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Abstract

Spectral information can be used for many CAD system
tasks including synthesis, verification and test vector gen-
eration. We analyze the problem of extracting spectral in-
formation from Boolean and multi-valued logic netlists. It
is shown that spectral information may be calculated di-
rectly from output probabilities and a method for extracting
output probabilities from general graphs is described. As a
special case, we consider AND/OR graphs which are a data
structure recently proposed as an alternative to decision di-
agrams. Experimental results are given to demonstrate the
efficiency of our approach.

1. Introduction

Spectral methods have been suggested as an efficient
tool for circuit design in the early 1960s. Recently, they
are of growing interest, since methods have been developed
that allow for efficient solutions to logic synthesis problems
[15, 9]. Spectral transformations are based on a linear trans-
formation of the entire function table in the field of integers.
The truth table vector, which has �� elements for binary val-
ued functions where � denotes the number of variables of
the function under consideration, is clearly exponential in
size. For real circuits, spectral computation via the mathe-
matical definition is impractical. Thus, more compact data
structures are typically used for spectral calculations. Al-
though many representations have been used in the past,
each type has its’ own advantages and disadvantages. The
most popular data structure is the Decison Diagram (DD)
and especially Binary DDs (BDDs) [3] have been success-
fully used in many applications. However, BDDs often be-
come too large and for some functions, have an exponen-
tial size independent of the variable ordering [2]. Recently,
the AND/OR decision graph has been proposed as an al-
ternative for representing functions in CAD tools [20]. An
overview of the use of this graph in the logic design arena
is given in [7]. The AND/OR graph is attractive since in
some cases it can provide a more compact representation
than BDDs and it also allows for representing relationships
whose detailed functionality is not yet known. However,
for this particular type of data structure to be useful, it is
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imperative that methods are formulated that allow relevant
information to be easily extracted by the CAD system.
Although the use of spectral methods in discrete logic

dates back several years, there has been a recent renewal
in the interest of these techniques largely due to new meth-
ods for the efficient computation of the spectra [4, 22]. The
spectrum of a logic function imparts data concerning func-
tionality and other characteristics.
In this paper, we show the close relation between various

spectra and the output probabilities of a circuit. We pro-
pose a method for determining spectral information from a
logic netlist and specifically, AND/OR graphs and describe
extensions for using this method with Multi-valued Deci-
sion Diagrams (MDDs). In the next section, we introduce
some preliminaries. Then we show how the computation
of output probabilities is sufficient for determining several
different types of spectra since the probability values and
the spectral coefficients are related by simple algebraic ex-
pressions. Next, we formulate a technique to approximate
the probabilities from a general graph representation that
includes the AND/OR case as a subset. Finally, we present
some experimental results followed by conclusions.

2. Preliminaries

A brief definition of the basic data structures and con-
cepts will be given. The new methods described in this pa-
per heavily depend on the use of these concepts.

2.1. Decision diagrams

As well-known, each Boolean function � � �� � � can
be represented by a Binary Decision Diagram (BDD), i.e. a
directed acyclic graph where a Shannon decomposition

� � �������
� �������

�� � � � ��

is carried out in each node.
A BDD is called ordered if each variable is encountered

at most once on each path from the root to a terminal node
and if the variables are encountered in the same order on all
such paths. A BDD is called reduced if it contains neither
isomorphic sub-graphs nor vertices with both edges point-
ing to the same node. In the following, only reduced, or-
dered BDDs are considered and for briefness these graphs
are called BDDs. BDDs are a canonical representation,
i.e. for each Boolean function the BDD can be uniquely de-
termined. Furthermore, for functions represented by BDDs
efficient manipulations are possible [3].



The extension to the MVL case is straightforward and
the corresponding graphs are called Multi-valued Decision
Diagrams (MDDs) [19].

2.2. Circuits and AND/OR graphs

In general, a Combinational Logic Circuit (CLC) is de-
fined over a fixed library and modeled as a directed acyclic
graph � � ����� with some additional properties, typi-
cally in the form of graph vertex annotations. Very often
a standard library (STD) consisting of primary input (PI)
and output ports (PO), 2-input, 1-output gates (like NAND
and NOR) and the 1-input, 1-output inverterNOT is used. If
only AND and OR are allowed, a representation that maps
1-to-1 to AND/OR graphs is obtained. For more details see
[7].

3. Relation of spectra and probability

This section will describe how output probabilities can
be used to compute various spectral coefficients directly.
The key idea here is to view the computation in terms of a
vector-matrix product using an appropriate transformation
matrix. Although such products are not computed directly,
with this viewpoint each transformation matrix row vector
can be considered as an output vector of some other func-
tion called a constituent function. To illustrate the generality
of this approach, specific examples of global (Walsh), local
(Reed-Muller) and Multi-resolution (Modified Haar) trans-
forms are given.
By using Boolean relations between the function to be

transformed, � , and the various constituent functions, ��,
output probabilities may be computed and used to calculate
various spectral coefficients through simple algebraic rela-
tions. The advantage of this approach is that the spectral
coefficients are computed individually allowing complete
storage of �� spectral coefficients to be avoided. Further-
more, if efficient methods are used to compute the proba-
bility values such as those given in [13, 14, 22] a savings in
computation time also results.

3.1. Walsh spectrum

The Walsh spectral values form several different spec-
tra. The chief difference in the various spectra depend only
upon the order that coefficients appear [10]. For exam-
ple, this set of coefficients may be ordered naturally, in se-
quency order, in dyadic order, or, in revised sequency or-
der. These orders yield the Hadamard-Walsh, the Walsh,
the Paley-Walsh, and, the Rademacher-Walsh spectra, re-
spectively [1, 10]. In the past, the Hadamard-Walsh has
seen much use due to the fact that efficient decompositions
of the transform matrix may be obtained allowing for ‘fast
transform’ methods [5, 18] to be applied.
Since the relationships described here apply only to a

single Walsh coefficient, the particular coefficient orderings
are not important. Each coefficient is described by the par-
ticular �� that corresponds to a transformation matrix row
vector regardless of the actual location of the row vector
in the matrix. The Walsh coefficient is denoted by	� ����
where � denotes that the spectral coefficient is with respect

to function � , and, �� denotes that the coefficient is depen-
dent on the transformation matrix row vector corresponding
to constituent function ��.
It is generally the case that the Walsh spectral values are

computed by replacing all occurrences of logic-1 with the
integer, -1, and all occurrences of logic-0 with the integer,
+1. The actual calculation of the coefficient is then carried
out by using integer arithmetic. In terms of computing an
inner-product of a transformation row vector and an output
vector of a function to be transformed, it is easy to see that
each “sub-product” term to be accumulated is either +1 or -1
in value. Furthermore, such a product of -1 will only occur
when the functions � and �� have different output values for
the same set of input variable assignments.
If we consider the equivalence function given by the

exclusive-NOR operation (XNOR), a function can be
formed whose output is logic-1 if and only if both � and
�� are at logic-1, � � ��. Furthermore, if the output proba-
bility of this function is computed, we have the percentage
of outputs where both � and �� simultaneously output the
same value, 
�� � ���. The corresponding Walsh spectral
coefficient can then be obtained by scaling the output prob-
ability value by ��, where � is the number of variables in � .
This is given in Equation 1.

	� ���� � ����� 
�� � ���	 (1)

The Walsh coefficients in Equation 1 depend upon the
equivalence relation of the function being transformed and
the constituent function. However, the spectral coefficient
can be computed using Boolean operators other than XOR.
This is accomplished by exploiting the probability relation-
ships given in Equations 2 and 3.
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Substituting the relationships in Equations 2 and 3 into
Equation 1 yields the following results.
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The relationships in Equations 5 and 6 may be simplified
since 
���� �

�

�
is easily shown to be true for all �� except

the ��� ordered coefficient,	� ���, where 
��� � �. This
is because the rows of the Walsh transformation matrix can
be viewed as output vectors of parity functions, thus, there
are an equal number of logic-1 and logic-0 values. Also,
the higher ordered Walsh coefficients can be related to the
the ��� ordered coefficient through the expressions given in
Equations 7, 8, and 9.

	� ��� � ����� �
���� (7)
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3.2. Reed-Muller spectrum

The Reed-Muller family of spectra consist of �� distinct
transformations. These are generally classified according to
a polarity number. The polarity number is used to indicate
if a literal is present in complemented or non-complemented
form in the generalized Reed-Muller Boolean algebraic ex-
pression. In terms of the Reed-Muller spectra, the polarity
number can be considered to uniquely define the transfor-
mation matrix. The generalized Reed-Muller spectra have
been studied and used extensively in the past. References
[6] and [8] provide detailed background material.
In relating output probabilities to the Reed-Muller spec-

tra, considerations must be made due to the fact that the
RM spectrum is computed over Galois field 2 and the output
probabilities are real quantities in the interval [0,1]. An iso-
morphic relation is used to address this problem [21]. Like
the Walsh spectrum, each of the rows of the RM transfor-
mation matrix may be viewed as constituent function output
vectors. The constituent functions turn out to be all possible
products of literals (with complementation or lack thereof)
determined by the polarity number. Therefore, any arbitrary
RM spectral coefficient may be computed as given in Equa-
tion 10.

�� ���� � ���
�� � ���	�
���� (10)

Using the probability relationships given in Equations 2 and
3, alternative relationships can be derived as given in the
following.

�� ���� � ����
���� 
����� 
�� � ���	�
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3.3. Haar spectrum

Like the Walsh family of transforms, the output vector of
the function to be transformed generally contains integers
with -1 representing logic-1 and +1 representing logic-0.
With this viewpoint, we can define the number of matches
between a particular transformationmatrix row vector as the
number of times the row vector and function vector compo-
nents are simultaneously equal to -1 or +1. This particular
transformation matrix is referred to as the modified Haar
transform since the non-zero entries in the transformation
matrix are all normalized to 	� rather than having the val-
ues originally given in the Haar basis functions [10]. Note
that the Haar transformationmatrix contains a 0 value in ad-
dition to the 1 and -1 quantities which represent logic levels.
Since some of the rows represent constituent functions that
are cofactors, the output space is less than �� and the pres-
ence of a 0 value acts as a place holder.
By applying the same principles as those used to deter-

mine the algebraic relationships between output probabili-
ties and the Walsh family and RM transforms, we can for-
mulate the Haar transform relationships. The presence of
cofactors in the Haar constituent functions can be handled
by using the conditional probability relationship to repre-
sent these quantities as output probabilities of the AND of
the function to be transformed with its respective depen-
dent literals. Note also that the maximum absolute value of
a Haar spectral coefficient varies depending on the order of
the coefficient. This is due to the reduction in the size of

the range of the constituent functions containing cofactors.
Equation 13 expresses the relationship between a particular
Haar spectral coefficient, 
�, and probability expressions
that evaluate whether the function to be transformed and
the constituent function simultaneously evaluate to logic-0
(denoted as ���), or evaluate to logic-1 (denoted as ���).


	 � ���������� � ����� �	 (13)

4. Probability extraction from graphs

Techniques for the extraction of output probability val-
ues from generalized graphs are given here. Initially, we
formulate a solution to an easy subset of problems and show
that an exact value can be obtained. Next, the problem is
generalized to cover any arbitrary form of graph (or netlist)
including the AND/OR type and an approximate method is
described.

4.1. Probability algorithm

To simplify the problem, the following assumptions are
made:

1. Each leaf vertex in the AND/OR graph represents a
unique variable in the support set of � , the Boolean
function represented by the graph.

2. The AND/OR graph is a complete representation of
the function � .

The restriction that each variable in the support set of � ap-
pears only once in a leaf vertex is equivalent to representing
the function in a Completely Fan-Out Free (CFOF) tree-like
circuit composed only of alternating levels of AND and OR
gates. CFOF type circuits are much easier to use for spectral
computations since no reconvergent fanout is present and
all occurrences of the AND operation are then equivalent to
multiplications of probability values (i.e. problems due to
idempotence are avoided). 
���may be computed through
a single traversal of the graph with CPU time requirements
of ���� where � is the total number of vertices in the
graph. In terms of spatial complexity, one additional word
of storage per node is required for each vertex which will
contain a value corresponding to the output probability of
the subcircuit specified by assuming the particular vertex is
a root. The algorithm is described by the following steps:

1. Assign each leaf node representing a unique �� the
value 
����.

2. In a breadth-first fashion, traverse the graph from the
leaf nodes toward the root.

3. As each vertex is visited, assign a probability value
computed from all immediate children probability
values and the appropriate rule based on the node’s
Boolean functionality.

4. 
��� is given as the node probability of the graph
root vertex.
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Figure 1. AND/OR Graph and Output Proba-
bilities

In the case of AND/OR graphs, only two Boolean function-
ality characteristics apply; those for the AND and the OR
operation. For the case where there are exactly two chil-
dren vertices, these are given in Equations 14 and 15 respec-
tively. For the general case where more than two children
are present, the vertex can be considered as a “tree” of the
two-child case.
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As an example of the application of this technique, consider
the AND/OR graph in Figure 1. Each vertex is labeled with
a Boolean expression representing the function represented
by the corresponding subtree. Also, each vertex is labeled
with a probability value that is actually the output probabil-
ity of the subtree.

4.2. General graphs

In general, a vertex may assume any logic function.
Thus, an arbitrary graph (not just AND/OR or max/min)
may be utilized. If the same restrictions are applied to the
general case, the only change in the algorithm is the type of
rule applied based on the vertex’s logical operator charac-
teristic.
Two paths in a circuit are reconvergent if they begin at

a common node (node A) and reconverge at another com-
mon node (node B). The paths are said to “fanout” at node
A and reconverge at node B. Circuits which do not contain
this reconvergent fanout are called tree circuits, and their
output probabilities can be calculated in linear time by the
algorithm given in [11]. If the primary input signals at each
gate are independent as they are in tree circuits, then the
output probability at each gate can be defined in terms of
the probabilities of its inputs alone. Using the relationships
described previously, the circuit output probability can be
calculated by traversing the circuit from inputs to outputs
and computing the probabilities at each intermediate gate.
This calculation is linear with respect to the number of gates
in the circuit since only a simple traversal of the circuit is

needed. Using the relationships derived in the previous sec-
tion, these exact output probabilities may then be used to
compute spectral coefficients directly.
Allowing variables in the support set to appear in more

than 1 leaf node is equivalent to the representation of a
multi-level AND/OR circuit with reconvergent fanout. The
computation of output probabilities for such representations
was considered in the work by [16] and [17]. In [16] it was
shown that the computation of the exact value of 
��� us-
ing a netlist with reconvergent fanout requires the symbolic
manipulation of a probability expressionwhich, in the worst
case, can have an exponential number of terms with respect
to the number of support variables. The work in [17] pro-
posed an approximation technique based on the notion of
supergates [12]. This technique identifies the subgraph por-
tions that contain the diverging and reconverging paths and
replaces them with a single graph supernode or supergate.
Once the supergate for a node has been identified, the

output probability for that node can be calculated, assum-
ing that the output probability of each of the inputs to the
supergate is known. Let� be the node for which the output
probability is desired and the root of a supergate. Let � be
a binary vector, ���� ��� � � � � ���, such that each bit in the
vector is an assignment to one of the� fanout inputs of the
supergate. The output probability of � given � can then
be found by using the simple tree circuit relationships and
traversing the supergate as if it had no reconvergent fanout.
This process is repeated for the �� possible � vectors, and
the output probability of � is given by the relationship in
Equation 16.

� �� 	 �
�

�


� �� 
�	 � � ��	 (16)

The value, � ��	, is the probability of a given � vector and
is found by taking the product of the probability of each bit
in the vector. This calculation is obviously exponential with
respect to the number of fanout inputs to the supergate,�.
Once the output probabilities of each supergate have been
computed in this fashion, the overall circuit output probabil-
ity can be computed by invoking the tree circuit algorithm
and treating each supergate vertex as an independent entity.

4.3. Supergate approximations

Although the method based on the use of supergates will
yield an exact output probability and is practical for super-
gates with relatively few and relatively short reconvergent
paths. Unfortunately, some netlists can contain supergates
with a large number of fanout inputs (e.g. ISCAS85 bench-
mark, �
�� contains supergates with as many as 35 fanout
inputs). Our approach is to use the notion of a supergate
coupled with a heuristic as given in [17] that approximates
a supergate based on a ”threshold” value that is related to
the depth of the reconvergent fanout paths. This distance-
based heuristic allows us utilize approximations of super-
gates resulting in reasonable computation time but with the
tradeoff of an approximated overall output probability and
ultimately, an approximated spectral coefficient value.
In this approach, each node is defined to be a distance,

�, away from the node for which the supergate is to be de-
termined. The distance from a node, � , to the supergate



node, � , is defined to be the length (number of nodes) of
the shortest path from � to � (single input buffers and in-
verters are not counted). If the threshold value is a distance,
� , then any node at a distance of � or greater is assumed to
be an independent signal, and the supergate will terminate
at no more than a distance of � from the supergate node.
The justification for this approach is that the farther a

node is from a supergate node, the more it will“mix” with
other signals and the less its effect will be on the supergate
output. It is clear that if the threshold value is zero then
all signals are considered independent and no approximate
supergates will be formed. Alternatively, if the threshold is
larger than the largest supergate, then the routine will calcu-
late the output probability exactly since all supergates will
be formed completely with none being approximated.

4.4. MVL logic networks

For logic networks with binary valued outputs and MVL
inputs, all of the above derivations hold. This class of
MVL networks are particularly important in logic synthesis
since “characteristic equations” that represent multi-output
Boolean functions are of this form.
It is also possible to formulate the case where MVL cir-

cuits contain MVL outputs, however the formulation of the
probability based computations must be generalized in or-
der to express the desired spectral coefficients properly.

5. Experimental results

An approximation method based on the use of super-
gates has been implemented and the results are compared
to the true probability values. The true values were com-
puted using a BDD representation of the benchmark cir-
cuits. This data is contained in Table 1 where the col-
umn labeled Threshold contains the depth of the logic levels
used to compute a supergate. The Average, Maximum and
Percentage Error values compare the approximated output
probabilities using the supergates to the exact values based
on BDD computations over all outputs in the benchmark
circuits. The CPU Time column reports the time in seconds
that was required for the computation of the probability of
all outputs in the given netlist when this method was imple-
mented and run on a 100 MHz Sun SPARCstation 20 with
160 MB of RAM using SunOS version 5.5.
The resulting output probability estimates can be used to

directly compute corresponding spectral coefficients using
the algebraic relationships presented in Section 3. Since the
spectral coefficients are unique for each each circuit output,
we have presented our experimental results in terms of out-
put probability values. This allows us to give statistics over
all of the circuit outputs rather than providing an huge table
with individual spectral coefficients and their correspond-
ing errors. In this table, we compute the average and max-
imum error as percentage differences from the true proba-
bility values obtained using an exact computation based on
BDD representations with those obtained from the netlist
formulation.

6. Conclusion

We can compute an exact 
��� for a CFOF (tree-circuit)
representation of � resulting in an exact value for the spec-

tral coefficients. An approximation technique was im-
plemented for the general case which includes AND/OR
graphs as a subset. This technique was implemented and the
relative error due to the approximation was computed. The
results indicated that increasing the threshold level for the
formation of the supergates did not significantly decrease
the errors in some cases and is not a pragmatic improve-
ment. It was also noted that the results were very mixed
with very good approximations resulting for some bench-
mark functions.
The results indicate that this approach is indeed very ef-

fective for some benchmarks, however large errors result
from others. The variance in error is not too large when
compared to the overall error in terms of the threshold depth
of the supergate. This indicates that the penalty in in-
creased computation time for increased threshold values is
not worthwhile. If the threshold value is allowed to continu-
ally increase, exact supergates will be formed at some point
resulting in exact spectral coefficient computations. This
fact coupled with the results of �
�� and ���
� are interest-
ing since increased threshold values (resulting in increased
CPU runtimes) actually generated approximations with in-
creased error in the output probabilities which would cause
increased error in the corresponding spectral coefficients.
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