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Abstract

Mized-radiz “Multiple Valued Logic” (MVL) functions are
assumed to be finite and discrete-valued and depend on a
finite-valued variable support set {z;,...,x;} such that x; is
gi-valued and x; is q;j-valued with q; # q;. The spectra of
such MVL functions is of interest to circuit designers and
automated design tool researchers and developers. Spectral
transforms are described that are applicable to such func-
tions over the elementary additive (mod(p)) Abelian groups.
Three formulation of such transforms are described here; a
linear transformation matriz derived from a group charac-
ter table, a Kronecker-based expansion allowing for a ‘fast’
transform algorithm, and a Cayley graph spectrum compu-
tation. It is shown that a particular spectral transformation
of a discrete mized-radiz function over Zg is equivalent to
that over Zo X Zg within a permutation. Also, it is shown
that a Cayley graph may be formed over Zg with a generator
corresponding to the discrete function of interest.

1 Introduction

It has been shown that the Walsh spectrum of a binary-
valued function f(x1,%2,...,%,) may be computed as the
spectrum of a Cayley graph over the elementary additive
Abelian group Zg2= using a generator based on f [3]. These
results were also generalized to a technique to compute the
Chrestenson spectrum of finite discrete-valued functions in
[13]. In general, these techniques can be proven to yield these
spectra through the use of group character theory as de-
scribed in [2] where the resulting spectral values are shown to
be equivalent to inner products of the Cayley graph color vec-
tors and the rows of the group character tables. If a proper
generator is used in the formation of the Cayley graph, the
corresponding color graph vector can be defined such that it
is equivalent to a discrete function truth vector. Because the
rows of the Walsh and Chrestenson transformation matrices
are defined as the rows of the group character tables describ-
ing the elementary additive Abelian group [8], the spectrum
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of the Cayley color graph is equivalent to the spectrum of
the discrete function.

The results in [3, 13] considered the spectra of p-
valued functions with variable support sets consisting of g-
valued variables. Here the subject of computing the spec-
tra of p-valued functions with support sets of variables
{x1,22,...,2,} are considered such that each variable z; is
gi-valued and ¢; # g; for various pairs of (4,j). Here, such
functions are referred to as mized-radiz since the support
variables are x; € Z; for different values of ¢. It is noted that
the case of the function f being p-valued is not as of much
interest as the case of different-valued variables in the sup-
port set since for p = 2 a Cayley graph results and for p > 2
a Cayley color graph results which can simply be considered
as a disjoint set of Cayley graphs.

In the remainder of this paper, mixed-radix transforma-
tions are considered and reviewed using transformation ma-
trices formed as Kronecker products of elementary Walsh
and Chrestenson matrices. It is also demonstrated that such
transforms may be specified as a group character table over
an appropriately ordered group and that the Cayley graph
technique as described in [3, 13] may be generalized for the
mixed-radix case.

2 Transformations of MVL Functions Over
an Additive Abelian Group

The simplest case of a mixed-radix function where ¢; > 2
is the binary-valued function f(z;,z>) where ¢; = 2 and
g2 = 3. A straight forward extension of the techniques de-
scribed in [3, 13] is to encode each minterm describing f
as a unique element in Zg and then to formulate the group
character table for the additive Abelian group mod(6) and
utilize this table as a transformation matrix. This involves
mapping each minterm to one of six roots of unity in the
set {eﬂ”'%,eﬂ“'%,ej2”'%,ej2”'%,ej2”'%,ej2“'%}. A graphical
depiction of these points is shown in Figure 1. An in-depth
survey of the definition of discrete transforms using finite
groups is available in [10]. Such transforms have been con-
sidered in the past [1, 8] and referred to as the generalized
transform or generalized Fourier transform; however, the for-
mulation and relationship of these discrete function spectra



to graph spectra offers a new viewpoint. It is noted that the
formulation of the generalized Fourier transform typically in-
cludes the use of scaling constants referred to as “twiddling”
factors. These are not included in the following without loss
of generality.

Figure 1. Diagram of Six Roots of Unity

A group character table is written with rows correspond-
ing to irreducible representations and columns corresponding
to conjugacy classes [6]. Traditionally the rows are labeled
with x; which represent the irreducible representations as is
done here. Each column (i.e. the conjugacy classes) is la-
beled with the notation as shown in Table 1. The purpose
for this notation should become apparent later in this section
of the paper.

Table 1. Group Character Table Over Zg

Zo Ty X2 €T3 T4 Z5
Xo | @o ap Qo ap Qo ag
X1 | @ —a2 a —Gy G —a
X2 | ao a1 a2 ap a1 a2
X3 | @ —ap G —Gop Gop —ao
X4 | Go a2 a1 g a2 ai
X5 | @p —a1 Gz —Gp G —G2

Using the results of [2], a transformation matrix may be
formulated using the rows of the group character table as
shown in Table 1 as rows in a transformation matrix. This
can be accomplished using the so-called “R-encoding” where
the transformation matrix contains complex-valued elements
or with “S-encoding” where both the transformation ma-
trix and the function truth vector are encoded into complex
values [13]. In both cases, a linear transformation, vector-
matrix product may be formulated and computed.

2.1 Kronecker Product Formulation

An alternative way of computing the transformation ma-
trix for a function f(z1,z2) where z; € Zy and zy € Zg
is to utilize the Kronecker (or tensor) product [7] to com-
bine the transformation matrices for the elementary additive

Abelian group mod(2) and the elementary additive Abelian
group mod(3) (e.g. note that these are also known as the
Walsh and Chrestenson transformation matrices of functions
of one variable). Equation 1 illustrates the computation of
the transformation matrix 7" where ag = ejZ’T'%, a; = eI2m %
and as = €275 .

1 1 ap Gap Qo
=1 1|®|w a o (1
ap G2 Qi

Carrying out the calculation in Equation 1, the transfor-
mation matrix 7" becomes that as shown in Equation 2.

ap Go Qo ao ao ao

ap Qi a9 Qo a1 as
g G2 a1 [04] a2 a1
T= (2)
g Gp ap —Gap —Gp —ao
ap ap a9 —ap —ai —as
o G2 a1 —Gp —a2 —ai

It is easily shown that the transformation matrix 7' is
unique as follows.

Lemma 1 The inverse of matrix T exists and it is orthogo-

nal (with a scale factor of zn%3n .

Proof: In Equation 1, T is formed as the Kronecker
product of the 2 x 2 Walsh transformation matrix W and
the 3 x 3 Chrestenson transformation matrix C'. Therefore
the inverse of T is given as shown.

T'=Weo)t=wltec™! (3)

It is known that the inverses of W and C are given as
follows.

1

IV_l _ > %% (4)
1

o7l =50 (5)

Therefore T! is given as shown in Equation 6.

1
n,3n

T = (W e ) (6)

O

Several other properties are noted with respect to the ma-
trix 7" and are given in the following lemmas.

Lemma 2 A linear transformation matrix formed using the
rows and columns of the group character table given in Table
1 may is identical to matriz T under a set of row and column
permutations.

Proof: Let G represent the matrix formed using the rows
and columns of the group character table given in Table 1.
Equation 7 holds where U; and U, are elementary permuta-
tion matrices.



G =U,TU, (7)
The matrices U; and U, are given in Equations 8 and 9.

100000
000010
001000

=109 001 0 0 (8)
010000

(00 00 0 1|
'100000}
000001
010000

2=10 001 0 0 9)

001000
(00 00 1 0]

O

This technique is computationally advantageous to the
other methods presented here since the decomposition of the
transformation matrix into a Kronecker product of smaller
dimensioned matrices allows for “fast-transform” techniques
to be applied [5, 11]. As has been done traditionally, a butter-
fly diagram may be used to characterize the “fast-transform”.
A butterfly diagram is a signal flow graph where vertices rep-
resent summation operations and edges carry multiplicative
weights. The butterfly diagram corresponding to Equation
1 is shown in Figure 2.

Figure 2. Butterfly Diagram of Fast Transform

Alternatively, Equation 1 may be rearranged using the
permutation operations described in Lemma 2. When the
permutation matrices are not included, the same spectral
vector components result but in a different order. Equation
10 contains the relationship describing the Kronecker expan-
sion of the transformation matrix in this form and Figure 3
is a an illustration of the corresponding butterfly diagram.

apg ap Qo 1 1
T = apg a1 a2 ® |: 1 —1 j| (10)
Qg G2 Qi

Figure 3. Alternative Butterfly Diagram of Fast
Transform

Additionally such ”fast-transform” methods may be im-
plemented in a graphical manner using decision diagram data
structures resulting in further savings [12, 14]. Although the
minimum number of required operations is documented and
has been studied in detail [4, 9], decision diagrams can of-
fer an advantage by avoiding the cases of addition with a
constant-0 and multiplication by a constant-1 since these op-
erations are implicit due to the reduction rules of the data
structures.

2.2 Cayley Graph Spectrum Formulation

To generalize the methods described in [3] for the binary-
valued case and [13] for the discrete p-valued case where p >
2, a Cayley graph must be specified with an appropriate
generator over the group Zgg.q;-....qn_, Where each variable
x; is g;-valued.

The following definitions are used:

Definition 1 A Cayley graph represents an algebraic group
G = {gi,*} and is denoted as Cay(V,E) where V is the
vertex set and E is the edge set. Each v; € V uniquely cor-
responds to the group element g;. Fach e; € E corresponds
to a colored edge with some associated color g;. The set of
edges E is a subset of ordered pairs of elements in V that
are generated by some binary operation(s) over elements in
G. This binary operator need not be the same as the group
product operator *.

In [3, 13] Cayley graphs were formed representing the el-
ementary additive Abelian groups with generators that were
the evaluation of some discrete function of the same group.
The function argument was formulated as the digit-by-digit
modulo-p difference of all possible minterms. For the binary
case, the generator function yielding the adjacency matrix
edge colors is a;; = f(m; @ m; ) for all possible pairs of func-
tion domain values (m;,m;). Likewise for the non-binary
p-valued case, adjacency matrix edge colors are generated as



a;j = f(m; ©p, mj). ©p denotes the digit-by-digit difference
of two minterms modulo-p.

The generalization to the mixed-radix case is quite nat-
ural. If each minterm is composed of various polarities of
n different ¢-valued variables, then argument of the gen-
erator function f is formed as a concatenation of (z;1 S,
zj1), (Ti2 OS¢, j2), ..+, (Tin Sy, Tjn). This operation will be
denoted by the symbol & with no subscript, but with the un-
derstanding that it is applied digit-by-digit and modulo-g;.
In this case the generator is given in Equation 11.

aij = f(mi © m;) (11)
2.3 Example Spectrum Computation

Using Equation 11, the adjacency matrix for the Cayley
graph over Zg is given in Equation 12.

(5) F(4)
T
@ ra) | @2
0 )
1

e

(1) f(0)

As an example consider the mixed-radix function de-
scribed in Table 2.

Table 2. Truth-table of Example Function for Com-
putation of Spectrum

1 xo | X | Mapping | f
0 01O 0 0
0 1|1 1 1
0 212 2 1
1 013 3 0
1 114 4 1
1 2|5 5 0

The corresponding adjacency matrix is given as shown by
Equation 13 and an illustration of the Cayley graph is shown
in Figure 4.

011001
101100
110010

4 =1001011 (13)
10010 1
010110

The characteristic equation of A is C(A\) = A% — 6A* —
10A3 +6A+9. Solving for the roots of C'()), the spectrum of
f is found to be \; = {ao, 3aop, a1, as, 2a; + a2, a1 +2as}. It is
easily verified that the same set of spectral coefficients result
when the truth vector of f is multiplied with the transfor-
mation matrix given in Equation 2 or the one formed from
Table 1.

VO
VS

Figure 4. Cayley Graph of Example Function

3 Conclusion

It has been shown that a particular spectral transforma-
tion of a discrete mixed-radix function over Zg is equivalent
to that over Zs x Zg within a permutation. Also, it is shown
that a Cayley graph may be formed over Zg with a gener-
ator corresponding to the discrete function of interest. The
spectrum of the Cayley graph is equivalent to the spectrum
of the discrete mixed-radix function.
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