
TEST VECTOR GENERATION AND CLASSIFICATION USING FSM TRAVERSALS

Ralph Marczynski, Mitchell A. Thornton, Stephen A. Szygenda
Department of Computer Science and Engineering

Southern Methodist University

ABSTRACT

Design correctness has become a bottleneck in the modern
digital system design cycle. In an effort to improve current
ad hoc simulation processes, this paper presents a method
for the automated generation of simulation vectors using
Symbolic FSM Traversal techniques. Generated vectors are
classified into three categories, Forward Inter-Frontier,
Reverse Inter-Frontier, and Intra-Frontier vectors; a
classification based on a vector’s ability to generate
Forward-, Reverse-, and Inter-Frontier transitions in an
FSM’s state transition graph. Additionally, a State-Element
Transition Relation (S-ETR) is introduced. This technique
involves the construction of a Transition Relation (TR) for
each state holding element and defining a smaller,
incomplete, over-approximation of the TR. Combining the
information present in the S-ETRs coupled with simulation
is used to perform image computations.

1. INTRODUCTION

Functional verification is the process of determining some
level of confidence that a design meets its specifications. One
trend is the partial validation of designs through simulation [1],
consisting of sending input to the design under test and
observing the output. Often the design is judged by the
equivalence found when comparing the output with that of some
reference model or other abstraction of the circuit when it is
exposed to the same stimulus. This approach is often used in the
commercial environment; unfortunately this in not due to the
method’s effectiveness, but rather the lack of superior options.

The shortcoming of a simulation-based verification
methodology is the limited functional coverage. Even for
modest designs, the number of vectors needed to for an
exhaustive test is too large to simulate in a feasible amount of
time. In order to utilize simulation, one needs to choose the test
vectors carefully as to gain the maximum amount of coverage
and ensure tests for rare “corner-cases”. Automated methods for
such intelligent vector generation are the saving grace of
simulation, but this area still requires further study to reach its
full potential.

Formal methods provide alternatives that are potentially
capable of overcoming the obstacles faced in simulation. A
formal method is the application of mathematical methodologies
to the specification and verification of systems [2]. The key
advantage is the ability to exhaustively test the design with
respect to its specification. To handle complex designs,
symbolic BDD-based system representations [3,4,5] can be
employed to allow for a compact representation of the state

space and symbolic FSM traversal. With many mature to
relatively mature technologies plagued with computational
obstacles and the need for human intervention; a workable,
practical, and effective verification flow appears to be rooted in
the integration of multiple verification methods [6,7,8].

This paper addresses the integration and reuse of existing
methods. Symbolic FSM traversal is used to generate test
vectors, which are classified into three categories:

1.) Forward Inter-Frontier Vectors: vectors which will
cause a transition from a state in frontier i to a state in
frontier i+1.

2.) Reverse Inter-Frontier Vectors: vectors which will
cause a transition from Frontier i to a state in frontier j,
where j < i.

3.) Intra-Frontier Vectors: vectors that will cause
transitions among states within a given frontier,
including vectors causing self-loops.

Such a vector classification can be exploited during
simulation. Vectors tracing a minimum length path between a
given pair of a state’s frontiers can be formed and statements
about reachability can be made if no paths can be found. In the
presence of temporal logic assertions, vectors with the greatest
probability of cycle generation can be used to simulate for the
failures of eventuality properties, as can Inter-Frontier transition
vectors be used to simulate for the reachability of a fail state,
necessary for validation of safety properties. In a guided search
of the state space, Inter-Frontier communication complexity can
also be used as heuristic for selecting further simulation origin
states.

The remainder of this paper is organized as follows. Section 2
provides the necessary background concerning Symbolic FSM
Traversal. Section 3 outlines the vector generation and grouping
procedures, with Section 4 identifying its applications. Section
5 introduces State-Element Transition Relations (S-ETR) and
their usefulness within a verification system integrating
simulation with formal methods. Finally Section 6 provides
concluding remarks.

2. BACKGROUND – FSM TRAVERSAL

FSM traversal is a traversal of a system’s state transition
graph (STG) in either a breath-first or depth-first manner.
Starting at an initial state, typically the reset state, the search
iterates through all nodes in the STG resulting in a set of all
reachable states. The knowledge gained from such a procedure
proves useful in many EDA-CAD settings.

An implicit STG representation is achieved through the
construction of a Transition Relation (TR) [5], a function
representing all possible transitions within a FSM. FSM

Traversal is then carried out as a series of Image Computations;
a conjunction of the TR and all previously reached states with
existential quantification of the resultant BDD over the present
state variables [9]. The result of each iteration is then the set of
states on the frontier (a set of next states), which are further re-
labeled as present states and added to the set of reached states.
The process is repeated until an evaluated frontier does not
provide transitions into undiscovered states.

The BDD for the TR of complex systems can exceed memory
limitations. The inputs to a system are not necessary for the
image computation, therefore commonly used TRs differ from
the one described in this paper in that inputs are removed
through existential quantification, resulting in the smoothed TR.
Smoothing can take place at different stages of TR construction,
depending on the method [5,9]. Vector generation, however,
requires the knowledge of input values with respect to state
transitions; hence, the sub-optimal monolithic TR without
smoothing is required. Discussion of a new representation of the
TR, the S-ETR, is presented in Section 5, which significantly
reduces the monolithic TR size through over-approximation,
while retaining the input vector information.

3. TEST VECTOR GENERATION

At each image computation, test vectors for all transitions are

determined and grouped into the three categories described in
the Introduction. This classification enables the selection of
vectors in order to meet specified coverage criteria (e.g. cycles,
inter-frontier paths, heuristics based on complexity, etc.). In
addition to the three classes of vectors, State Entry Vectors are
determined; the only vectors which can possibly cause entry into
a given state.

3.1. State Entry Vectors

For each reachable state, the TR can be manipulated in a
straightforward manner to extract all the possible vectors that
may lead to an entry into that state. The procedure is simply an
existential quantification of the TR over the present state
variables. The state entry vectors for the example FSM depicted
in Figure 1 are presented in Table 1.

3.2. Forward Inter-Frontier Vectors

At each image computation, the vectors capable of causing
entry into the new frontier are evaluated. The initial frontier R0
is assumed to be the reset state. Table 2 presents the Forward
Inter-Frontier Vectors for the example FSM. The procedure is
implemented as follows:

R i+1 = TR ∧ R i
S i+1 = ∃ (PS ∧ IN) R i+1
R i Shifted = Re-Label (R i, PS, IN)
R i+1 NewOnly = Ri Shifted ⊕ S i+1
Fwd-Inter-Frontier Vectors = R i+1 NewOnly ∧ R i+1

3.3. Reverse Inter-Frontier Vectors

During a given image computation, the newly reached states on
the frontier may contain states capable of a transition to a state

Figure 1: FSM and Corresponding Transition Relation

TABLE 1: STATE ENTRY VECTORS

TABLE 2: FORWARD INTER-FRONTIER VECTORS

lying in a previously reached frontier. Extracting such vectors
(and classifying them accordingly) allows for additional
procedures to generate “cycle” producing vectors. In order for
this to be computed, we are forced to perform an image
computation originating from only the newly reached states.
Reusing the BDD from the Forward Inter-Frontier Vector
procedure, the necessary steps are as follows:

R i+1 NewOnly_Shifted = Re-Label (R i+1 NewOnly, NS,PS)
R_fromNewOnly = R i+1 NewOnly_Shifted ∧ TR
Rev_ Inter-Fronteir_Vectors = R i Shifted ∧ R_fromNewOnly

The procedure computes Frontier i+2, and the union of
Frontier i+2 with Frontier(s) j, with j < i+1, determines the
Reverse Inter-Frontier Vectors. The only Inter-Frontier vector
for the example FSM is (10) corresponding to source state (11)
and target state (10).

3.4. Intra-Frontier Vectors

Finally, the set of vectors that cause transitions among states
in a single frontier are evaluated. This classification allows for
further generation of cyclic sequences and can be used in
creating heuristics for guided state space traversal. Reusing the
BDD from the previously defined procedures, the evaluation is:

Intra-Frontier Vectors = R_fromNewOnly ∧ R i+1 NewOnly

The resultant set of vectors contains all vectors capable of

initiating transitions within a single frontier, including vector
resulting in self-loops. Figure 1 of the example FSM does not
depict self-loop vectors; their presence is implied as the vectors
that do not cause a state-pair transition. The Intra-Frontier
Vectors for the example FSM are presented in Table 3.

TABLE 3: INTRA-FRONTIER VECTORS

4. APPLICATIONS

4.1. Minimum Path Vector Sequence

The grouping of vectors with respect to their role in FSM
traversal allows for the efficient generation of vector sequences
resulting in minimum paths between any given state pair. If any
two states lie in two distinct frontiers, the minimum path
between them can be found through manipulation of the Forward
and Reverse Inter-Frontier Vectors found in the two state
holding and possible intermediate frontiers.

A procedure has been implemented which determines
minimum path vectors from reset to a specified reachable state.
This involves finding the “deepest” frontier containing the target
state (identified when the intersection between the states in the
inspected Frontier intersected with the target state is not an
empty set) and a traversal toward the reset state by selecting
vectors creating the desired path during each iteration. This
concept can be extended to any state pair by locating the source
state, tracing either the Forward or Reverse Inter-Frontier
vectors towards the target state.

If a pair of states lie in the same frontier, a similar procedure
can be created considering Intra-Frontier vectors. Finally, if a
Frontier containing the target state is not found, the target state
can deemed unreachable

4.2. Heuristics for Guided State Space Exploration

Several techniques have been developed which limit the
power of model checking to “find bugs” rather than exhaustively
prove a system’s correctness [10]. These methods rely on
heuristics in order to target a portion of the state space that is

most likely to contain flaws. Although these methods offer
promise they are either dramatically inconsistent or require
significant designer input. The information stored by the classes
of vectors generated through the techniques presented in this
paper can be used as heuristics for guided FSM searches.

The Intra-Frontier Vectors capture the amount of activity
among states in a single frontier. If we suspect a frontier to
contain an error state and is portrayed to be “highly-active”, then
that frontier may be marked as a candidate for more intense
simulation, utilizing a variety of Intra-Frontier vector sequences.
Continued traversal can then be focused on the “most-popular”
state (a characteristic additionally obtainable from the Intra-
Frontier Vectors) with a propagation of the observed properties
into the next “partial” frontier.

5. STATE-ELEMENT TRANSITION RELATION

BDD explosion, in terms of the TR and/or the reachable state
space, is one of the greatest obstacles when applying formal
verification techniques incorporating FSM traversal. The
techniques presented up to this point do little to help this
situation. Complete FSM traversal using a sub-optimal TR is
required to generate and group the vectors, further limiting the
complexity of designs that can be investigated.

To address this limitation, a method for generating TRs local
to each state-holding element is presented. Each state-element
TR (S-ETR) is part of a partitioned TR providing information as
to which input vectors cause a single state-holding element to
change its value, essentially a bit relation with existential
quantification of the present state variables. Such a TR can
often be much simpler than a complete TR and our experiments
show this to be the case. Table 5 compares the size of the S-
ETR with the size of a monolithic TR without smoothing for
selected circuits of the ISCAS89 benchmark suite.

Combining the S-ETRs produces an over-approximation of
the reachable state space since complete state transition pairs are
not enumerated, i.e. next states can be evaluated that do not
actually occur in the FSM. Simulation can therefore be
employed to determine which of the identified transitions are
actually valid by simulating the vectors associated with the
transitions. Using simulation to sample the behavior of the FSM
has been shown to be efficient in other systems coupling
simulation and formal verification methods [9]. The benefit of
this approach is the reduction of the TR by incorporating
simulation to “fill in” the relationships information missing in
the S-ETR. The S-ETR, in turn, identifies the small portion of
all possible input combinations that require simulation.

The technique is presented using the example FSM from
Figure 1. We compute the S-ETR in a similar manner as the
monolithic TR, only we do not perform the step of combining
the bit relations to form the complete TR. Before merging wire
relations, we trim all information that is not of local concern
through the existential quantification of the present state
variables. As a result, we obtain the vectors that generate local
state element changes, presented in Table 5.

From the BDD representing the information in Table 5, we
can extract all the Inconsistencies resulting from the over
approximation. Clearly, a state exposed to a distinct input will

transition to one and only one state. An O(n) procedure, where n
is the number of cubes in the BDD, can be employed to identify
the set of Inconsistent transitions, resulting in the set of present-
state/next-state vector sets that use simulation to mark them
valid or invalid. The procedure simply iterates over all the
cubes, performs existential quantification of the next state
variable and intersects each cube with the S-ETR. If the
intersection results in a cube with more minterms than the
original cube itself, the set of transitions is marked as
inconsistent. Simulation can then separate which of the
inconsistent set are valid transitions.

TABLE 4: S-ETR AND MONOLITH TR BDD SIZES FOR ISCAS89

TABLE 5: STATE ELEMENT CHANGE VECTORS

One could imagine that an FSM can exist where each element

is changed by any possible combination of vectors, leading to a
simulation of all possible inputs to determine the next state. The
results from experiments using the ISCAS89 benchmark suite
show this to not be the typical case. In most cases, the number
of possible vectors to cause a single element change was less
than 20.

6. CONCLUSION

This paper presented several techniques for the manipulation

of monolithic TRs in order to obtain vector sequences that can
be used to traverse specified paths in an FSM during simulation.
For the ease of such sequence generations, the vectors are

grouped into classes, governed by a vector’s role during FSM
traversal.

Although the generated vectors may prove to be useful in
some CAD settings; such as putting stress on assertions during
simulation or creating heuristics for guided state searches, the
techniques used rely on the ability to represent the TR and
reachable state space during symbolic FSM traversal.

To loosen these restrictions, a procedure for deriving a State-
Element Transition Relations is introduced. The S-ETR is built
without the knowledge of the relationships among states, and it
therefore only contains partial information. By coupling
symbolic techniques for image computation with simulation, the
missing information can be created on-the-fly by simulating
state transition candidates produced by an analysis of the S-ETR
and identifying them as valid or invalid.

7. REFERENCES

[1] International Technology Roadmap for Semiconductors,
2001 Edition, http://public.itrs.net/Files/2001ITRS/Home.htm.

[2] C. Kern and M. Greenstreet, “Formal Verification in
Hardware Design: A Survey,” ACM Transactions on Design
Automation of Electronic. Systems, Vol. 4, April 1999, pp. 123-
193.

[3] E.M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking, Cambridge: MIT Press, 1999.

[4] K. L. McMillan, Symbolic Model Checking: An Approach
to the State Explosion Problem, Kluwer Academic Publishers,
Boston/Dordrecht/ London, 1993.

[5] S.-Y. Huang and K.-T. Chen, Formal Equivalence
Checking and Design Debugging, Kluwer Academic Publishers,
Boston /Dordrecht /London,1998.

[6] D. Dill, “What’s Between Simulation and Formal
Verification?,” slides from a presentation by Prof. Dill, Stanford
University at DAC 1998.

[7] D. Dill and S. Tasiran, “Simulation meets Formal
Verification,” slides from a presentation at ICCAD 1999.

[8] E.M Clarke and J.M Wing, “Formal Methods: State of the
Art and Future Directions,” Technical Report CMU-CS-96-178,
Carnegie Mellon University, 1996.

[9] Yang, C. H. and D. L. Dill: 1998, “Validation with Guided
Search of the State Space”, Proc. of the Design Automation
Conf.

[10] Chen K.C “Memory verification needs fresh approach”
http://www.eedesign.com/silicon/OEG20030428S0057,
EEDesign, 2003

