
A Technique for Multiprocessor Memory Resource Estimation�

J. D. Bullard M. A. Thornton D. L. Andrews

Department of Computer Systems Engineering, University of Arkansas, Fayetteville AR 72701

{jdb2,mat1,dla}@engr.uark.edu

(501) 575-5159
(501) 575-5339 (Fax)

� This research is supported in part by a grant from the Arkansas Science and Technology
Authority under contract 97-B-12.

Abstract

Keywords: Resource Estimation, Data
Dependency, Multiprocessor, Performance
Analysis, Multiprocessor Architecture,
Parallel Processing

An approach for estimating the required
memory resources to execute a program on
a multiprocessor system is presented. The
technique relies on the information
contained in a data dependency graph
representing a program to be executed.
Data dependency graphs can be generated
by a compiler as an intermediate
representation of the program without
accounting for any specific details of the
target machine architecture. Therefore, this
approach can be used in the early design
phases of multiprocessor architectures for
performance analysis of targeted or
benchmark applications. Memory resource
estimates are separated into two categories;
algorithmic and run-time requirements.
Experimental results of this technique are
presented for several scientific benchmark
code fragments.

1.0 Introduction
Processor execution speeds are increasing
dramatically due to advancements in
integrated circuit manufacturing technology
and engineering design methods and tools.
However, the rate of speed increase for

memory is much smaller. Currently,
memory access versus processor latency is
at a ratio of approximately 10:1. It is
predicted that this ratio will increase to
100:1 in 20 years, a problem known as the
processor-memory performance gap [7].
This implies that future architectures must
efficiently deal with memory latencies in
order to continue to provide machines with
performance increases that have been
common in the past.

A result of the processor-memory
performance gap is that new architectural
approaches for designing and implementing
multiprocessor computer systems must be
utilized. A common theme among several
of the various approaches is to distribute and
integrate memory with each processor to
reduce bus contention, thus allowing
concurrent local memory accesses. This
leads to the question of determining the
amount of memory needed for each
processor. Too much memory results in a
waste of resources in terms of available chip
area and power consumption [7]. Too little
memory could impact program runtime. For
these reasons an analytical tool for
estimating memory resources for given
application programs has been developed.

Traditionally, memory requirements have
been obtained by 1) assuming an
architecture, 2) building or simulating the
architecture, and 3) executing an application

on the architecture and monitoring memory
usage. This approach is disadvantageous for
the designer since the design must be in
place before the memory requirements can
be found.

Other methods for modeling and predicting
memory include non-deterministic statistical
models [2] [6] which unfortunately still
assume some type of architecture. The
method discussed here has novelty in that
the only requirement is a representation of
the application program itself.

The next section describes data dependency
graphs and how they are executed on
multiprocessor systems. The following
sections discuss parallelism and the
proposed approach for memory resource
estimation. The results of the memory
estimation tool are then discussed followed
by conclusions and directions of future
efforts.

2.0 Data Dependency Graphs
Any given application program can be
viewed as a collection of sequential

instruction threads to be executed as soon as
their input data is available. An abstract
representation of a program is then a
directed acyclic graph where vertices
correspond to computational instructions to
be executed and edges represent data
dependencies. The edges of the data
dependency graph correspond to the transfer
of data from the output of a producer
instruction thread to a consumer instruction
thread. In a multiprocessor system, each
thread is executed on a single processor;
therefore, threads can execute concurrently
as long as the required input data are
available. With this viewpoint, representing
an application program as a data dependency
graph allows us to exploit the available
parallelism.

As an example, Figure 1 shows a data
dependency graph which computes a value
from the formula c = (1/a2) + b2 – (b + a) -
1. The graph shows the data dependencies
inherent in the computation. For example,
node 2 cannot execute until it receives the
value of a from node 1. When node 2
executes, it will produce the value of a2.
Node 2 then passes this value to node 6, and
so on.

The graph also shows the available
parallelism in the computation. For
example, given sufficient resources, nodes 2,
3, 4, and 5 can be executed in parallel
depending only on the results of node 1.
Table 1 summarizes the operations
performed by each instruction thread (or
graph vertex).

1

2 543

8

6 7

a b

c

Figure 1 Data dependency graph of
c = (1/a2) + b2 – (b + a) - 1.

Thread Operation Result

1 Retrieve a,b
2 Square a2

3 Subtract -1-b
4 Square b2

5 Negate -a
6 Inverse 1/a2

7 Add b2+(-1-b)
8 Add (1/a2)+b2-(b+a)-1

Table 1 Operations for the example data
dependency graph in Figure 1.

3.0 Parallelism Estimation
Consider the case where all threads in a data
dependency graph have the same execution
time of one clock cycle and execute on a
multithreaded multiprocessor with no delay
from interprocessor communications or
synchronization. If this machine also has
unlimited resources (i.e. the ideal parallel
machine), then all available parallelism in
the program can be exploited. Furthermore,
the number of threads executing in parallel
at each clock cycle will represent the
maximum available parallelism in the
program. In this simplified case, the data
dependency graph may be viewed as having
levels of execution, where a level is the
collection of nodes executing concurrently
during a given clock cycle. This observation
has been exploited and a stochastic model
has been created to estimate the number of
utilized processors per clock cycle [1].

As an example, in Figure 1 the first level
would contain node 1 and would execute in
one clock cycle. The second level would
contain nodes 2 through 5 and would
execute in the second clock cycle.
Likewise, the third level would contain the
nodes 6 and 7 and would execute in the third
clock cycle. The fourth and final level
would contain only node 8 and would
complete execution in the fourth clock
cycle.

Another useful metric which can be obtained
directly from the data dependency graph is
the number of graph edges which enter and
leave particular nodes on a per level basis.
This information can be used to estimate the
memory and bandwidth a system requires to
efficiently execute a program.

4.0 Memory Requirements Estimation
The amount of required local memory can
be estimated for a given processor by noting
the maximum amount of intermediate
storage used during the execution of a
program. However, it is important to note
that the actual code does not need to be
executed to perform this estimation. The
required intermediate storage can be
obtained by traversing the data dependency
graph structure by application of a “graph
walk” algorithm.

Consider the case when a data producing
instruction thread completes execution but a
corresponding consumer instruction thread
requires data from the finished thread as
well as another independent producer thread
that has not yet completed execution. In this
case, the data from the finished producer
thread must be stored until the consumer
thread has all available data and is scheduled
for execution. Based on this premise, we
have begun developing a tool to estimate the
required memory to execute an algorithm on
a generic multiprocessor system.

Figure 2 shows the sequence of steps to
produce resource estimates from available
source code as we have currently
implemented the tool. The first step is to
compile the source code into IF1, a text file
representing a data dependence graph. A
SISAL[5] to IF1 compiler exists, as well as
IF1 compilers from other high-level
languages. The IF1 file is then used as input
to the IF1 compiler/profiler described in [8].
The profiler tool extracts the necessary
statistics used as input to the memory
resource estimation tool.

Level Parallelism Nodes Incoming
Arcs

Outgoing
Arcs

1 1 1 2 4
2 4 2, 3, 4, and 5 4 3
3 2 6 and 7 3 2
4 1 8 3 1

Table 2 The parallelism and incoming and outgoing arc counts for each level for the example data
dependency graph in Figure 1.

4.1 Algorithmic Memory
Requirements Estimation
We define two types of memory
requirements; those due to machine
dependent details of program execution, the
run-time memory requirements, and those
due to the structure of the application
program’s data dependency graph, the
algorithmic memory requirements.
Algorithmic memory requirements are
unavoidable and pertain to the structure of
the program only. Run-time memory
requirements contain the algorithmic
memory requirements in addition to the
extra amount of memory needed for
processor synchronization, communication,
and other operating system needs.

The following method is used to estimate
algorithmic memory requirements for a
given program in a high level language:

1. Compile the source code to IF1.
2. Use the IF1 compiler and profiler to

produce a parallelism profile that
includes incoming and outgoing arc
counts (see Table 2 for an example).

3. Begin a count of memory usage at zero.
4. Step through each level in the

parallelism profile, adding the outgoing
arcs and subtracting the incoming arcs
to find the net memory usage by level.
Accumulate these values during each
step to determine the current, total
memory usage.

5. The maximum (peak) value of the
accumulated memory usage is then the
memory requirement of the algorithm.

Figure 2 The steps to produce resource estimates from SISAL source code.

SIS A L
com piler

IF1
C o m p iler

R eso urce
E s tim a tio n

P rogra m
IF 1 P a ra lle lism , M e m o ry, a nd

B an d w id th E stim ates

E x ec u ta b le
D a ta S tru c tu re

Level Parallelism Incoming Arcs Outgoing Arcs Memory Usage

1 1 0 7920 4950
2 2970 2970 2970 3960
3 1980 3960 1980 1980
4 1980 3960 1980 1980
5 990 1980 990 99
6 990 1980 990 0
7 990 1980 990 0
8 1 990 1 0
9 1 1 0 0

Table 3 Parallelism and algorithmic memory requirements for Livermore Loop 1 when the loop index N = 990.

5.0 Results
Table 3 shows the results of the algorithmic
memory requirement estimation tool for the
SISAL code shown in Figure 3. After the
first level of instruction threads is executed,
the number of outgoing arcs which must be
stored for level 1 is 7,920. Level 2 has only
2,970 incoming arcs leaving 4,950 data
items to be stored. The amount of memory
required decreases throughout the rest of
the execution as those arcs are consumed by
other instruction threads, so 4,950 is the

peak amount of storage required for
execution under these ideal conditions.
Therefore, this value represents the
algorithmic memory requirements for
Livermore Loop 1.

Figure 4 shows the results of the
algorithmic memory requirements
estimation when analyzing a set of
benchmark applications, the Livermore
Loops in SISAL [3]. The graph shows only
the amount of temporary storage required
by the algorithm. The technique does not

Figure 3 SISAL code for Livermore Loop 1 [2].

% LOOP 1
% Hydro Fragment
% Parallel Algorithm

Define Main

type double = double_real;
type OneD = array[double];

function Loop1(n:integer; Q,R,T:double; Y,Z:OneD returns OneD)
 for K in 1,n
 X := Q + (Y[K] * (R * Z[K+10] + T * Z[K+11]))
 returns array of X
 end for
end function

function Main(rep,n:integer; Q,R,T:double; Y,Z:OneD returns OneD)
 for i in 1, rep
 X := Loop1(n, Q, R, T, Y, Z);
 returns value of X
 end for
end function

include memory estimates for the storage of
machine instructions and other
synchronization and communication
overhead. Therefore, these are algorithmic
estimates, not runtime memory estimates.

The results of the technique illustrate the
relationship between memory usage and the
loop bound for the Livermore Loops. In all
cases this relationship is linear with respect
the loop bound, N. This trend is not
surprising since we varied only a single
bound. We would expect a non-linear
relationship if more than one loop bound
were varied. It is interesting to note that the
different applications in Figure 4 can be
characterized by the slope of the memory
usage curves, thus validating the notion of
algorithmic memory requirements.

6.0 Conclusion
This paper presented an approach for
multiprocessor memory resource estimation
using only an application's data dependency

graph. This approach was implemented
leading to the experimental results given.
The methodology is suitable for inclusion
in a high-level system architecture design
package for estimating required memory
resources for targeted or benchmark
applications. Also, this technique could be
incorporated into a "smart" scheduler to
utilize available memory efficiently.

The development of a multipurpose
resource estimation package has been
initiated. To date, a profiler has been
developed that produces information
containing data structures from an input
application's data dependency graph
represented in IF1 [8]. A stochastic model
based simulator has also been developed
based on the profiling information [1]
produced by the IF1 tool for estimating
processor element work loads.

The current version of the memory resource
estimation tool is limited to resource

Figure 4 The number of storage locations required to execute several parallel algorithms.

Algorithmic Memory Requirements for the Livermore

Loops

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 1 2 3 4
Loop Bound (N = 10

x
)

M
e
m

o
ry

 (
w

o
rd

s
)

Loop 1 - Hydrodynamic 3 - Inner Product 4 - Banded Linear Equations
5 - Tri-diag. Linear Equations 7 - Equation of State 8 - A.D.I. Integration
9 - Integrate Predictors 11 - First Sum 12 - First Difference
14 - Particle in Cell 15 - Casual FORTRAN 21 - Matrix Multiplication
22 - Planckian Distribution 24 - First Min Search

estimation for the ideal case of unlimited
available processing elements and equal
instruction thread length for all graph
nodes. This version is being extended to
estimate required memory resources for
limited processing elements and variation in
execution times for each type of node in
IF1.

In addition, the arcs between nodes in the
data dependency graphs represent data
transfers and require bandwidth between
individual processing elements. The
memory estimation tool will also be
extended to estimate the minimum required
total system bandwidth to efficiently
execute application software.

Bibliography

[1] D. L. Andrews, M. A. Thornton,
and J. D. Bullard. "Multiprocessor
Resource Estimation Using a
Stochastic Modeling Approach."
Eighth Symposium on Parallel and
Distributed Processing, Proceeding
of the Workshop on Resource
Estimation, New Orleans, October
1996.

[2] J.P. Diguet, O. Sentieys, J.L.
Philippe, and E. Martin,
"Probabilistic Resource Estimation
for Pipeline Architecture", in VLSI
Signal Processing VIII, IEEE Press,
October 1995, and Proceedings of
the 1995 IEEE Workshop on Signal
Processing, Osaka, Japan, October
16-18, 1995.

[3] John T. Feo. “The Livermore
Loops in SISAL.” Technical
Report, UCID-21159, Lawrence
Livermore National Laboratory,
August 1987.

[4] John. T. Feo. “An Analysis of the
Computational and Parallel
Complexity of the Livermore

Loops.” Elsevier Science
Publishers B.V., Series on Parallel
Computing 0167-8191/88, #7, 1988.

[5] J. McGraw, S. Skedzielewski, R.
Oldehoeft, J. Glauert, C. Kirkham,
B. Noyce, R. Thomas. “SISAL:
Streams and Iteration in a Single
Assignment Language.” Language
Reference Manual, Version 1.2, M-
146 Rev. 1, University of California-
Davis, March 1985.

[6] H. Jonkers, A. J. C. van Gemund, G.
L. Reijns. “A Probabilistic
Approach to Parallel System
Performance Modelling.”
Proceedings 28th Annual Hawaii
International Conference on System
Sciences, Vol. II (Software
Technology), Wailea, Hawaii,
January 1995.

[7] David Patterson, Thomas Anderson,
Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos
Kozyrakis, Randi Thomas, and
Katherine Yelick. “A Case for
Intelligent RAM: IRAM.” URL:
http://iram.cs.berkeley.edu/publicati
ons.html. To appear in IEEE Micro,
April 1997.

[8] Suwanto. Implementation of
Compiler, Viewer, and Parallelism
Analysis Software for the IF1
Language. Master of Science thesis
at the University of Arkansas at
Fayetteville, May 1997.

