is the 
LUT4 count only. It should be noted that early evaluation gates such 

as used in the PL ripple adders require two LUT4s and count as two 
cells. 

The iterative multiplier has a high number of splitter gates due to 
the shift register functions in the design.  All designs are able to 
absorb some of their DFFs into neighboring cells.  The combination 
of DFFs counting against PL cell counts and splitter gates can lead 
to PL requiring more cells as in the filter design.  PL will only use 
less gates in the case where it can use a structure like an early eval 
ripple adder that saves cells over a carry lookahead adder. 

Table 6 shows the wire count comparisons for the three designs. 
The signal net column is the number of signal nets in the original 
netlist, and for clocked designs is also the number of total wires 
(ignoring the clock net and reset net).  The FBnets column is the 
number of feedback nets added to the PL design by the mapping 
program.  The total nets column for the PL design is the sum of the 
signal nets and feedback nets.  The number of total wires in the PL 
design is the signal nets multiplied by 2 because of the dual rail 
signaling, plus the feedback nets (feedback signals are single rail). 

 

Design Signal Nets FBnets Tot Nets Tot Wires 

Clk (acc) 194 0 194 194 
PL (acc) 160 171 331 491 
Clk (mult) 252 0 252 252 
PL (mult) 303 366 669 972 
Clk (filt) 704 0 704 704 
PL (filt) 701 1230 1931 2632 

Table 6: Wire Count Comparisons for Example Designs 
 
Feedback wiring is probably the largest challenge for efficient 

implementation of PL-based programmable logic.  Feedback nets 
represent a new routing resource that must be dealt with.  The 
number of feedback nets are high in all three of the example designs 
for several reasons:  a) a small amount of logic between DFFs 
requires a lot of feedback nets since a feedback net cannot cover a 
long path (as in the accumulator example); b) large fanout will 
require large feedback concentration at a node which will require 
building trees of C-elements that will be expensive in terms of 
feedback wiring required.  The last case of feedback wiring due to 
trees of Muller C-elements can be somewhat reduced by including a 
larger C-element for feedback concentration in each cell (e.g., an 8-
input element).   

 
6. Comparisons to other work 

A self-timed FPGA based upon LUT3s and using LEDR encoding 
was presented in [8].  The cell design presented in Figure 2 is a 
variation of the cell design used in [8]. In [8], three feedback inputs 
are included in each cell, so the Muller C-element has 6 inputs (3 
data, 3 acknowledge).  The author uses the cell in the context of 
Sutherland’s micropipelines [15] and self-timed iterative rings [16].  
Both methods require a feedback signal for each output destination.  
The PL methodology removes the need for a feedback for every 
output signal destination as multiple output signals can be covered 
by the same feedback signal, and some output signals need no 
feedback signal if they are already part of a loop.  No performance 
or power analyses are made of designs using the LUT3 cell. 

An FPGA-based architecture for asynchronous logic is also 
proposed in [17].  This FPGA architecture was aimed at 
accommodating a range of asynchronous design styles, and allowed 
for mixed synchronous and asynchronous designs. All signals were 
single rail.   By contrast, our proposed function block is only 



 
 

intended for supporting the PL design style, and thus implements PL 
designs more efficiently than [17]. 

The asynchronous design methodology known as Null Convention 
Logic (NCL) also offers automated synthesis of asynchronous 
designs using commercial synthesis tools [18].   A restriction with 
the NCL methodology is that while the design can be coded in 
VHDL RTL, the user must write the RTL such that combinational 
logic and registers are separated.  In comparing physical 
implementation characteristics, NCL has some delay sensitivity 
between NCL gates whereas PL has no delay sensitivity between PL 
gates.  Both NCL and PL use dual rail signals, where NCL uses a 
NULL/DATA/NULL encoding instead of LEDR.  NCL has the same 
advantage of eliminating transient computations as PL, and does not 
have the disadvantage of the PL control overhead.  The computation 
blocks in PL are the same as their synchronous counterparts with 
only a different control scheme, while NCL computation blocks are 
quite different from their synchronous equivalents. NCL designs 
have been shown to be well suited for standard cell implementation 
technologies. NCL mapping to a LUT4-based technology would 
require a conservative estimate of 2X the number of LUT4 gates as 
the clocked netlist due to the dual rail encoding of the data values 
and the NCL implementation using m-of-n threshold gates.  A 
thorough investigation is needed to determine if the extra compute 
switched capacitance required by an NCL LUT4 implementation 
will offset the control switched capacitance in a PL design. 

There are many examples of self-timed adder structures in the 
literature. A good summary and analysis of these approaches can be 
found in [19].  Two interesting conclusions are reached in [19], a) 
asynchronous adders can give performance improvement over 
Conditional Sum Adders in only limited conditions, and b) large 
variations in processing time of an addition limits the speed of an 
asynchronous pipeline.  It is somewhat difficult to compare our 
results against these conclusions (especially ’a’) since we used 
LUT4s for implementation, while [19] used primitive two input 
gates, and we used a more conventional CLA structure for our 
synchronous adders instead of a CSA structure. However, some 
general comments can be made. The conclusions in [19] are all 
based on asynchronous adders for ASIC technologies in which a 
completion signal is generated for the entire adder result. Our 
feedback signals for the LUT4 pl4gate work at the bit level, so this 
allows more parallelism via bit level dataflow.  Our iterative 
multiplier design can be regarded as a ’deep’ asynchronous pipeline 
since it takes 16 clocks to produce one result, where each addition is 
dependent on the previous result forming a long dependency chain.   
If some set of bits within an addition is slow in producing a result 
because of a non-favorable early evaluation pattern, this does not 
inhibit the other bits from proceeding in the calculation due to the 
bit-level dataflow nature of Phased Logic. If the coarseness of the 
compute block needs to be increased due to compute/control 
capacitance concerns, the coarseness can still be limited to 
something less than a word level (eg., groupings of 4 bits) in order 
to promote more parallel dataflow.  

A speculative-completion carry-lookahead adder is presented in 
[20] .   This technique is well suited for an ASIC implementation 
but its reliance on matched delays and a bundled datapath makes an 
FPGA LUT4 implementation questionable.   Applying general 
speculative completion techniques within a PL system is an area that 
needs further study. 

 

7. Summary 
In this paper, we have shown the application of a self-timed logic 

style called Phased Logic to three example arithmetic circuits. The 
circuits were simulated using a LUT4-based gate  (pl4gate) that 
implemented the Phased Logic protocol.  All three circuits were 
more energy efficient than their clocked counterparts due to 
transient computation filtering and increased performance.  Two of 
the three designs had higher performance than the clocked designs 
despite a 40% gate level penalty performance of the LUT4-based 
pl4gate cell.  The increased performance of the PL netlists was due 
principally to the use of early evaluation in the adder circuits.  An 
early evaluation PL gate is formed by using a pair of normal PL 
gates, where one gate provides the early evaluation function and one 
gate provides the normal evaluation function. 

 We believe a natural application of PL gates is a LUT-based 
FPGA technology.  The high ratio of compute to control capacitance 
allows PL netlists to be competitive with clocked netlists in terms of 
total switched capacitance.  Areas of future work involve looking at 
compute blocks suitable for programmable logic other than a LUT4 
and examining the same performance/energy comparisons on larger 
design examples that have multiple functional units and complex 
control. 
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