
Multilevel Variable Length Shifter Design for an Iterated Shift-and-Add
Product Operation

Jason Moore, Mitchell A. Thornton, David W. Matula

Computer Science and Engineering
Southern Methodist University

Dallas, TX
{jmoore, mitch, matula}@engr.smu.edu

Abstract
We investigate various designs for a variable

length left-shifter component for implementing a
proposed iterated shift-and-add product operation

b
i
2
i

+1()
i=1

n!1

" x where

b
n!1
b
n!2

…b
0
 and x are n-bit

arguments. This iterated product operation has
application in a new fast integer exponentiation
algorithm replacing a sequence of O(n) dependent
square-and-multiply operations. This paper presents
the resulting area and time requirements realized by
synthesizing alternative variable length shifter
designs.

1.0 Introduction and Background

Recent literature has presented a new
algorithm for fast integer exponentiation based on
the discrete logarithm [1,2,3]. The procedure
replaces a dependent sequence of square-and-
multiply operations by a dependent sequence of
shift-and-adds. Specifically, the algorithm requires
computation of the iterated shift-and-add product
operation

b
i
2
i

+1()
i=1

n!1

" x where

b
n!1
b
n!2

…b
0
 and x

are n-bit arguments and where the result is
computed modulo the integer word size 2n. The n-bit
argument

b
n!1
b
n!2

…b
0
 should be interpreted as a

vector of n shift-and-add indicator bits.
 Optimizing an implementation of the iterated
product presents several challenges and
opportunities for novelty in shifter design.

• The results of each shift-and-add must be fed

back both as the partial iterated product and the
operand to be shifted for the next shift-and-add.

• Utilization of carry-save addition requires that
the shifted value also be a carry-save value.

There are some algorithmic features of the

iterated shift-and-add product that can be exploited
in a microcoded implementation of this operation.

• Note that

b
i
2
i

+1()
i= n

2
! "

n#1$ = b
i
2
i

i= n

2
! "

n#1%&

'
(

)

*
+ +1

&

'
(

)

*
+ mod2

n
.

Thus, half of the shift-and-add operations then
become independent and may be accumulated as
in a standard multiplier design.

• The order of computing the products

b
i
2
i

+1()
can be arranged to simplify the recursive
shifting.

• The terms

b
i
2
i

+1() can be arranged in small
groups and then partial products found by table
lookup.

In any case the need for a left-shift-only

shifter that is efficient in area and time is essential
for an overall efficient implementation of such an
“iterated shift-and-add product” operation. The
focus of this paper is to compare various
architectures for a variable length left-shifter to
obtain a component for a dedicated unit or a
microcoded implementation of the iterated product

b
i
2

i
+1()

i=1

n!1

" x()mod 2
n . Other components to

complete the unit design will be examined in a
subsequent paper.

We investigate and synthesize three shifter
designs, including a single level reference design
and two multilevel designs. The reference barrel
shifter is described in [4] and illustrated in Figure 1.

The reference barrel shifter is considered
here for use as a basis for comparison to the two
multilevel designs. For an n-bit operand, the
reference barrel shifter has 2(n-1) shifters with the

capability to shift right from 0 to n – 1 and shift left
from 0 to n-1. The appropriate value is then selected
from an n-to-1 multiplexer. Figure 2 shows the
block diagram for an 8-bit version of the reference
barrel shifter.
 As is observed from Figure 2, the reference
barrel shifter design has to deal with fanout issues.
Fanout is also a potential problem in the multilevel
design proposed in [5]. Buffers will have to be used
to drive the fanout. In addition to considering a left-
shift-only reference barrel shifter design, we also
investigate a radix-2 left-shifter, and a radix-4 left-
shifter where fanout is clearly limited.

In the Implementation section, we show the
hardware implementation of all 3 variable length
shifter designs in both an initial datapath block
diagram form and in Synopsys screen shots. We also
discuss our design decisions as well as describe how
the circuit operates. The results section contains
experimental values from synthesizing these
designs. The conclusion section summarizes this
work and includes future directions and expected
improvements in realizing a complete design of the
iterated shift-and-add product operation.

S1

S
8

D

C1 ENBC3C2

Multiplexer

S
1

S8

D

C
1

ENBC
3

C
2

Multiplexer

S
1

S
2

D

C ENB

Multiplexer

>> 4

>> 7

<< 4

<< 7

Figure 1: Datapath of an 8-bit Reference Barrel

Shifter

2.0 Implementation
 A simple observation for saving area is to
redesign the barrel shifter to only left shift since this
is the only requirement for our operation. This
change will reduce the circuit area by approximately
one-half and will provide a small speed
improvement since it removes a 2-to-1 multiplexer
from the critical path. Figure 2 shows the datapath
of this approach.
 The multilevel radix-2 design is currently a
typical design approach for barrel shifters as
compared to the reference approach since it requires
less circuitry and many operations do not require
both left- and right-shift capability. The radix-2
variable length left-shift design consists of

lg(k)
stages where each stage contains a 2-to-1
multiplexer and a 2i left-shifter where i is the current
stage. The multiplexer in the ith stage is controlled
by the ith bit of the shift amount indicator operand.
Figure 3 shows the datapath for the radix-2 variable
length left-shifter.

S1

S
8

D

C1 ENBC3C2

Multiplexer

>> 4

>> 7

Figure 2: Reference Left Shifter

 The radix-4 multilevel variable length left-
shifter design is a slight variation on the radix-2
design. Instead of using the ith bit of the shift
amount to control a 2-to-1 multiplexer in the ith
stage, the shift amount is divided into

log4 (k)! " sets
of bit pairs. The ith set of bits are used to control a 4-
to-1 multiplexer in the ith stage. In addition to a 4-to-
1 multiplexer each stage contains three shifters of
sizes 4i, 2(4i), and 3(4i). The last level of the design
only uses the 4i shifter when

lg(k) mod 2 = 1.The
number of stages is then equivalent to

log4 k! ".
Figure 4 shows the datapath for the 64-bit radix-4

multilevel design and Figure 5 shows the schematic
for a 32-bit radix-4 multilevel design.

3.0 Results
 The circuits were synthesized using the
Synopsys Design Compiler. The operating
conditions are set to worst-case-commercial
(WCCOM) conditions and the wire load is set to
10×10. The drive strength is set to 0.08 and the load
to 5 times the load of an inverter from the mapping
class. The circuits were all mapped to the cell
library named class and_or which is the Synopsys
supplied library used for their tutorials [6].
 From Table 1, it is observed that the radix-4
multilevel variable length left-shifter requires the
least amount of area while the radix-2 design shows
a significant time advantage over the other designs.

Table 1: Required Area for Each Design

Design 16 bit 32 bit 64 bit 128 bit

Reference 776 2818 11054 -

Reference
(left shifts

only)
396 1464 5538 21934

Radix-4 178 460 978 2450

Radix-2 256 640 1280 3072

Table 2: Estimated Delay in nanoseconds

Design 16 bit 32 bit 64 bit 128
bit

Reference 19.30 33.42 56.23 -
Reference
(left shifts
only)

16.46 24.94 53.66 96.71

Radix-4 19.72 30.78 53.53 94.94

Radix-2 12.81 18.22 24.13 38.42

4.0 Conclusions and Future Work
 In this paper, we investigated various

architectures for a variable length left-shifter and
compared these architectures in area and time. The
variable length left-shifter is needed for the iterated
shift-and-add product operation. These results
indicate that the Radix-2 implementation yields
considerably smaller delay while the Radix-4
version requires the least area in a standard cell
implementation.

As an extension, we have initiated the design
of a pipelined multilevel radix-4 left-shifter with an
asynchronous clock to explore anticipated additional
area improvements. The pipelined multilevel radix-4
will have the same number of stages as the non-
pipelined radix-4 left-shifter, but will have one 2-to-
1 MUX per stage similar to the radix-2 multilevel
design instead of a 4-to-1 MUX.

Additional future work will include
implementing and optimizing circuitry for
exploiting the following characteristics of the
iterated shift-and-add product operation.

• The shift-and-add indicator bits

b
n!1
b
n!2

…bn

2
+1

,
effectively correspond to independent shift-and-
adds that may be accumulated as in a standard
multiplier design.

• The order of computing the products

b
i
2
i

+1()
can be arranged to simplify the recursive
shifting.

• The terms

b
i
2
i

+1() can be arranged in small
groups and then partial products found by table
lookup.

Acknowledgement
The authors would like to thank the Synopsys
Corporation for donation of their design tools and
the Semiconductor Research Corporation for
support of this project under contract 2006-HJ-1399.

S
1

S
2

D

C ENB

Multiplexer

S
1

S
2

D

C ENB

Multiplexer

S
1

S
2

D

C ENB

Multiplexer

S
1

S
2

D

C ENB

Multiplexer

<< 1 << 2 << 4 << 8

Figure 3: Datapath for 16-bit Radix-2 Left-shifter Design

<< 3

<< 2

S1

S
4

D

C
2

C
1

ENB

Multiplexer

<< 1
S1

S
4

D

C
2

C
1

ENB

Multiplexer

<< 12

<< 8

<< 4
S1

S
4

D

C
2

C
1

ENB

Multiplexer

<< 48

<< 32

<< 16

Figure 4: Datapath for 64-bit Radix-4 Left-shifter Design

Figure 5: Screenshot of Radix-4 Multilevel Variable-length Left-shifter Design

References
[1] A. Fit-Florea, D.W. Matula, and M.A. Thornton,

“Additive Bit-serial Algorithm for the Discrete
Logarithm Modulo 2k”, IEE Electronics Letters, vol.
41, no. 2, January 2005, pp. 57-59.

[2] L. Li, A. Fit-Florea, M.A. Thornton, and D.W.
Matula "Hardware Implementation of an Additive
Bit-Serial Algorithm for the Discrete Logarithm
Modulo 2k ", Proc. IEEE Ann. Sym. on VLSI, May
2005, pp.130-135.

[3] L. Li, M.A. Thornton, and D.W. Matula, “A Digit
Serial Algorithm for the Integer Power Operation”,
Proc. of ACM/IEEE Great Lakes Symposium on VLSI
(GLSVLSI), April 2006, pp. 302-307.

[4] A. Ito, “Barrel Shifter”, U.S. Patent 4,829,460, May
1989.

[5] M.R. Pillmeier, M.J. Schulte, and E. G. Walters III,
“Design Alternatives for Barrel Shifters and
Rotators”, Proc. Of SPIE, July 2002

[6] Synopsys Chip Synthesis Student Guide, 2003.

