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Abstract

An approximate equivalence checking method is developed
based on the use of partial Haar spectral diagrams (HSDs).
Partial HSDs are defined and used to represent a subset of
the Haar spectral coefficients for two functions. Due to the
uniqueness properties of the Haar transform, a necessary
condition for equivalence is that the individual coefficients
must have the same value. The probability that two func-
tions are equivalent is then computed based on the number
of observed, same-valued, Haar coefficients. The method
described here can be useful for the case where two can-
didate functions require extreme amounts of computational
resources for exact equivalence checking. For simplicity,
the technique is explained for the binary case first and ex-
tensions to Multiple Valued Logic (MVL) are shown after-
wards. Experimental results are provided to validate the
effectiveness of this approach.

1. Introduction

The equivalence checking problem for two logic func-
tions of � variables, ���� and ��� �, is addressed in this
work. Here, we assume that the correspondence between
the vectors of variables, � and � is known. Although this
problem is easily solved when � and � can be completely
represented in Binary Decision Diagram (BDD) or Multi-
Valued Decision Diagram (MDD) form, problems can arise
for some functions whose correspondingDecision Diagram
(DD) representations are too large. Thus, we are motivated
to formulate a technique for equivalence checking based on
partial representations of � and �. The incorporation of the
Haar spectral coefficients in our approach allows for fur-
ther information about the two candidate functions to be
exploited.
This problem has applications in logic synthesis and is

also of concern in verification systems where two represen-
tations of a function are compared [2, 3, 10, 13]. Two ab-
stractions of a circuit resulting from different optimization
phases of a logic synthesis system (e.g. ���� and ��� ��
may need to be checked to determine if ���� � ��� �.
This is applicable for methods that express state machines
as BDDs or MDDs as well as for the verification of purely
combinational logic.
In many cases, this problem can be easily solved by

building a BDD [1, 4] or an MDD [12], respectively, rep-
resenting � and � according to a common variable order.
When this is possible, the determination of equivalence
is accomplished by simply comparing two pointer values.
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However, some classes of functions result in DDs with an
exponential number of vertices regardless of the variable or-
der.
The technique described here allows for the equivalence

checking problem to be formulated in terms of a subset of
Haar spectral coefficients [7, 8]. Given a set of Haar spectral
coefficients, we examine the probability that ���� � ��� �.
This allows the equivalence checking problem to be itera-
tively refined in terms of possible error by accounting for
the existence of more matching coefficients. Thus, tech-
niques that provide subsets of Haar spectral coefficients
[5, 6, 14] for representations of � and � can be used for
non-tautology checking of the � � � function. A similar
approach using an arithmetic transform and a decision dia-
gram structure known as an Interleaved BDD (IBDD) has
also been proposed [9]. The technique described here dif-
fers due to the fact that we utilize partial HSDs versus IB-
DDs allowing us to make use of the multi-resolution, modi-
fied Haar wavelet transform [7, 8] rather than the arithmetic
transform (note the term ‘modified’ is used to indicate that
the basis functions are normalized as is described in [8]).
This allows for the advantage of partially representing the
functions under consideration and to obtain the Haar spec-
tral coefficients directly from a traversal of the HSD without
performing additional spectral computations. Furthermore,
the multi-resolution nature of the Haar transform offers ad-
vantages in the probability calculations since higher ordered
coefficients can represent disjoint portions of the function of
interest.
In this approach, we adapt the method reported in [6] that

allows the Haar spectral coefficients to be represented as a
HSD with the concept of the partial BDD as given in [11].
This allows for a partial function representation to be used
for quickly computing subsets of Haar spectral coefficients
avoiding problems that may arise for functions that result
in very large DDs when represented in their fully speci-
fied form. Once the subsets of Haar spectral coefficients
are found to be equivalent for two candidate functions, �
and �, we compute the probability that � and � are equiva-
lent. If any two same-ordered Haar spectral coefficients are
found that have different values, we can declare that � �� �
and halt the process.
A discussion of the background of partial decision dia-

grams and HSDs is reviewed followed by a section on the
mathematical basis of our technique. The mathematical ba-
sis includes a review of relevant aspects of the Haar trans-
form and contains the derivations for the probability com-
putations followed by a simple binary example. Then exten-
sion to MVL is discussed. We present the results of some
preliminary experiments that indicate the effectiveness of
using matching Haar coefficients for statistical verification.
Finally, a section containing conclusions is given.
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Figure 1. Complete BDD
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Figure 2. First incomplete BDD

2. Decision diagrams

For simplicity of the presentation, without loss of gen-
erality we restrict ourselves to the binary case first. Exten-
sions to the MVL case are straightforward by considering
MDDs instead of BDDs.
Boolean variables can assume values from � �� ��� ��.

In the following, we consider Boolean functions � �
�
� � �

� over the variables specified by the vector
� � ���� � � � � ���. As is well-known, each Boolean func-
tion � � �� � � can be represented by a Binary Decision
Diagram (BDD), which is a directed acyclic graph where
a Shannon decomposition is carried out in each node. In
the following discussion, only reduced, ordered BDDs as
defined in [1] are considered and for briefness these graphs
are referred to as BDDs.

2.1. Incomplete construction

As long as symbolic simulation can be carried out com-
pletely, the verification process succeeds. But problems
arise if BDDs do not fit in the main memory of a computer.
This might be due to several reasons. The first (and sim-
plest) reason is that a “bad” variable ordering has been cho-
sen. In the past, several techniques have been proposed for
BDD minimization (for an overview see [4]). Furthermore,
the ordering in which the operands are combined during the
creation of a BDD is very important.
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Figure 4. Non-terminal in HSD

2.2. Haar spectral diagrams

In [6], a directed graph referred to as aHaar Spectral Di-
agram (HSD) is defined that represents the Haar spectrum
of a Boolean function. HSDs are isomorphic to BDDs (with
the exception that all BDD terminal vertices are “mapped”
to a common HSD terminal vertex). This allows the BDD
representation of a function to double as a representation of
the Haar spectrum with extra memory storage required only
in the form of an additional edge-attribute value. The ad-
ditional storage is needed because all 1-edges in the HSD
have a Haar spectral coefficient as an attribute.
The enabling observation for defining the HSD is that

the Haar transformation matrix can be expressed in terms
of Kronecker products if the natural order of the coefficients
is permuted. The �-dimensional transformation matrix that
produces the coefficients in the permuted order, 	�, can be
represented as a sum of matrices denoted as 
� and �� as
given in Equation 1.

	� � 
� ��� (1)

By using this observation and viewing a non-terminal node
of a BDD as pointing to two disjoint subfunctions, we can
represent the spectrum of the subfunctions (the subfunction
spectra are actually scaled by a constant in this case) as two
different portions of the entire vector due to 	�. Figure
4 is similar to the diagram originally appearing in [6] and
illustrates this relationship. Using these observations, it is
possible to represent the Haar spectrum of a function by
annotating all 1-edges of the graph (and the pointer to the
initial node) with Haar spectral coefficients.

3. Mathematical basis and derivation

In this section, the notation used throughout the remain-
der of the paper is defined and relations between probabilis-
tic events and Haar spectral coefficients are derived.



3.1. Notation

The following notation is used:
� ����� represents the individual 

�� Haar spectral co-

efficient of the Boolean function, ����, where�� �
���� ��� � � � � ������.

� � �
	 is the discrete probability that some event, 
,
occurs and � �� 	 is the output probability of a Boolean
function, � , which is the likelihood that � � � given
the distribution of the dependent variables in�.

� �� is the event that ����� � �����, that is, the 
��

Haar spectral coefficients of � and � are equal in
value.

� � is the event that ���� � ��� �, that is, the func-
tions � and � are functionally equivalent.

3.2. Haar spectrum

This section will summarize the ideas about how out-
put probabilities can be used to compute the modified Haar
spectral coefficients directly as given in [14]. In the ap-
proach of [14], it is shown that a “composite function”,
��, may be created in BDD form and that through BDD
based manipulations of ��, a Haar spectral coefficient may
be computed.
In order to determine the total number of matching val-

ues between � and a row-function, it is necessary to deter-
mine when both simultaneously evaluate to a logic-0 level
as well as a logic-1 level. We denote the percentage of the
total number of matches of logic-0 between some � and
a row-function as ��� and likewise for the logic-1 levels,
���. With this viewpoint, the composite �� expressions can
be constructed that utilize co-factors of the function to be
transformed to restrict the range space and to dictate where
the relative location of the valid output of the �� function
occurs in the 
� row vector components.
Given these observations, we see that the ��� modified

Haar spectral coefficient can be calculated as:

�� � 
����
���� � ����� �	 (2)

Where � is the dimension of the range space of the function
to be transformed, � , and  is the dimension of the range
space of a particular Shannon co-factor of � . The result
of Equation 2 reduces the computation of a single modified
Haar spectral coefficient to that of findingmatching percent-
ages of identical similar outputs of � and a transformation
matrix row-function. This can be accomplished by applying
the output probability computation algorithm to a BDD rep-
resentation of the �� functions. Using the result of Baye’s
theorem, the co-factor output probabilities can be computed
by ANDing various cubes with the original function � and
dividing the result by the output probability of the cube it-
self, which is a constant.

Example 1 The divisor for the ��� and ��� expressions,
� �����	 is a constant equal to

�
�� and thus may be factored

out resulting in Equation 2 being rewritten as:

�� � 
����
������� � ����� �	 (3)

Since the Boolean expressions � 	�� 	�� 	�� and � 	�� 	�� 	��
are disjoint, the overall probability may be computed as the

sum of the individual probabilities, or alternatively, as the
probability of the inclusive-OR of the functions. This is true
because it is easy to see that � �� � �	 � � ��	 � � ��	 for �
and � that are covered by disjoint cube sets. Combining the
Boolean arguments and simplifying:

� 	 �� 	 �� 	 �� � � 	 �� 	 �� 	 �� � ������� � �� (4)

Therefore, we can rewrite Equation 3 as:

�� � 
����
���� �������� � ��	� �	 (5)

The manipulations used in Example 1 may be applied
to all of the modified Haar spectrum coefficients. This
leads to the interesting result that the modified Haar co-
efficients depend on the set of � � � Boolean relations,
�� � �� � � ��� � � ��� 	 	 	 � � � ���, which describe the
equivalence of a particular dependent variable, ��, and the
function to be transformed, � . We refer to this set of func-
tions as the characteristic equivalence relations. Higher
ordered coefficients are based on disjoint partitions of the
range space of these equivalence functions. The partitioning
is accomplished by ANDing the equivalence functions with
various cubes of other dependent variables of � referred to
as the characteristic cubes. The specific co-factor that ��
is computed from is given by the inherent order of the de-
pendent variables describing � .

3.3. Probabilistic equivalence checking

By the definition of event � and the assumption that all
functions of � variables are equally likely to arise (uniform
distribution), it is easy to see that:

� ��	 �
�


��
(6)

Since theModified Haar spectrum for a given fully specified
Boolean function is unique [8], � ���
�	 � � also holds.
This may be generalized for the occurrence of any subset of
� events, ����, to that shown in Equation 7.

� �

	�
���

�
�	 � � (7)

Also we see that � ���	 is the ratio of all possible functions
that yield the coefficient, �����, divided by the total pop-
ulation of 
�

�

. We define a counting function, �����, that
is integer valued and yields the number of fully specified
Boolean functions for which the �� Haar spectral coeffi-
cient is��. Thus we can express this relationship as shown
in Equation 8.

� ���	 �
�����


��
(8)

From probability theory, we know that Equation 9 holds.

� ��
�

��	 � � ���
�	� ��	 � � ��
��	� ���	 (9)

Using the relationships in Equations 9, 7 and 6, we see that
the conditional probability becomes:

� ��
��	 �
� ��	

� ���	
�

�

�����
(10)



In general, for any subset of events, ����, we have the ex-
pression as given in Equation 11.

� ��

�	

��� ��	 �

 ��
�

�
�

�

���
��	



 �
�

�

���
��


�

�
�


��

��
�

� �
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��� ��	

�
�
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��� �
�	

��� ��	
(11)

Equation 11 is the governing expression for the prob-
abilistic equivalence checking technique described in this
paper. We see that given a subset of matching Haar spec-
tral coefficients for two functions, � and �, (or alterna-
tively, a subset of events, ����), the probability that � and
� are indeed equivalent may be computed. By obtaining
the information that a new event �� has occurred, we may
update the value � �

�	

��� ��	 thereby increasing the value
� ��


�	

��� ��	.

3.4. Relation of Haar coefficients to probabilistic
events

This section will derive the relationship between the
probabilistic events, ��, and their dependence upon the cor-
responding Haar spectral coefficients, ����� and �����.
The Haar spectral coefficients may be obtained through the
use of any efficient method such as those in [5, 6, 14].
For this probabilistic scheme to be practically useful, we

need to determine the joint distribution, � �
������
� ��	, as

a function of the corresponding subset of Haar spectral co-
efficients. We first consider the simple case of determining
a function for � ���	 that depends on the single Haar spec-
tral coefficient, ��. For a single matching coefficient, we
are interested in finding, � ��
��	. Since it is known that
� �� ���	 � � ���	� ��
��	, we can express the conditional
probability as given in Equation 12 since � ���	 �� �.

� ��
��	 �
� �� � ��	

� ���	
(12)

The numerator of Equation 12 is the percentage of func-
tions � and � that have a common Haar coefficient, ��.
Since all equivalent functions have the same Haar spec-
tra by the uniqueness property of the transform, we see
that � �� � ��	 � ��
�

�

. The denominator of Equation
12 is the percentage of functions that have a common ��
value. In general, many different functions can have com-
mon�� values. For example, 6 out of 16 possible functions
of � � 
 variables have �� � �. Based on the defini-
tion of the counting function, �����, we can then express
� ���	 � ������


�� and Equation 12 is rewritten as Equa-
tion 13.

� ��
��	 �
�

�����
(13)

The relationship between the characteristic equivalence
functions and the Haar spectral coefficients is established
in the following results.

Lemma 1 Two Boolean functions, ����� ��� � � � � ��� and
����� ��� � � � � ��� can not be equivalent if it is true that
� �� � ��	 �� � �� � ��	.

Corollary 1 Two co-factors about the same cube of � � ��
and � � �� have identical output probabilities.

Table 1. All Possible Boolean Functions for
� � 
 and their Haar Spectra

Function, � �� �� �� ��
0 0 0 0 4 0 0 0
0 0 0 1 2 2 0 2
0 0 1 0 2 2 0 -2
0 0 1 1 0 4 0 0
0 1 0 0 2 -2 2 0
0 1 0 1 0 0 2 2
0 1 1 0 0 0 2 -2
0 1 1 1 -2 2 2 0
1 0 0 0 2 -2 -2 0
1 0 0 1 0 0 -2 2
1 0 1 0 0 0 -2 -2
1 0 1 1 -2 2 -2 0
1 1 0 0 0 -4 0 0
1 1 0 1 -2 -2 0 2
1 1 1 0 -2 -2 0 -2
1 1 1 1 -4 0 0 0

Not all events, ����, are statistically independent. As an
example, �� and �� are dependent since an intersection
of the co-factors of the characteristic equivalence functions
of �� and �� exists and is non-null. In order to find the
value � ���

�
��	, we generalize our definition of the count-

ing function to ����� ��� which will denote the number of
possible Boolean functions that may have both �� and ��
as Haar spectral coefficients. Given this quantity, we may
then express the desired joint probability as given in Equa-
tion 14.

� ���
�

��	 �
����� ���


��
(14)

In general, we have Equation 15 resulting in Equation 16.

� �

	�
���

��	 �
����� ����� � � � � �	�


��
(15)

� ��


	�
���

��	 �
�


��� �
�	

��� ��	
�

�

����� ����� � � � � �	�

(16)
To compute this joint probability distribution, we must have
some information concerning the dependent relationship
between individual ����� and ����� values.

4. Example calculation

As an example, consider Table 1 which contains the Haar
spectral vectors for all possible functions of � � 
 vari-
ables. We will assume that we are dealing with two func-
tions, ����� ��� and ����� ��� such that � and � are equiva-
lent to the function represented in the third row of Table 1.
Thus, the corresponding Haar spectral vector is �� ��� �

�� ��� � ���� ��� ��� ��� � �
� 
� ���
�. Figure 5
contains the Karnaugh maps and corresponding partial and
complete BDDs for the function � (or �). Note that the
BDDs are also interpreted as HSDs with the �� ����� hav-
ing an attribute equal to a Haar spectral coefficient value.
The coefficient attributes are shown on the HSD/BDDs with
an “*” indicating that the exact coefficient could not be
computed. From the center partial HSD/BDD, we see that
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�� � � and from the rightmost partial HSD/BDD we see
that�� � �
.
From the partial BDDs, it is seen that only two Haar

spectral coefficients can be obtained, �� and ��. This is
due to the fact that �� and �� require a completely spec-
ified HSD since the corresponding transform matrix rows
have no 0-valued entries. For more practical cases with
much larger values of �, we obtain a larger fraction of the
total number of Haar coefficients than the 50% obtained
from this small example.
Using the previously derived equations, we have

����� � �, ����� � � and ����� ��� � 
. These values
result in the probability values � ��
��	 �

�
� , � ��
��	 �

�
�

and � ��
��� � ���	 � �
� . Furthermore, we note that

� ��� � ��	 � � ���	� ���	 � � �� ��
�
� � � �

� in this case
since �� and �� are statistically independent. The indepen-
dence arose from the fact that the two partial BDDs repre-
sent disjoint segments of the range space of the function. If
this is ensured during the construction of all partial BDDs,
the joint computation of ����� ��� may be avoided and
� ��
��� � ���	 may be computed as given in Equation 17.

� ��
��� � ���	 �
�

���
 ������


�
�


��� ���	� ���	
�

�

� �
�

�
�



(17)

This result shows that there are only 2 possible functions
out of the population of 
�

�

� � that have �� � � and
�� � �
.

5. Extension to MVL networks

The development of the technique has been applied to
binary valued logic functions thus far for simplicity in ex-
planation. However these methods are easily extended to
MVL through the use of partial Multi-valued Decision Di-
agrams (MDDs) [12] and the use of the Haar transform for
discrete valued functions.

The formulas for computation of the equivalence proba-
bilities change in that the appearance of the term 
� is re-
placed by �� for �-valued logic.

6. Experimental results

Some preliminary experimentswere formulated to inves-
tigate the effectiveness of using Haar spectral coefficients
for equivalence checking. Our initial experiments were run
to observe the average number of Haar coefficients needed
before a mismatch in value was found for two functions
known to be slightly different. These results also give an
indication of how different errors between two versions of
a circuit affect the number of required Haar coefficients for
a mismatch to be found.
The initial set-up for this experiment involved choosing a

single output from a binary combinational benchmark func-
tion and randomly inserting a single inverter in the netlist.
Next, HSDs were formed for the circuit with the inverter
and without. To ensure the two HSDs did indeed repre-
sent different functions, a graphical equivalence checker
was used. The experiment consisted of randomly extracting
pairs of same-order Haar coefficients from the two repre-
sentations until two were found that differed in value. For
each given circuit error (that is, each given inverter inser-
tion) 1024 trials were made.
Table 2 contains the results for 10 benchmark functions,

each with 10 different inverter errors. The column labeled
Inp contains the number of distinct variables that the func-
tion depends on and the row labeled avg is the average num-
ber of Haar coefficients (over the 1024 trials) that were re-
quired before a mismatch occurred. Likewise, the row la-
beled dev contains the standard deviation of the number
of required Haar coefficients. It is apparent that the stan-
dard deviation is approximately the same value as the mean
in all cases. This is a result of the fact that the subset of
Haar coefficients was chosen randomlywith the assumption
that each was equally likely for two designs that are known
to differ (ie., a geometric distribution resulted in terms of
the average number of coefficients before a mismatch oc-
curred). Although this observation is largely an artifact of
our experimental setup, another result is the large range in
value of the required number of coefficients in order to de-
tect the differences in the two circuits. As an example, we
see that the benchmark frg1 has differences in the averages
that are as great as four orders of magnitude (eg. 70.1 versus
104225.8).
The data presented in Table 3 was computed in order to

compare the Haar coefficient matching scheme to random
simulations. These results compare the average number of
required Haar coefficients to the number of random simu-
lations that must be performed before a difference in the
two circuits is detected. The simulations were performed
using equally likely, randomly generated test vectors. The
averages were formed over the 10 circuit modifications de-
scribed above with 1024 trials each. In terms of comparing
just the number of simulations to required Haar coefficients,
we see that each technique is approximately equal since of
the 21 benchmark functions in Table 3, 13 required fewer
coefficients than random simulations.

7. Conclusion

A method for probabilistically determining the equiva-
lence of two functions has been developed and presented.
We have combined the use of two notions; partial DDs [11]
and the computation of Haar spectral coefficients using a
BDD as a HSD [6]. The probabilistic framework has been



Table 2. Effect of Different Errors on Haar Coefficient Matching
Circuit Inp Inverter Error (10 Random Trials)
c432 36 avg 58.0 24.8 474.1 15.9 58.3 9.6 8.2 8.4 97.5 56.4

dev 61.3 24.5 471.2 15.4 55.3 9.2 8.2 8.4 97.5 56.4
c499 41 avg 69.3 65.3 61.4 68.3 66.1 165.6 59.2 59.5 61.4 66.4

dev 70.4 66.6 60.1 66.9 65.3 163.4 58.9 58.9 60.1 61.1
c880 42 avg 669.3 393.4 36.6 160.7 768.6 134.7 69.4 75.5 46.8 74.2

dev 681.1 385.9 36.7 161.4 763.9 125.9 68.3 72.1 46.3 72.5
c2670 78 avg 29.9 9.2 10.5 128.1 7.5 62.8 9.7 5.5 18.3 117.6

dev 28.5 9.3 10.0 129.0 7.2 60.8 9.0 5.0 18.2 110.7
cm151a 12 avg 5.3 16.1 6.4 6.5 15.9 372.5 5.4 5.3 110.3 4.2

dev 4.7 16.3 5.9 6.1 15.8 403.2 5.1 4.7 109.0 3.5
cu 13 avg 22.5 16.1 48.5 80.2 162.6 253.3 182.1 30.7 225.8 11.1

dev 22.2 15.9 47.6 85.0 162.1 248.6 190.1 31.2 246.0 10.2
misex3 14 avg 326.6 28.1 579.5 337.1 303.1 234.0 47.0 54.5 131.4 79.4

dev 336.0 27.1 576.0 324.3 287.3 243.1 45.9 54.4 127.2 74.4
frg1 25 avg 39866.3 70.1 471.6 104225.8 1709.9 989.2 3025.0 12890.1 38287.1 1956.8

dev 38715.4 70.9 456.9 104031.3 1740.4 1018.6 2954.8 12954.8 38180.4 1992.8
too large 36 avg 636.5 2559.8 104685.6 1169.4 640.6 1302.6 614.6 738.6 711.5 7888.4

dev 616.7 2667.7 103407.8 1176.7 609.8 1272.8 611.5 731.0 658.5 7798.7
t481 16 avg 810.6 503.9 415.2 53.3 3.1 1164.9 23.0 383.2 646.1 427.1

dev 760.4 508.1 425.4 52.0 2.6 1088.7 22.4 364.2 674.5 440.8

Table 3. Average Number of Haar Coefficients
Before a Mismatch Occurs

Circuit Inp Avg Number Avg Number
Coefficients Simulations

9sym-hdl 9 2.7 5.9
c2670.329 78 39.9 29.1
c432.432GAT 36 81.1 43.2
c499.OD31 41 74.2 252.4
c880.880GAT 42 242.9 119.1
cc.l0 7 16.0 3.8
cm150a 21 7373.9 55.1
cm151a.m 12 54.8 22.1
cm162a.r 11 33.5 27.3
cu.v 13 103.3 223.5
dalu.O7 57 3133.2 3584.3
frg1.d0 25 20349.2 26958.6
misex3.l2 14 212.1 1586.0
mux 21 29810.1 93.1
pcler8.q0 13 641.4 1567.7
pm1.c0 9 25.4 90.5
rd53-hdl.out�2� 5 6.8 9.8
t481 16 443.0 2214.2
too large.n0 36 12094.8 94946.1
x2.p 10 15.9 31.3
z4ml.24 7 7.4 32.1

derived for the equivalence checking problem. An exten-
sion to MVL has been outlined.
Preliminary experimental results indicate that this ap-

proach may be a viable alternative for equivalence checking
of functions that are difficult to represent completely. Our
experiments also indicate that this approach may be better
in terms of required computational resources as compared
to a repeated simulation approach.
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