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Abstract

A method for the synthesis of large Multi-Valued Logic
Networks (MVLNs) using Multi-Valued Decision Diagrams
(MDDs) is presented. The size of the resulting circuit is
linear in the size of the original MDD. In contrast to previ-
ously presented approaches to circuit design using MDDs,
here the nodes are not substituted by multiplexers. Instead,
a small circuit is created representing the functionality of
each edge in the graph. The resulting circuits have nice
properties with respect to area/delay estimation and power
dissipation. Experimental results are given to illustrate the
efficiency of the approach.

1. Introduction

The use of Decision Diagrams (DDs) is becoming in-
creasingly popular in the area of electronic design automa-
tion. DDs represent a function as a directed acyclic graph,
and have generated great interest due to their ability to rep-
resent certain functions in a very compact form. DDs can
be regarded as representing the function in a behavioral,
rather than structural form. The structure of the DD does
not necessarily impart any information about the structural
representation of a corresponding circuit. This “behavioral”
nature of DDs has led to their increasing popularity in syn-
thesis and verification tools.

Several approaches to map DDs directly to a target ar-
chitecture have been proposed (see e.g. [1, 2, 4]). The re-
sulting circuits generally have the same approximate size as
circuits generated by other synthesis tools such as SIS [17]
and often have other desirable properties. Extensions to the
multi-valued case have also been proposed [18]. The ba-
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sic underlying idea of all these approaches is to substitute
each node in the DD by a sub-circuit. For example, 2-input
multiplexers may be used in the case of a BDD [2]. In this
type of approach, the “flow” of information is reversed since
BDDs are usually evaluated from the root node to the termi-
nal vertices. However, after this type of circuit translation,
the root node becomes the output of the circuit. Due to this
transformation, some of the desirable properties are lost. As
an example, during the evaluation of a BDD only one path
is activated resulting in low switching activity but this is not
the case in the corresponding translated circuit. Based on
this property, an alternative approach to mapping BDDs has
been presented [15]. The resulting circuits have very low
power dissipation, while keeping most of the properties of
BDDs.

Here, a method for the synthesis of Multi-Valued Logic
Networks (MVLNs) based onMulti-Valued DDs (MDDs) is
described. Following the ideas presented in [15] we show
how MDDs can be mapped to netlists without reversing the
information flow. The size of the resulting MVLNs is linear
in the size of the MDD. Experiments for 3-valued circuits
are given to show the efficiency of our approach.

The paper is structured as follows: In Section 2 MVLNs
and MDDs are defined. The basics of our synthesis proce-
dure are described in Section 3. In Section 4 experimental
results are given. Finally the results are summarized.

2. Preliminaries

A description of the notation used and a brief review of
the concepts in MVL are given in this section. We also
describe and define logic networks and decision diagrams
for MVL.



2.1. Multi-valued logic networks

In general, a Multi-Valued Logic Network (MVLN) can
be modeled as a directed acyclic graph � � ��� �� with
the property that each vertex, � � � , is labeled with the
name of a basic cell, the name of a Primary Input (PI) or
the name of a Primary Output (PO). The collection of ba-
sic cells that are possible in the MVLN is given by a fixed
library that contains MIN-, MAX-, INV- and LITERAL-
gates as a minimum�. It is possible to include basic cells
with arbitrary complexity and with a varying number of in-
puts. There is an edge, ��� ��, in � from vertex � to �, if
and only if an output pin of the cell associated with � is con-
nected to an input pin of the cell associated with �. Edges
also contain additional information to specify the pins of
the source and sink nodes that they are connected to. Ver-
tices have exactly one incoming edge per input pin. Nodes
labeled as PI (PO) have no incoming (outgoing) edges.
To simulate a MVLN, each PI may assume the values

of a given ordered finite set, � � ��� � � � � 	 � ��, where 	
denotes the number of logic levels. The complement (INV-
gate) of a signal 
 is defined as 
 � �	 � �� � 
. A
LITERAL-gate ��� �� (�� � � �� � � � � �  	) has one
input and one output�. For a given input 
, the behavior of
such a gate is defined by:

��
� �

�
	 � � � � � 
 � �

� � ���������

It is also assumed that the characteristic functions are avail-
able for each of the primary inputs (i.e. the set of ���
��
values such that ���
�� � 	 � � if 
� � �, and ���
�� � �
otherwise).

2.2. Multi-valued decision diagrams

As is well-known, each Boolean function � � �� � �

can be represented by a Binary Decision Diagram (BDD)
[7], which is a directed acyclic graph where a Shannon de-
composition is carried out in each node. BDDs can be ex-
tended to represent functions � � �� � ��� ��� 	 � �� and
the resulting graphs are denoted as Multi-Terminal BDDs
(MTBDDs). The operations on MTBDDs can be carried
out as efficiently as in the two terminal case of BDDs.
[3, 8]. In turn, MTBDDs can be extended to Multi-Valued
Decision Diagrams (MDDs) [19] representing functions
� � ��� ��� 	 � ��� � ��� ��� 	 � ��. In the case of MDDs,
each internal node has 	 outgoing edges�. In [19] it has
been shown that the efficient operations known for BDDs

�In the binary case, MIN- and MAX-gates correspond to AND- and
OR-gates, respectively.

�These LITERAL-gates are also called window literals.
�In our application we restrict ourselves to the case that all variables

are defined over the same set of values.
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Figure 1. Diagram of Ordered and Reduced
MDD Graph Structure

can also be carried out on MDDs using a case-operator in-
stead of the ite-operator [5].

A DD is ordered if each variable (which is represented
by a non-terminal graph vertex) is encountered at most once
on each path from the root to a terminal and if the variables
are encountered in the same order on all such paths. A DD
is reduced if it does not contain vertices either with isomor-
phic sub-graphs or with all successors pointing to the same
node.

In the remainder of this paper we only consider reduced,
ordered MDDs.

Example 1 Figure 1 shows a diagram of a reduced and
ordered MDD of the two-variable three-valued function �
given by the following truth-vector:

� � ����������	

When the MVLN is represented as a directed acyclic
graph, a corresponding MDD can be created as follows:

1. Terminal nodes for the 	 constant functions are cre-
ated.

2. For each PI of the MVLN, a graph vertex (variable)
in the MDD is created, where the �-th outgoing edge
points to the terminal node labeled � (� � ��� ��� 	 �
��).

3. The gates of the MVLN are visited in topological or-
der and the corresponding MDD operation is carried
out.

The topological order visit guarantees that all inputs of
a gate are known before it is evaluated. After all MVLN
nodes have been visited, MDDs for all POs will result.
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Figure 2. Symbolic simulation for MIN-gate

Example 2 In Figure 2 a simple example for a three-valued
simulation for a MIN-gate is shown. The input �� (��) cor-
responds to the MDD �� (��). The output of the gate � cor-
responds to the function that is represented by the MDD �.

3. Synthesis of MVLNs from MDD

For the synthesis process, we assume anMDD represent-
ing a 	-valued function of 	-valued variables is given ini-
tially. The outgoing edges per node of an MDD are mapped
to small sets of logic gates, producing a 	-output circuit. If
the function being computed is ����, then the 	 outputs of
the resulting circuit correspond to the characteristic func-
tions of � , (i.e. ��������� � � � � ����������). The circuit
outputs thus form a �� �� � 	 code, where the ��� output
of the circuit is logically true if and only if the MDD would
evaluate to logic value �.

In the remainder of this section, we first show the general
technique for mapping a MDD to a MVLN. It is assumed
that the basic types of logic gates that are available compute
the MIN and MAX functions. It is also assumed that each
characteristic function is available for each primary input.
Next, we consider implementing the MDD as a binary logic
circuit.

3.1. Mapping MDDs

Each edge in the MDD is translated into one or more
gates as shown below by the following four steps.

1. The activating characteristic functions of input 
�

serve as inputs to a single MAX gate,����.

2. The predecessor edge values serve as inputs to a sec-
ond MAX gate,����.
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Figure 3. 4-input 4-value MDD
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Figure 4. Translation of edge ��

3. The outputs of the two MAX gates serve as input to a
single two-input MIN gate.

4. The MIN gate produces the final value for the speci-
fied edge.

Example 3 Consider the MDD in Figure 3. If a realization
for edge �� is to be constructed, the two incoming edges to
this node are needed, �� and �	, as are the characteristic
functions ��, ��, and ��. The circuit fragment in Figure 4
shows the gates and edges relevant to edge ��.

Note that all single-inputMAX/MIN gates are redundant
and can be removed in a single pass following the transla-
tion. Furthermore, the MAX gate that determines if any
predecessor edges are activated (���� in Figure 4) can
be shared across all output edges that are incident to the
same node of the MDD.
Each node in the MDD has at least two incident output

edges (otherwise the node is redundant), and has at most 	
such edges. This places the total number of gates required



for the � output edges that are incident to a particular node
at:

	 � two-input MIN gates,

	 � � � � � 
 �	��� MAX gates (specifically 	 
 � ��


������ � �� �
�

��

�
������� where �� represents

the number of distinct values of variable 
� which ac-
tivate edge ��)

The total number of gates is bounded by 	 
�. This can
be seen since the node under consideration requires � or
� MAX gates as a collector from preceding edges and can
have at most 	 outgoing incident edges, each of which re-
quires one two-input MIN gate. Collapsing edges (i.e. mul-
tiple 
� values activate the same edge) reduces the number
of MIN gates required, but requires a MAX gate for each
set of collapsed edges to collect the activating characteristic
functions.

3.2. Implementations in binary logic

The only gate types described for use above are MAX
and MIN gates with the assumption that all of the charac-
teristic functions of each primary input available. For the
binary logic case (	 � �), each characteristic function gives
an output of � or 	 � �. A MAX or MIN gate operating on
only values of � or 	 � � can only produce outputs of value
� or 	 � �, therefore the output of each gate throughout the
network will also be either � or 	��. Hence the translation
to a binary system is entirely natural, using OR gates for
MAX, and AND gates for MIN [15].
With respect to the characteristic functions, for each 	-

valued input, 
�, to the MDD, we need a component gener-
ating outputs ��� � � � ����� such that ��� � � if and only if

� � �. If each 
� primary input is supplied using  ����	�
inputs, then the set of characteristic functions for each input
can be supplied using a  ����	� � 	 decoder. The result
is a binary � 
 	-input, 	-output circuit, in which exactly
one of the 	 outputs is activated for each input combination.
Gate sets other than AND/OR can also easily be obtained

[21]. The structure of the circuit resulting from this map-
ping technique is entirely composed of AND/OR gates. It
is thus easily translated into a comparably-sized network of
NAND gates, still resulting in output coded in a �� �� � 	
format.

3.3. Properties of the resulting MVLN

Having covered the construction of the network, we now
consider its applicability for common optimization tech-
niques. One of the major goals of circuit synthesis systems
is to enable the use of optimization techniques with regard
to circuit delay, area and power dissipation. This section

summarizes the application of various optimizations to cir-
cuits produced using the synthesis process described above.

3.3.1. Circuit area

Assuming circuit size is proportional to the number of logic
gates in the circuit, one of the advantages of the proposed
technique is that the size of the circuit produced is directly
proportional to the size of the MDD. Thus techniques which
minimize the size of the MDD [10] produce corresponding
reductions in the resulting circuit size. It also allows the use
of other aspects, (e.g. planarity [18]) to be considered dur-
ing the circuit placement and routing phase. Compared to
the standard mapping approach where each node is substi-
tuted with a multiplexer, this technique has the advantage
that further reductions can occur through the removal of re-
dundant logic gates.

3.3.2. Power dissipation

Power constraints are another major design factor in synthe-
sis since reduction schemes can minimize heat dissipation
and limit the drain on battery powered devices. Equation 1
expresses the dynamic power dissipation relation for CMOS
technology for binary-valued logic.

� �

�� � ������ �

��
���

�!�� � "�� 
 ��� �

��
���

����� (1)

For a circuit of# nodes, �� is the probability of a ���� out-
put from node �, !�� is the switching probability of node �,
"� is the node capacitance, ��� is the supply voltage, ������
is the clock frequency and ��� is the node short circuit cur-
rent. The underlying assumption is that the circuit is switch-
ing between binary values. This assumption is valid for all
but the primary inputs. Equation 1 also requires knowledge
of the switching probability, !��, for each circuit node.
If we make the assumption that each value from � � � � 	�

� is equally likely for each primary input
� at each step, and
that the values for the different input variables are statisti-
cally independent, then we can calculate the !�� values as
follows:

	 The switching probability at a node is !�� � ��� �
��� ���� 
 ���� ��� � ��� � ���� � � �

� �, where ��

is the probability the node output is ����.

	 The probability of a ���� value at the output of each
characteristic function is ��	.

	 For an MDD, no node can have two incoming edges
activated simultaneously, and correspondingly in our
circuit no MAX gate will ever have ���� values on
two different inputs simultaneously. Thus, the ��



value for the output of a MAX gate is simply the sum
of the �� values of its inputs.

	 The �� value for the output of a MIN gate is naturally
the product of the �� values for all of its inputs.

By applying these rules on a traversal of the circuit we can
easily compute the �� values, and hence obtain the !�� val-
ues (with the statistically independent and uncorrelated as-
sumptions) for each node in the circuit. This in turn allows
us to apply the power estimation formula referred to above.
Notice also that the power dissipation is likely to be much
lower using our synthesis approach (analogously to the bi-
nary case [15]) compared to the standard method where the
MDD nodes are substituted by multiplexers. Here, we profit
from the fact that using our technique the flow of informa-
tion is not reversed and similar to BDDs, exactly one path
is activated for a given variable assignment.
The efficient computation of signal probabilities can also

be used for testing the circuit. Based on the switching ac-
tivity of each signal efficient built-in self-test can be con-
structed.

3.3.3. Delay calculations

In general circuits derived from DDs tend to have linear
depth. However, the same propertieswhich simplify the cal-
culation of switching probabilities also simplify the prob-
lem of delay analysis in the circuit produced. The “false
path” problem [9], which plagues circuit timing analysis,
is avoided since the circuit structure corresponds directly to
the structure of the MDD and each path is activated by some
particular input assignment.
It is also possible to transform linear depth DDs to a

log(depth) form as described in [14] [13] [20]. Perform-
ing transformations such as these before mapping can allow
for further reductions in the resulting circuit delay.

4. Experimental results

We used the MDD package described in [10] to gen-
erate experimental results using the ISCAS89 benchmarks
from [6]. This same set was also used in [10, 11]. Specifi-
cally, some of the combinational parts of the benchmarks
were used since no standard benchmark set of large cir-
cuits is available for multi-valued designs. We interpreted
the benchmarks as �-valued circuits by transforming AND-
gates into MIN-gates and OR-gates into MAX-gates. In do-
ing so the resulting circuits do not contain LITERAL-gates.
Therefore the strength of our results is limited. But we ex-
pect that they describe a trend which is also valid for multi-
valued circuits containing LITERAL-gates. All measure-
ments were performed on a Sun Ultra 10. A node limit of

Table 1. Benchmark functions

name PO synthesis
MIN MAX

s27 36 88 56
s208 1077 2698 1610
s298 299 754 442
s344 324 858 438
s400 474 1228 668
s444 491 1263 701
s510 904 2235 1381
s641 4040 9874 6286
s713 4050 9901 6299
s820 1217 3094 1774
s832 1226 3123 1781
s953 2545 6250 3930
s1238 46521 123365 62719
s1288 2085 5349 2991
s1494 2044 5247 2929

250.000 nodes and a limit of 3.600 CPU seconds was used.

The results for 3-valued circuits are given in Table 1. The
name of the benchmark is given in the first column and PO
denotes the number of MDD nodes that were required for
the representation of the POs. The variable ordering was
chosen using interleaving [12]. In column synthesiswe give
the number of MIN gates and the number of MAX gates
needed. These numbers are upper bounds computed by a
traversal of the MDD. Further reductions are always possi-
ble due to the arguments given in Section 3 unless the fully
reduced MDD representation was in the form of a 	 � ��$
tree. As can be seen, four gates per node (or even less after
reduction) are needed for a 3-valued function. Alternative
methods that substitute the MDD nodes by look-up tables
require at least 5-input cells when mapped to binary logic,
three for the edges of the node and two for the control in-
puts. Further reductions can be expected, if more powerful
minimization techniques are applied to the MDD such as
sifting [16]. The circuit construction is very fast if the MDD
is given and takes less than one CPU second for all exam-
ples, since only one traversal of the graph has to be carried
out.

5. Conclusions

An MDD based method for synthesis of MVLNs has
been presented. Instead of substituting each node by a mul-
tiplexer, an edge-mapping approach for MVLNs has been



developed. The resulting circuits have linear size with re-
spect to the initial MDD. Furthermore, properties of the
netlists have been discussed showing several advantages of
this type of circuits over traditional approaches.
During the experimental study we observed that the

number of MIN and MAX gates strongly depends on the
variable ordering of the MDD and not only on the number
of nodes (see e.g. cs298 and cs344 in Table 1). The focus of
future work is to develop (dynamic) reordering algorithms
that will effectively optimize the network (in terms of re-
quired circuitry) during MDD minimization. Furthermore,
we are working on an efficient algorithm for removing all
redundancies from the initially generated network.
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