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ABSTRACT 
 

Design correctness has become a bottleneck in the modern 
digital system design cycle.  In an effort to improve current 
ad hoc simulation processes, this paper presents a method 
for the automated generation of simulation vectors using 
Symbolic FSM Traversal techniques.  Generated vectors are 
classified into three categories, Forward Inter-Frontier, 
Reverse Inter-Frontier, and Intra-Frontier vectors; a 
classification based on a vector’s ability to generate 
Forward-, Reverse-, and Inter-Frontier transitions in an 
FSM’s state transition graph.  Additionally, a State-Element 
Transition Relation (S-ETR) is introduced.  This technique 
involves the construction of a Transition Relation (TR) for 
each state holding element and defining a smaller, 
incomplete, over-approximation of the TR.  Combining the 
information present in the S-ETRs coupled with simulation 
is used to perform image computations. 
 

1. INTRODUCTION 
 

Functional verification is the process of determining some 
level of confidence that a design meets its specifications.  One 
trend is the partial validation of designs through simulation [1], 
consisting of sending input to the design under test and 
observing the output.  Often the design is judged by the 
equivalence found when comparing the output with that of some 
reference model or other abstraction of the circuit when it is 
exposed to the same stimulus.  This approach is often used in the 
commercial environment; unfortunately this in not due to the 
method’s effectiveness, but rather the lack of superior options. 

The shortcoming of a simulation-based verification 
methodology is the limited functional coverage.  Even for 
modest designs, the number of vectors needed to for an 
exhaustive test is too large to simulate in a feasible amount of 
time.  In order to utilize simulation, one needs to choose the test 
vectors carefully as to gain the maximum amount of coverage 
and ensure tests for rare “corner-cases”.  Automated methods for 
such intelligent vector generation are the saving grace of 
simulation, but this area still requires further study to reach its 
full potential. 

Formal methods provide alternatives that are potentially 
capable of overcoming the obstacles faced in simulation.  A 
formal method is the application of mathematical methodologies 
to the specification and verification of systems [2].   The key 
advantage is the ability to exhaustively test the design with 
respect to its specification.  To handle complex designs, 
symbolic BDD-based system representations [3,4,5] can be 
employed to allow for a compact representation of the state 

space and symbolic FSM traversal.  With many mature to 
relatively mature technologies plagued with computational 
obstacles and the need for human intervention; a workable, 
practical, and effective verification flow appears to be rooted in 
the integration of multiple verification methods [6,7,8].   

This paper addresses the integration and reuse of existing 
methods.   Symbolic FSM traversal is used to generate test 
vectors, which are classified into three categories: 

1.) Forward Inter-Frontier Vectors: vectors which will 
cause a transition from a state in frontier i to a state in 
frontier i+1. 

2.) Reverse Inter-Frontier Vectors: vectors which will 
cause a transition from Frontier i to a state in frontier j, 
where j < i. 

3.) Intra-Frontier Vectors: vectors that will cause 
transitions among states within a given frontier, 
including vectors causing self-loops. 

Such a vector classification can be exploited during 
simulation.  Vectors tracing a minimum length path between a 
given pair of a state’s frontiers can be formed and statements 
about reachability can be made if no paths can be found.  In the 
presence of temporal logic assertions, vectors with the greatest 
probability of cycle generation can be used to simulate for the 
failures of eventuality properties, as can Inter-Frontier transition 
vectors be used to simulate for the reachability of a fail state, 
necessary for validation of safety properties.  In a guided search 
of the state space, Inter-Frontier communication complexity can 
also be used as heuristic for selecting further simulation origin 
states. 

The remainder of this paper is organized as follows. Section 2 
provides the necessary background concerning Symbolic FSM 
Traversal.  Section 3 outlines the vector generation and grouping 
procedures, with Section 4 identifying its applications.  Section 
5 introduces State-Element Transition Relations (S-ETR) and 
their usefulness within a verification system integrating 
simulation with formal methods.  Finally Section 6 provides 
concluding remarks. 
 

2. BACKGROUND – FSM TRAVERSAL 
 

FSM traversal is a traversal of a system’s state transition 
graph (STG) in either a breath-first or depth-first manner.  
Starting at an initial state, typically the reset state, the search 
iterates through all nodes in the STG resulting in a set of all 
reachable states.  The knowledge gained from such a procedure 
proves useful in many EDA-CAD settings. 

An implicit STG representation is achieved through the 
construction of a Transition Relation (TR) [5], a function 
representing all possible transitions within a FSM.  FSM 



Traversal is then carried out as a series of Image Computations; 
a conjunction of the TR and all previously reached states with 
existential quantification of the resultant BDD over the present 
state variables [9].  The result of each iteration is then the set of 
states on the frontier (a set of next states), which are further re-
labeled as present states and added to the set of reached states.  
The process is repeated until an evaluated frontier does not 
provide transitions into undiscovered states. 

The BDD for the TR of complex systems can exceed memory 
limitations. The inputs to a system are not necessary for the 
image computation, therefore commonly used TRs differ from 
the one described in this paper in that inputs are removed 
through existential quantification, resulting in the smoothed TR. 
Smoothing can take place at different stages of TR construction, 
depending on the method [5,9]. Vector generation, however, 
requires the knowledge of input values with respect to state 
transitions; hence, the sub-optimal monolithic TR without 
smoothing is required.  Discussion of a new representation of the 
TR, the S-ETR, is presented in Section 5, which significantly 
reduces the monolithic TR size through over-approximation, 
while retaining the input vector information. 

 
3. TEST VECTOR GENERATION 

 
At each image computation, test vectors for all transitions are 

determined and grouped into the three categories described in 
the Introduction.  This classification enables the selection of 
vectors in order to meet specified coverage criteria (e.g. cycles, 
inter-frontier paths, heuristics based on complexity, etc.).  In 
addition to the three classes of vectors, State Entry Vectors are 
determined; the only vectors which can possibly cause entry into 
a given state. 
 
3.1. State Entry Vectors 
 

For each reachable state, the TR can be manipulated in a 
straightforward manner to extract all the possible vectors that 
may lead to an entry into that state.  The procedure is simply an 
existential quantification of the TR over the present state 
variables.  The state entry vectors for the example FSM depicted 
in Figure 1 are presented in Table 1. 
 
3.2. Forward Inter-Frontier Vectors 
 

At each image computation, the vectors capable of causing 
entry into the new frontier are evaluated.  The initial frontier R0 
is assumed to be the reset state.  Table 2 presents the Forward 
Inter-Frontier Vectors for the example FSM.  The procedure is 
implemented as follows: 

 
R i+1  = TR ∧ R i 
S i+1 = ∃ (PS ∧ IN) R i+1 
R i Shifted = Re-Label (R i, PS, IN) 
R i+1  NewOnly = Ri Shifted ⊕ S i+1 
Fwd-Inter-Frontier Vectors = R i+1  NewOnly ∧ R i+1  

 
 
 

3.3. Reverse Inter-Frontier Vectors 
 
During a given image computation, the newly reached states on 
the frontier may contain states capable of a transition to a state  

 
 

Figure 1: FSM and Corresponding Transition Relation 
 

TABLE 1: STATE ENTRY VECTORS 

 
 

TABLE 2: FORWARD INTER-FRONTIER VECTORS 

 
 
lying in a previously reached frontier.  Extracting such vectors 
(and classifying them accordingly) allows for additional 
procedures to generate “cycle” producing vectors.  In order for 
this to be computed, we are forced to perform an image 
computation originating from only the newly reached states.  
Reusing the BDD from the Forward Inter-Frontier Vector 
procedure, the necessary steps are as follows: 

 
R i+1  NewOnly_Shifted = Re-Label (R i+1  NewOnly, NS,PS ) 
R_fromNewOnly =  R i+1  NewOnly_Shifted ∧ TR 
Rev_ Inter-Fronteir_Vectors = R i Shifted ∧ R_fromNewOnly 
 

The procedure computes Frontier i+2, and the union of 
Frontier i+2 with Frontier(s) j, with j < i+1, determines the 
Reverse Inter-Frontier Vectors.  The only Inter-Frontier vector 
for the example FSM is (10) corresponding to source state (11) 
and target state (10). 



3.4. Intra-Frontier Vectors 
 

Finally, the set of vectors that cause transitions among states 
in a single frontier are evaluated.  This classification allows for 
further generation of cyclic sequences and can be used in 
creating heuristics for guided state space traversal.   Reusing the 
BDD from the previously defined procedures, the evaluation is: 

 
Intra-Frontier Vectors = R_fromNewOnly ∧ R i+1  NewOnly 
 
The resultant set of vectors contains all vectors capable of 

initiating transitions within a single frontier, including vector 
resulting in self-loops.  Figure 1 of the example FSM does not 
depict self-loop vectors; their presence is implied as the vectors 
that do not cause a state-pair transition.  The Intra-Frontier 
Vectors for the example FSM are presented in Table 3. 

 
TABLE 3: INTRA-FRONTIER VECTORS 

 
4. APPLICATIONS 

 
4.1. Minimum Path Vector Sequence 
 

The grouping of vectors with respect to their role in FSM 
traversal allows for the efficient generation of vector sequences 
resulting in minimum paths between any given state pair.  If any 
two states lie in two distinct frontiers, the minimum path 
between them can be found through manipulation of the Forward 
and Reverse Inter-Frontier Vectors found in the two state 
holding and possible intermediate frontiers.   

A procedure has been implemented which determines 
minimum path vectors from reset to a specified reachable state.  
This involves finding the “deepest” frontier containing the target 
state (identified when the intersection between the states in the 
inspected Frontier intersected with the target state is not an 
empty set) and a traversal toward the reset state by selecting 
vectors creating the desired path during each iteration.  This 
concept can be extended to any state pair by locating the source 
state, tracing either the Forward or Reverse Inter-Frontier 
vectors towards the target state. 

If a pair of states lie in the same frontier, a similar procedure 
can be created considering Intra-Frontier vectors.  Finally, if a 
Frontier containing the target state is not found, the target state 
can deemed unreachable  

 
4.2. Heuristics for Guided State Space Exploration 
 

Several techniques have been developed which limit the 
power of model checking to “find bugs” rather than exhaustively 
prove a system’s correctness [10].  These methods rely on 
heuristics in order to target a portion of the state space that is 

most likely to contain flaws.  Although these methods offer 
promise they are either dramatically inconsistent or require 
significant designer input.  The information stored by the classes 
of vectors generated through the techniques presented in this 
paper can be used as heuristics for guided FSM searches. 

The Intra-Frontier Vectors capture the amount of activity 
among states in a single frontier.  If we suspect a frontier to 
contain an error state and is portrayed to be “highly-active”, then 
that frontier may be marked as a candidate for more intense 
simulation, utilizing a variety of Intra-Frontier vector sequences.  
Continued traversal can then be focused on the “most-popular” 
state (a characteristic additionally obtainable from the Intra-
Frontier Vectors) with a propagation of the observed properties 
into the next “partial” frontier. 
 

5. STATE-ELEMENT TRANSITION RELATION 
 

BDD explosion, in terms of the TR and/or the reachable state 
space, is one of the greatest obstacles when applying formal 
verification techniques incorporating FSM traversal.  The 
techniques presented up to this point do little to help this 
situation.  Complete FSM traversal using a sub-optimal TR is 
required to generate and group the vectors, further limiting the 
complexity of designs that can be investigated. 

To address this limitation, a method for generating TRs local 
to each state-holding element is presented.  Each state-element 
TR (S-ETR) is part of a partitioned TR providing information as 
to which input vectors cause a single state-holding element to 
change its value, essentially a bit relation with existential 
quantification of the present state variables.  Such a TR can 
often be much simpler than a complete TR and our experiments 
show this to be the case.  Table 5 compares the size of the S-
ETR with the size of a monolithic TR without smoothing for 
selected circuits of the ISCAS89 benchmark suite. 

Combining the S-ETRs produces an over-approximation of 
the reachable state space since complete state transition pairs are 
not enumerated, i.e. next states can be evaluated that do not 
actually occur in the FSM.  Simulation can therefore be 
employed to determine which of the identified transitions are 
actually valid by simulating the vectors associated with the 
transitions.  Using simulation to sample the behavior of the FSM 
has been shown to be efficient in other systems coupling 
simulation and formal verification methods [9]. The benefit of 
this approach is the reduction of the TR by incorporating 
simulation to “fill in” the relationships information missing in 
the S-ETR.  The S-ETR, in turn, identifies the small portion of 
all possible input combinations that require simulation. 

The technique is presented using the example FSM from 
Figure 1.  We compute the S-ETR in a similar manner as the 
monolithic TR, only we do not perform the step of combining 
the bit relations to form the complete TR.  Before merging wire 
relations, we trim all information that is not of local concern 
through the existential quantification of the present state 
variables. As a result, we obtain the vectors that generate local 
state element changes, presented in Table 5.  

From the BDD representing the information in Table 5, we 
can extract all the Inconsistencies resulting from the over 
approximation.  Clearly, a state exposed to a distinct input will 



transition to one and only one state.  An O(n) procedure, where n 
is the number of cubes in the BDD, can be employed to identify 
the set of Inconsistent transitions, resulting in the set of present-
state/next-state vector sets that use simulation to mark them 
valid or invalid.  The procedure simply iterates over all the 
cubes, performs existential quantification of the next state 
variable and intersects each cube with the S-ETR.  If the 
intersection results in a cube with more minterms than the 
original cube itself, the set of transitions is marked as 
inconsistent.   Simulation can then separate which of the 
inconsistent set are valid transitions. 

 
TABLE 4: S-ETR AND MONOLITH TR BDD SIZES FOR ISCAS89 

 
 

TABLE 5: STATE ELEMENT CHANGE VECTORS 

 
  
One could imagine that an FSM can exist where each element 

is changed by any possible combination of vectors, leading to a 
simulation of all possible inputs to determine the next state.  The 
results from experiments using the ISCAS89 benchmark suite 
show this to not be the typical case.   In most cases, the number 
of possible vectors to cause a single element change was less 
than 20.  

 
6. CONCLUSION 

 
This paper presented several techniques for the manipulation 

of monolithic TRs in order to obtain vector sequences that can 
be used to traverse specified paths in an FSM during simulation.  
For the ease of such sequence generations, the vectors are 

grouped into classes, governed by a vector’s role during FSM 
traversal. 

Although the generated vectors may prove to be useful in 
some CAD settings; such as putting stress on assertions during 
simulation or creating heuristics for guided state searches, the 
techniques used rely on the ability to represent the TR and 
reachable state space during symbolic FSM traversal.   

To loosen these restrictions, a procedure for deriving a State-
Element Transition Relations is introduced.  The S-ETR is built 
without the knowledge of the relationships among states, and it 
therefore only contains partial information.  By coupling 
symbolic techniques for image computation with simulation, the 
missing information can be created on-the-fly by simulating 
state transition candidates produced by an analysis of the S-ETR 
and identifying them as valid or invalid. 
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