
Ternary Logic Network Justification Using Transfer Matrices

Mitchell A. Thornton and Jennifer L. Dworak
Southern Methodist University
Dallas, Texas USA 75275–0122

Email: mitch@lyle.smu.edu

Abstract

A linear algebraic method is developed that allows
for logic network justification problems to be solved.
The method differs from previous techniques that re-
quire learning or solution space search techniques in
that all possible justification solutions are determined
through a single vector-matrix product calculation.
The logic network is represented by a matrix that is
defined as the “justification” matrix. It is shown that
the justification matrix is simply the transpose of the
network transfer matrix and is thus easily obtained
through a traversal of the network netlist. Example
justification calculations are provided.

1. Introduction

Many logic network design and analysis tasks in-
volve the determination of a set of input stimuli b,
given a network model and an output response a. In
other words, we must justify the values assigned to the
outputs by finding an appropriate set of assignments to
the inputs. Several justification algorithms and heuris-
tics have been proposed previously. Here, we describe
an algebraic model representation for a ternary logic
network and use it to find a solution to the justification
problem. Specifically, given the set of logic values a
and a representation of a ternary logic network in the
form of a transfer matrix T, we find the corresponding
network input values b that produce the desired output
values a.

Logic network justification is useful in multiple
design and analysis applications, including synthesis,
verification, and test. For example, justification is a
critical component of automatic test pattern generation
(ATPG) algorithms, including the D-algorithm [1], PO-
DEM [2], and FAN [3]. It is also inherently related to
the satisfiability problem (SAT). Furthermore, reverse
logic implications are a special case where all possible
solutions require that a particular logic value (or set of

logic values) be assigned to a particular input (or set
of inputs).

Justification during ATPG is historically performed
by successively assigning logic values to upstream
gates or primary inputs and then propagating the
results downstream through forward implication until
the desired downstream assignment has been justified.
However, reconvergent fanout may produce conflicts
among selected value assignments. This requires that
previously assigned nodes be assigned a different value
and thus requires backtracking. Similarly, a widely
applied technique for finding implications involves the
construction of a binary learning tree whose traversal,
in conjunction with a recursive learning algorithm,
allows assignment of logic values at various logic
network nodes [4]. In the learning approach, a back-
tracking algorithm is also used.

Unlike many previous approaches, the approach
described here allows multiple justification solutions
to be determined simultaneously through a single
computation without recursion or backtracking. It is
based on a transfer matrix representation of the logic
network introduced in [5]. In that paper, a ternary logic
network or behavioral description was represented by
a characterizing matrix, and the input stimuli and
corresponding output response were represented as
vectors. This representation allows the input and output
vectors to be related as a linear transform, where
the characterizing matrix represents the input-output
behavior of the logic system and is thus a “transfer
function” model [6]. Because the transfer function is in
the form of a matrix, we refer to the representation as
either a “transfer function” or equivalently a “transfer
matrix.”

In this paper, we define the “justification matrix”
and show it to be equivalent to the transpose of the
transfer matrix. Thus, efficient methods for determina-
tion of the transfer matrix will suffice for efficiently
determining the justification matrix.

The remainder of the paper is organized as follows.

In Section 2, we briefly review the notation and con-
cepts from [5] used to describe the transfer function
model for ternary logic systems. Section 3 expands
upon the transfer function model and introduces the
notion of a “justification matrix.” Section 4 contains an
example of using a justification matrix and illustrates
how multiple solutions to the justification problem may
be determined with a single computation. Conclusions
are provided in Section 5.

2. Transfer Matrix Models

A transfer matrix model for ternary logic systems
is introduced and described in detail in [5]. Here, we
provide an overview of the most important concepts
as background for the development and use of the
“justification matrix.”

Ternary switching functions are traditionally mod-
eled with an algebraic structure consisting of a discrete
set of logic constants {0, 1, 2} and a set of switching
operators such as MIN, MAX, and Literal Selection
[7]. Ternary logic systems may be modeled in a
variety of ways, including systems of switching logic
equations over an algebra such as the Post algebra,
as truth tables, as decision diagrams, or as netlists.
In contrast, the transfer matrix model captures the
input-output behavior of a ternary logic network in
the form of a characteristic matrix T that defines a
linear transformation of a vector representing an input
assignment to a corresponding vector representing the
function value. The transfer matrix approach models
the behavior of a ternary logic system within a linear
algebraic framework as opposed to a more commonly
used switching algebra such as the Post algebra.

To characterize a switching network in a linear al-
gebraic framework, logic value assignments are repre-
sented by vector quantities. We use the vector notation
introduced by Dirac [8] and map the commonly used
scalar logic values {0, 1, 2} to corresponding three-
dimensional vectors {〈0|, 〈1|, 〈2|}. The components
of the vector are the scalars {0, 1} and are explic-
itly defined as 〈0| = [1, 0, 0], 〈1| = [0, 1, 0], and
〈2| = [0, 0, 1]. We also use the notion of a null vector
〈∅| = [0, 0, 0] representing the absence of 〈0|, 〈1|, and
〈2| and the vectors 〈t01| = [1, 1, 0], 〈t02| = [1, 0, 1],
〈t12| = [0, 1, 1], and 〈t| = [1, 1, 1] that represent covers
of more than one logic value. The complete set of logic
values then forms a lattice as depicted in the Hasse
diagram in Fig. 1

The Kronecker or outer product operation, denoted
by ⊗, is used to combine individual logic vector
values into a single vector. Because the outer product
operation is non-commutative, the order in which the

Figure 1. Hasse Diagrams of Ternary Vector Con-
stants

logic values are combined is important for the sake of
consistency within the computations, but the particular
order is arbitrary. As an example, two logic values
〈2| and 〈1| may be represented as the single vector
〈2| ⊗ 〈1| = [0, 0, 1]⊗ [0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0].

As described in [5], the transfer matrix T of a
ternary logic system represents all possible input-
output behavior of the single vectors representing a
variable assignment and their corresponding single out-
put vectors. The matrix T may be formed as the matrix
sum of all outer products of the input-output vector
pairs as given in Equation 1 where |xi〉 represents the
ith variable assignment resulting in the ith function
value 〈fi|.

T =

3n∑
i=1

|xi〉〈fi| (1)

The explicit use of Equation 1 requires a summation
of 3n matrices for an n-variable function. Fortunately,
the transfer matrices T are isomorphic to the function
truth table, thus any compact representation of the truth
table such as decision diagrams [9] [10] may be used to
represent the transfer matrix. As shown in [5], it is also
possible to efficiently determine the transfer matrix
through a traversal of a logic network representing the
ternary switching function.

Using these formulations, a method for computing
the output response of a ternary logic network given an
input stimulus was derived in [5]. Although the method
is based on ternary logic systems, it is easily extended
to systems of other logic values including binary and
systems of higher radix p > 3. Furthermore, the use of
covering logic values 〈t01|, 〈t02|, 〈t12|, and 〈t| enable
multiple stimuli represented by the vector 〈x| to be
specified and the resulting set of of output responses
〈f | obtained through a single vector-matrix product
calculation as given in Equation 2.

〈f | = 〈x|T (2)

3. Justification Matrices

Justification can be viewed as the inverse problem
of output response determination. Therefore, given an
output response vector 〈f | and a specification of the
logic network T, a solution 〈x| that produces the
desired output response can be computed as given in
Equation 3.

〈x| = 〈f |T−1 (3)

In general the number of logic network inputs n
is not equal to the number of outputs m. In the
general case where n 6= m, the transfer matrix T
is not square, and a unique inverse T−1 does not
exist. Furthermore, in many cases where n = m,
the corresponding transfer matrix T is not of full
rank and unique T−1 matrices do not exist in this
case as well. For those cases where T is square and
of full rank, the corresponding logic network is said
to be logically reversible and T is a bijective linear
transformation. Based on these observations, a logic
network characterized by transfer matrix T can be
classified according to four possibilities.

1) n = m and T is of full rank. A unique inverse
T−1 exists and the logic network is logically
reversible.

2) n = m and T is not of full rank. A unique
inverse T−1 does not exist and the corresponding
linear system of equations in Equation 3 is either
over- or under-specified.

3) n > m, the logic network has more inputs than
outputs and the T matrix represents an over-
specified system, thus multiple solutions exist for
Equation 3.

4) n < m, the logic network has more outputs than
inputs and the T matrix represents an under-
specified system, thus a unique solution is not
possible.

Here, we are concerned with the general case where
T is not of full rank hence, Equation 3 cannot be
used since a unique T−1 does not exist. There are
various techniques available for the general solution
of Equation 3 when the matrix T is non-square or
when it is not of full rank based on the use of
generalized inverses [11]. In [12], the Moore-Penrose
pseudo-inverse is described as a means for computing
T−1 for binary logic net lists. We use the pseudo-
inverse in Equation 3 for the purpose of computing
the justification of a ternary logic network.

Figure 2. MIN Gate Truth Table and Transfer
Matrix

For over specified systems, the pseudo-inverse can
be used to provide a solution that has a minimal or least
squared error and for under-specified systems a best-fit
solution is provided with minimal least squared error.
In the case of justification solutions for logic networks,
a single satisfying solution obtained through use of the
pseudo-inverse is acceptable.

The pseudo-inverse of a matrix T is denoted as T+

and is computed in two different manners depending
upon whether the system is over- or under-specified.
The pseudo-inverse T+ is calculated according to
Equation 4 and depends upon the Hermitian transpose
T∗.

T+ =

{
(T∗T)−1T∗

T∗(T∗T)−1
(4)

The transfer matrix elements characterizing ternary
logic networks are always real valued, thus the Her-
mitian transpose is simply the transpose of T, thus
T∗ = TT . Using this observation, Equation 4 can be
rewritten as given in Equation 5.

T+ =

{
(TTT)−1TT

TT (TTT)−1
(5)

Equations 2 and 5 can be used as the basis for
solving a justification problem. Example 3.1 illustrates
how Equation 5 can be used to find the input stimulus
vector 〈x| given an output response 〈f | = 〈1| for a
simple logic network consisting of a two-input MIN
gate.

Example 3.1: A two-input MIN gate can be charac-
terized by a truth table and corresponding isomorphic
transfer matrix A as shown in Figure 2.

Using Equation 5, the pseudo-inverse T+ becomes:

A+ =

 1
5

1
5

1
5

1
5 0 0 1

5 0 0
0 0 0 0 1

3
1
3 0 1

3 0
0 0 0 0 0 0 0 0 1

Given that an output response of the MIN-gate is
〈1| = [0, 1, 0], the corresponding input stimulus is
computed as 〈x| = 〈f |A+:

〈x| = [0, 1, 0]

 1
5

1
5

1
5

1
5 0 0 1

5 0 0
0 0 0 0 1

3
1
3 0 1

3 0
0 0 0 0 0 0 0 0 1

= 1

3 [0, 0, 0, 0, 1, 1, 0, 1, 0] =
1
3 〈11|+

1
3 〈12|+

1
3 〈21|

Thus, it is observed that three different input stimuli
can result in 〈f | = 〈1| and that those input stimuli are
〈11|, 〈12|, 〈21|. �

The result of the computation in Example 3.1 is an
output response vector composed of nine elements. To
determine the individual input stimuli, the output vec-
tor must be factored. Factoring of outer products can,
in general, be complex; however due to the fact that
input vector components are restricted to {0, 1}, the
factors can be easily obtained by observing the indices
of the non-zero components and expressing the indices
in radix-3. The non-zero output response elements
occur at vector indices (4)10 = (11)3, (5)10 = (12)3,
and (7)10 = (21)3.

To illustrate the use of other values within the Hasse
diagram in Figure 1, consider Example 3.2.

Example 3.2: Given that an output response of the
MIN-gate is either at logic-0 or at logic-1 (〈f | =
〈t01| = [1, 1, 0]), the corresponding input stimulus is
computed as 〈x| = 〈f |A+:

〈x| = [1, 1, 0]

1
5

1
5

1
5

1
5 0 0 1

5 0 0

0 0 0 0 1
3

1
3 0 1

3 0

0 0 0 0 0 0 0 0 1

=
[

1
5

1
5

1
5

1
5

1
3

1
3

1
5

1
3 0

]
= 1

5

[
1 1 1 1 0 0 1 0 0

]
+ 1

3

[
0 0 0 0 1 1 0 1 0

]
= 1

5 (〈00|+ 〈01|+ 〈02|+ 〈10|+ 〈20|)
+ 1

3 (〈11|+ 〈12|+ 〈21|) �
The use of Equation 5 allows for the T+ matrix to be

computed and used for computation of the input stim-
ulus vector 〈x| based upon a logic network response
vector. Theorem 3.5 provides a result concerning the
structure of the pseudo-inverse matrices.

Definition 3.3: Output Matrix: The 3× 3 matrix Fi
is defined as the “output matrix” representation of a
ternary logic network or the “output matrix” response
of a ternary logic function resulting from an input
stimulus or variable assignment 〈xi|.
Fi = |fi〉〈fi|
Lemma 3.4: Output Matrix Structure The output

matrix of a ternary function Fi in response to a single
variable assignment 〈xi| is of the form of a 3×3 matrix
consisting of row vectors that are either 〈∅|, 〈0|, 〈1|,
or 〈2|. Furthermore, only a single row vector 〈0|, 〈1|,

or 〈2| will be present in the output matrix and the row
vector 〈i| will only be present in output matrix row i,
the other two rows will contain 〈∅|. �

Theorem 3.5: Pseudo-inverse Matrix Structure: The
pseudo-inverse of a transfer matrix representing a
ternary logic network is proportional to its transpose
with a proportionality constant P where P is a 3× 3
diagonal matrix.

Proof: Equation 5 contains a term TTT resulting
in a 3× 3 matrix of the following form:

TTT =

 N0 0 0
0 N1 0
0 0 N2

Where Ni is the integral number of times that

the ternary function represented by transfer matrix
T evaluates to one of the logic values {0, 1, 2}. We
denote TTT = P−1. From the isomorphic relation
between the function truth table and the corresponding
transfer matrix T, it is observed that P−1 can be
expressed as the summation of all output matrices.

P−1 = TTT =

3n∑
n=1

|fi〉〈fi|

Due to the structure of the output matrices, P−1 is
diagonal and its inverse is of the form:

P = (TTT)−1 =

 1
N0

0 0

0 1
N1

0

0 0 1
N2

From the form of Equation 5 and P, the pseudo-

inverse of the transfer matrix T is:

T+ =

{
PTT

TTP
The result of Theorem 3.5 allows us to define the

“justification matrix” TJ . The justification matrix can
be used to obtain the input stimulus vector of a ternary
logic network or function given the corresponding
output vector by evaluating Equation 6.

〈x| = 〈f |TJ (6)

Equation 6 can be used for determining the input
stimulus 〈x| in the same way as that of Equation 3
with TJ used in place of T−1 with the result differing
only in that the fractional constants 1

N0
, 1
N1

, and 1
N2

are omitted from the result. The advantage of using TJ

to compute the justification solution is that it is easily
obtained since it is the transpose of the transfer matrix
T. Therefore, the methods described in [5] for deriving
the transfer matrix of logic networks and ternary logic
functions are sufficient for computing the justification
matrix TJ .

Definition 3.6: Justification Matrix The “justifica-
tion matrix” TJ := TT is the transpose of the

transfer matrix T representing a ternary logic network
or ternary logic function. �

4. Example Justification Computations

Consider the example ternary truth table and logic
network depicted in Figure 3. The logic network is
partitioned into cascades of parallel components as
shown by the vertical dashed lines. Each serial cascade
stage is labelled as φ3, φ2, and φ1 with corresponding
transfer matrices Tφ3

, Tφ2
, and Tφ1

. Tφ3
is the

transfer matrix of a two-input MAX gate denoted as O
in [5]. Tφ2 is the transfer matrix representing a fanout
point denoted as FO from [5]. Stage φ1 is composed
of a J0 literal selection gate in parallel with a single
conducting path, thus Tφ1

= J0⊗ I.
The calculation of the partial product (Tφ3Tφ2) is:

Tφ3
Tφ2

= (O)(FO)

=

1 0 0
0 1 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

=

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

The calculation of Tφ1

is: Tφ1
= J0⊗ I

=

 0 0 1
1 0 0
1 0 0

⊗
 1 0 0

0 1 0
0 0 1

=

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

The overall logic network transfer matrix is com-

puted as the direct product of the cascade stage transfer

Figure 3. Example Truth Table and Logic Network

matrices, T = Tφ3
Tφ2

Tφ1
= (O)(FO)(JO ⊗ I)

resulting in Equation 7.

T =

0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

(7)

From Definition 3.6, the justification matrix corre-
sponding to the network in Figure 3 is TJ = TT and
is given in Equation 8.

TJ =

0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0
0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(8)

The justification matrix TJ can be used to determine
the input stimulus 〈x| for a given output response
〈f | = 〈00| as shown in Example 4.1.

Example 4.1: Justification Calculation Example:
〈x1x2| = 〈00|TJ = (〈0| ⊗ 〈0|)TJ

= (
[
1 0 0

]
⊗
[
1 0 0

]
)TJ

=
[
1 0 0 0 0 0 0 0 0

]
TJ

=
[
0 0 0 0 0 0 0 0 0

]
= 〈∅| ⊗ 〈∅| = 〈∅∅| �

Thus, the justification calculation in Example 4.1
indicates that there are no possible input values result-

ing in an output response of 〈f | = 〈00| as can be
confirmed by examining the truth table in Figure 3.

Another example is to consider the solution of the
justification (〈f1f2| = 〈01| → 〈x1x2| = 〈AB|). The
solution of this justification problem is to determine the
values A and B. Example 4.2 solves this justification
problem using the justification matrix in Equation 7.

Example 4.2: Justification Calculation Example 2:
To find the satisfying values A and B satisfying
(〈f1f2| = 〈01| → 〈x1x2| = 〈AB|), Equation 6 is used
with the justification matrix in Equation 8 as follows.
〈x1x2| = 〈01|TJ = (〈0| ⊗ 〈1|)TJ

= (
[
1 0 0

]
⊗
[
0 1 0

]
)TJ

=
[
0 1 0 0 0 0 0 0 0

]
TJ

=
[
0 1 0 1 1 0 0 0 0

]
=
[
0 1 0 0 0 0 0 0 0

]
+
[
0 0 0 1 1 0 0 0 0

]
= (
[
1 0 0

]
⊗
[
0 1 0

]
)

+ (
[
0 1 0

]
⊗
[
1 1 0

]
)

= (〈0| ⊗ 〈1|) + (〈1| ⊗ 〈t01|) = 〈01|+ 〈1t01| �
The solution of the justification problem in Example

4.2 demonstrates how the partially covering logic value
t01 is used. Because t01 indicates a value that is both
simultaneously logic value 0 and 1, the justification
solution covers three distinct input values; namely
〈x1x2| = 〈01|, 〈x1x2| = 〈10|, and 〈x1x2| = 〈11|.
The resultant vector is first rewritten as a sum of two
vectors and then decomposed. The single justification
calculation of Example 4.2 results in all three possible
cases of input stimuli that result in a logic network
response of 〈01|.

5. Conclusion and Future Effort

The transfer matrix representation T of a ternary
logic network allows the network to be characterized
by a matrix representing the input-output behavior. A
new matrix TJ termed the “justification matrix” is
introduced and is shown to be the transpose of the
transfer matrix, TJ = TT . The justification matrix can
be used to determine the corresponding input stimulus
of a ternary logic network given the function transfer
matrix and an output response vector. Furthermore,
the output response or input stimulus vectors can be
formulated such that they contain logic values simulta-
neously representing more than one logic assignment
through the use of 〈t01|, 〈t02|, 〈t12|, and 〈t|.

The transfer matrix T and corresponding justifica-
tion matrix TJ are isomorphic to the function truth
table, thus any means for efficiently representing truth

tables may also serve as representations of the corre-
sponding transfer matrices. Furthermore, transfer and
justification matrices for subcircuits or portions of
logic networks may be computed directly by traversing
a graphical representation of the network thus avoiding
the need to first determine an entire network truth table.
This result allows for an alternative means to solve the
justification problem which has numerous applications
in logic network design and analysis tasks.

References

[1] J. Roth, “Diagnosis of automata failures: A calculus and
a method,” IBM Journal of Research and Development,
vol. 10, no. 4, pp. 278–291, 1966.

[2] P. Goel, “An implicit enumeration algorithm to generate
tests for combinational logic circuits,” IEEE Trans.
Comput., vol. C-30, no. 3, pp. 215–222, 1981.

[3] H. Fujiwara and T. Shimono, “On the acceleration of
test generation algorithms,” IEEE Trans. Comput., vol.
C-32, no. 12, pp. 1137–1144, 1983.

[4] W. Kunz and D. K. Pradhan, “Recursive learning:
An attractive alternative to the decision tree for test
generation in digital circuits,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 13, no. 9, pp.
1143 –1158, Sep. 1994.

[5] M. A. Thornton, “A transfer function model for ternary
switching logic circuits,” in Proc. of International Sym-
posium on Multiple-Valued Logic, May 2013.

[6] C. T. Chen, Linear System Theory and Design. Holt,
Rinehart and Winston, 1984.

[7] D. M. Miller and M. A. Thornton, Multiple Valued
Logic: Concepts and Representations. Morgan &
Claypool Publishers, 2007.

[8] P. A. M. Dirac, “A new notation for quantum me-
chanics,” Proc. of the Cambridge Philosophical Society,
vol. 54, p. 416, 1939.

[9] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan,
J. C. Yang, and X. Zhao, “Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix
representation,” in Proceedings. IEEE Int. Workshop on
Logic Synthesis, 1993, pp. 1–15.

[10] D. M. Miller and R. Drechsler, “Implementing a
multiple-valued decision diagram package,” in Pro-
ceedings. 1998 28th IEEE International Symposium on
Multiple-Valued Logic, May 1998, pp. 52 –57.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations.
Johns Hopkins University Press, 1996.

[12] M. A. Thornton, “Spectral analysis of digital logic
using circuit netlists,” in Proceedings. 2011 Conference
on Computer Aided System Theory, 2011, pp. 414–415.

