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Abstract 

The data structure referred to as quantum multiple-
valued decision diagrams (QMDD) is used to efficiently 
represent the unitary matrices describing reversible and 
quantum circuits.  This paper investigates the conditions 
that cause skipped variables to appear in the QMDD of 
some binary and ternary quantum circuits. We have found 
that a unitary matrix that produces a skipped variable in 
a QMDD is likely to cause a specific anomaly when it is 
decomposed into a cascade of two-level unitary matrices 
by the Beck-Zeilinger-Bernstein-Bertani algorithm.  

1. INTRODUCTION 
The potential exponential speed up for some 

intractable problems such as prime factoring [1] and 
searching [2] promoted extensive research interest in 
quantum computing.   Quantum circuits are logically and 
physically reversible and are fully described by a unitary 
transformation matrix. Interest in unitary matrices as 
building blocks for quantum circuits creates the need for 
efficient metrics and analysis methods [3]. Earlier work 
by Beck, Zeilinger, Bernstein, and Bertani shows that any 
unitary matrix may be synthesized as a quantum circuit in 
the laboratory using beam splitters, thus establishing the 
beam splitter as a universal gate [4].  Large numbers of 
quantum, binary and MVL gates have been developed in 
the hope of achieving efficient synthesis of quantum 
circuits [5].  Various CAD tools have been developed to 
assist these efforts, including the Quantum Information 
Decision Diagram (QuIDD) [6] and the Quantum 
Multiple-valued Decision Diagrams (QMDD)[7] 
packages. In earlier work, we have used QMDD for 
simulation, synthesis, and investigation of redundancy in 
reversible circuits [8,9,10].  

A crucial issue for quantum circuit simulation is 
whether we should constrain the control lines to take only 
the “binary” values |0! and |1! or to allow the control lines 
the freedom of using superposition values.  In their paper 
on quantum synthesis using the quantum decision 
diagram (QDD) structure, Abdollahi and Pedram dubbed 
this issue as the binary control signal constraint [11].  
They pointed out that researchers often adopt this 
constraint in quantum logic synthesis without explicit 
notice. In practice, various quantum circuits (components 
of the Grover search [2], fault tolerance stabilizer circuits 

[12], etc.) allow the control inputs to be fed with values in 
superposition [11].   We found that such quantum circuits 
may cause skipped variables in QMDD-based simulations 
[8]. Skipped variables refer to the existence of a path in a 
QMDD where a particular variable does not appear when 
compared to the sequence of variables in other QMDD 
paths.  Skipped variables are important when the QMDD 
(or other ordered decision diagram structures) are 
manipulated or used for the purpose of quantum circuit 
synthesis.  For this reason, it is important to understand 
why variables are skipped and what characteristics the 
underlying circuits must have that result in skipped 
variables.  In this paper we investigate skipped variables 
in binary and ternary QMDD, and we found a correlating 
property that relates the appearance of skipped variable in 
a quantum circuit with a certain anomaly observed during 
the BZBB decomposition of the circuit into beam 
splitters. 

The paper is organized as follows. In Section 2 we 
discuss binary and MVL reversible circuits, the QMDD 
data structure, and we detail the BZBB decomposition 
process. Theoretical analysis of skipped variables in 
binary and ternary circuits is outlined in Section 3.  In 
Section 4 we discuss our preliminary experimental results 
in comparing quantum circuits with skipped variables to 
their corresponding BZBB decompositions. Conclusions 
and suggestions for further research appear in Section 5. 

 
2. PRELIMINARIES 

2.1. Reversible Circuits  

Definition 1: A binary or MVL gate/circuit is logically 
reversible if it maps each input pattern to a unique output 
pattern.  This mapping is defined by the transformation 
matrix of the circuit.                                                         ! 

For binary reversible logic, the transformation matrix 
is of the form of a permutation matrix. For quantum 
circuits, the transformation matrix is a unitary matrix with 
complex-valued elements.  An n×n reversible circuit with 
n inputs and n outputs requires a rn×rn transformation 
matrix, where r is the radix.  

Definition 2: An n×n unitary matrix (n"2) that transforms 
only two or fewer vector components is referred to as a 
two-level unitary matrix.                                           ! 



Many binary and MVL reversible gates have been 
proposed [5,13]. Fig. 1 illustrates a quantum two-level 
unitary matrix which is the transformation matrix of the 
Deutsch-Toffoli universal gate. The control lines of each 
gate are denoted by filled circles while the target line is 
marked by a square with a function name (Rx in this case, 
and U in the general case). A common binary reversible 
gate is the Control-Not or Toffoli gate where the unitary 
function (the Not operation) is represented by a circle 
[14].  
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Figure 1. The Deutsch-Toffoli Universal Gate  

Definition 3: An n-variable reversible gate cascade is a 
circuit composed of adjacent reversible gates that operate 
on the same n variables represented by horizontal lines 
across the circuit.  Each gate may be connected to one or 
more of the lines and must be extended via the tensor 
product operator to affect all n lines.                               ! 

Fig. 2 illustrates 4-variable quantum cascade C that 
preserves the binary control signal constraint. It includes 
gates G1 (Toffoli), G2 (Deutsch-Toffoli), G3 (Not) and 
G4 (general unitary). 

 
Figure 2. 4-variable quantum cascade  

The transformation matrix of a circuit cascade is 
computed by multiplying the transformation matrices of 
the gates, starting with the rightmost gate.  

C = G4 × G3 × G2 × G1                                         (1) 

The unitary transformation matrix C maps the vector 
{x3,x2,x1,x0} to vector {x3’,x2’,x1’,x0’} and vice versa. 
 
2.2. Quantum Multiple-valued Decision Diagrams  

The transformation matrix M of dimension n nr r×  
representing an MVL reversible/quantum logic circuit C 
with radix r can be partitioned as 
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where each Mi element is a submatrix of dimension 
1 1.n nr r− −×   This partitioning is exploited by the QMDD 

structure and is used to specify the circuit C in a compact 
form [7].  In a manner similar to a reduced ordered binary 
decision diagram (ROBDD) [15], a QMDD adheres to a 
fixed variable ordering and common substructures 
(representing submatrices) are shared.  A QMDD has a 
single terminal vertex with value 1, and each edge in the 
QMDD, including the edge pointing to the start vertex, 
has an associated multiplicative complex-valued weight.  

Theorem 1: An rn×rn complex-valued matrix M 
representing a reversible or quantum circuit has a unique 
(up to variable reordering or relabeling) QMDD 
representation. 
Proof: A proof by induction based on the normalization 
of edge weights that may be performed during the 
construction of a QMDD is detailed in [7,8].                  !    
 
2.3. The BZBB Decomposition of a Unitary Matrix  

The function of a beam splitter, which is a common 
component for quantum optical experiments, can be 
represented by a two-level unitary matrix. Beck et al. 
showed that a beam splitter is essentially a universal gate, 
capable of implementing any arbitrary finite unitary 
matrix [4]. More specifically, they proved that:   

Theorem 2: An arbitrary n×n unity matrix U can be 
decomposed into a product of two-level unitary matrices 
so that U=V1V2….Vk  and k!n(n-1)/2.  
Proof: A proof by construction is detailed in [4] and 
useful examples appear in [5].  We outline the proof’s 
construction here since we use the BZBB decomposition 
in Section 4.  The main idea is to create a cascade of two-
level matrices to transform U into a diagonal matrix. A 
first set of n (or less) two-level matrices transforms U into 
an intermediate matrix with a 1 in the first diagonal 
element and 0s elsewhere in the first column and first 
row.  Another set of n-1 (or less) two-level matrices 
transforms the last intermediate matrix into another with a 
‘1’ in the second diagonal element and 0s elsewhere on 
the second column and second row. The process 
continues recursively until U is fully transformed into a 
diagonal matrix, so that V1V2...VkU=I. It is easy to see 
that 2/)1(1...)2()1( −=++−+−≤ nnnnk . Since all Vi 
are unitary, +++= kVVVU ...21 .                                                ! 



In Table 1 we illustrate the BZBB decomposition of 
two different 4×4 unitary matrices (each matrix is 
decomposed step-by-step along two columns of the 
table). Both examples require six two-level unitary 
matrices, resulting in the cascade 

++++++= 654321 VVVVVVU                                               (2) 

  3. QMDD SKIPPED VARIABLES  
3.1. Conditions for Skipped Variables 

The QMDD points to any sub-matrix having all zero 
elements directly to the terminal node with zero weighted 
edges.  Since quantum circuits are represented by unitary 
matrices that are typically sparse, QMDD achieve 
efficient sizes by exploiting the large number of zero 
weighted edges. However, like any other decision 
diagram, size explosion is still a potential limitation when 
working with QMDDs. A sifting technique to minimize 
the structure that employs local QMDD swap operations 
was investigated in [8].   

Definition 4: A QMDD variable i is skipped if a non-
terminal vertex representing decision variable i+1 has a 
non-zero weighted edge that points to a non-terminal 
vertex of decision variable i-1, thus skipping the 
intermediate variable i in the overall ordering.               ! 

Sifting based on local swap operations can be made 
very efficient when the QMDD does not have skipped 
variables.  Therefore, it is helpful to determine when 
quantum circuits may exhibit skipped variables [16].  

Lemma 1: In order for an intermediate vertex 
representing decision variable i to be skipped in a 
QMDD, at least one of the r × r decomposed sub-matrices 
for the decision variable i+1 matrix must be further 
decomposed by r2 identical sub-matrices. 

Proof:  The ri×ri sub-matrix of decision variable i+1 
with r2 identical sub-matrix decompositions represents a 
vertex that has all outgoing edges pointing to identical 
subtrees. By Theorem 1, a non-terminal vertex is 
redundant if all r2 edges point to the same vertex with the 
same weight.  It is easy to see that the condition in 
Lemma 1 causes the intermediate vertex i to be 
redundant, since the identical matrices pointed to by all 
edges are represented by the same vertex due to the 
uniqueness of all the QMDD vertices.  This same vertex 
represents a matrix of size ri-1×ri-1, which represents 
decision variable i+1.  We thus show that the condition in 
Lemma 1 causes a vertex of decision variable i+1 to skip 
directly to a vertex of decision variable i-1.                  ! 

Fig. 3 shows the occurrence of a skipped variable in a 
binary QMDD in view of Lemma 1. The transformation 
matrix for vertex V1 at variable i+1 is decomposed into 
four sub-matrices that are subsequently decomposed at 
variable i. Note that variable numbering decreases from 

the root vertex to the terminal node T. To avoid cluttering 
of the illustrations, zero weighted edges are shown as 
truncated stubs with 0.  The 4th sub-matrix is decomposed 
into four identical sub-matrices, and in accordance with 
Lemma 1 it causes a skipped variable to occur. Vertex V4 
at variable i is eliminated by an edge that points directly 
to V7 at variable i-1.  

 

 
Figure 3. Skipped Variable in a Binary QMDD 

 

 

Figure 4. Skipped Variable in a Ternary QMDD 
Fig. 4 shows the occurrence of skipped variable in a 

ternary QMDD. Notice that the transformation matrix at 
each vertex is decomposed into 9 sub-matrices, and each 
vertex has 9 edges. The last sub-matrix at vertex V1 is 



decomposed into identical 9 sub-matrices, thus causing 
an edge that skips variable i in accordance with Lemma 1. 
 
3.2. Quantum Circuits with Skipped Variables  

In our previous work we have shown that binary 
reversible circuits cannot result in QMDD representations 
containing skipped variables because their transformation 
matrices are necessarily of the form of a permutation 
matrix [8]. A permutation matrix only contains a single 
‘1’ value in each column and row, thus the condition of 
Lemma 1 cannot be met. In this work we investigate 
unitary matrices that have many non-zero elements that 
may produce skipped variables. 

Definition 5: We will refer to an N×N matrix D with all 
diagonal elements equal to 12 −

N
 and all the remaining 

elements equal to 
N
2  as DI(N) matrices.                           ! 
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Lemma 2:  If N is an integer such that N>1, then the 
DI(N) matrix is unitary.  If m is an integer such that m>1, 
then a QMDD representing DI(2m) must have skipped 
variables.  Furthermore, the QMDD must have at least 
one vertex with a non-zero weight that skips m-1 
variables.    
Proof:  It is easy to show that DI(2m) DI(2m)*=I, and 
therefore, DI(2m) is unitary and represents a valid 
quantum state transformation.  When n=2m, where m is an 
integer and m>1, DI(2m) can be represented by a binary 
(radix r = 2) QMDD.  To prove that DI(2m) contains a 
skipped variable, consider the decomposition of the 
matrix into 4 sub-matrices at each decision variable 
during the construction of the QMDD.  For m=2, the 
DI(4) matrix is of dimension 4×4 and is unitary. 
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The first decision variable x1 decomposes DI(4) into 
four 2×2 sub-matrices.  Clearly these sub-matrices are not 
equal.  The next and final decision variable x0 further 
decomposes each of the four 2×2 sub-matrices into four 
1×1 sub-matrices.  With this example, it is easy to show 
that the condition of Lemma 1 exists within the second 
and third sub-matrices that are  
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It is easy to show by induction that matrix DI(2m) 
where m>1 results in a QMDD containing skipped 
variables that actually skip over m-1 variables.  This 
proves the case for m=2 that there is a non-zero weighted 
edge that skips m-1=1 variables.   

For the m+1 case, we note that increasing m by 1 adds 
one decision variable and quadruples the size of the 
transformation matrix from that of m.  Since all elements 
except the diagonal elements are the same, we have a 
skipped variable which skips one more variable than the 
case for m.                                                                        ! 

Fig. 5 illustrates the skipped variables that arise in the 
DI(8) unitary matrix.   

 

Figure 5. Skipped Variable in QMDD of DI(8) 

The DI(N) matrices, which represent quantum circuits 
that are used by the Grover search algorithm  clearly 
require the control inputs to have superposition values, 
thus relaxing the binary control signal constraint [11].   

 
4. EXPERIMENTAL RESULTS 

In the first phase of our experimentation we 
considered several published quantum circuits in our 
QMDD simulator and we noted that the occurrence of 
skipped variables is indeed a rare phenomenon among 
this test set.  Except for the DI(N) matrices that were 
discussed in Section 3.2 (or their tensor products when 



they were incorporated as part of larger quantum circuits) 
we have not observed any other quantum circuits that 
produce skipped variables. In addition, we have generated 
numerous “random” unitary matrices using the common 
Scilab mathematical software, and found that none of 
examples exhibited skipped variables. 

In the second phase of our experimentation, we 
investigated the DI(N) matrices to determine if the fact 
that they cause QMDD skipped variables correlates with 
any anomaly metrics associated with other processes that 
may be performed on unitary matrices. We found an 
interesting comparison with the BZBB decomposition. As 
explained in Section 2.3, this decomposition of an 
arbitrary n×n unitary matrix creates a cascade of up to 
n(n-1)/2 two-level unitary matrices.  Clearly this process 
is not efficient in comparison with other synthesis 
methods.  However, the two-level unitary matrices 
employed by the BZBB decomposition are the lowest 
complexity “universal gates”, and as such we expected 
them to provide some fundamental insight into the 
metrics of the decomposed matrix.   

An interesting sample of our investigation is detailed 
in Table 1. In the 1st and 2nd columns we show the step-
by-step BZBB decomposition of a 4×4 unitary matrix that 
does not exhibit skipped variables. The 3rd and 4th 
columns of Table 1 show the BZBB decomposition of the 
DI(4) unitary matrix that does exhibit skipped variables. 
In fact, this matrix represents the well known HCH 
quantum circuit shown in Fig. 6 that is used to represent 
the superimposed result of a CNOT operation.   

 
Figure 6. Skipped Variable in QMDD of HCH 

In the case of the unitary matrix without skipped 
variables, we saw that the intermediate matrices (in 2nd 
column) never exhibit 0 in the diagonal. In contrast, the 
DI(4) matrix with the skipped variables exhibits a 0 in the 
diagonal of the intermediate matrix (in 4th column). This 
occurrence must be followed by a permutation matrix (V4 
in the 3rd column) to rotate a non-zero number into the 
diagonal. Similar behavior was observed in other DI(N) 
matrices.  

The QMDD requires that any sub-matrix that has all 0 
elements point directly to the terminal vertex with zero 
weight.  It should be noted that in Definition 4 we made a 
distinction that edges that skip variables must have a non-
zero weight.  Without this distinction, it can be shown 
that every sparse unitary matrix exhibits skipped 

variables.  Naturally, the BZBB decomposition does not 
make this distinction and it responds with a permutation 
matrix even when variables are skipped with zero-weight 
edges.  As a result, 0 elements do appear in the diagonal 
of the intermediate matrices in the decomposition of 
sparse unitary matrices (e.g. permutation matrices 
representing binary reversible circuits). 

 
5. CONCLUSIONS AND FUTURE WORK 
This paper has considered the phenomenon of skipped 

variables in QMDD.  This phenomenon was found to 
occur rarely; however, its occurrence may reduce the 
overall efficiency of sifting-based QMDD minimization..  
The results are used to determine the conditions that 
cause skipped variables and several useful circuits that are 
known to exhibit skipped variables are reviewed. We 
investigated the correlation between circuits that have 
skipped variables in their QMDD representation and the 
appearance of an anomaly in their BZBB decomposition.  

In future work we will investigate other types of 
unitary decompositions that may exhibit various 
anomalies with circuits that exhibit skipped variables. It 
will be interesting to see if the skipped variable 
phenomenon has bearing to other Quantum decision 
diagram packages.    We will also consider the potential 
to use the existence of skipped variables in the QMDD of 
a unitary matrix as a basis for metrics that may aid the 
synthesis of the circuit represented by the unitary matrix.  
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Table 1. BZBB Decomposition of 4x4 Unitary Matrices 

BZBB Decomposition of a Unitary Matrix 
without Skipped Variables 

BZBB Decomposition of a Unitary Matrix 
with Skipped Variables 
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