

From UML to HDL: a Model Driven Architectural Approach to
Hardware-Software Co-Design

Frank P. Coyle and Mitchell A. Thornton
Computer Science and Engineering Dept

Southern Methodist University
Dallas TX 75275

{coyle, mitch}@engr.smu.edu

Abstract

The SMU Co-Design Project is an effort to target the
problem of hardware/software co-design via an open
source laboratory for studying hardware-software
integration. The project focuses on the use of Model
Driven Architectures (MDA) to define high-level model-
based system descriptions that can be implemented in
either hardware or software. Utilizing component and
state diagrams based on the Unified Modeling Language
(UML), we demonstrate MODCO, a transformation tool
which takes a UML state diagram as input and generates
HDL output suitable for use in Field Programmable
Gate Array (FPGA) circuit design. With this tool as a
first step, we plan to continue to bridge the gap between
hardware and software design taking advantage of
trends in both areas to work with higher level description
languages and use software transformation tools to
manage lower-level hardware or software
implementation details. This project also serves as the
basis for a new generation of software and computer
engineers who understand each other’s problems and
issues and are able to leverage the capabilities of model-
based system description languages.

Keywords: hardware/software co-design, Unified
Modeling Language, UML, Model-Driven Architecture,
MDA

1. Introduction

As Moore’s Law continues to push the boundaries of
hardware capabilities, embedded systems designers are
confronted with the challenge of how best to draw the
line between hardware and software. Functionality once
relegated to software now has the possibility of
implementation in hardware while hardware components
must integrate with higher-level software APIs. [1]

For embedded systems developers, the primary
architectural/design issue has been the partitioning of
system functionality across both hardware and software.
Common practice involves creating separate
specifications for hardware and software. These
specifications, often written in non-formal languages, are
delivered with functionality allocated a priori. Because
changes to the partition may necessitate extensive
redesign and because software rework is viewed as easier
than hardware redesign, design solutions often have a
heavy software component with hardware allocation
specified to meet anticipated timing constraints.

However, such an approach has several drawbacks
which include (a) lack of a unified hardware-software
representation, leading to difficulties in verifying the
entire system and to incompatibilities across the HW/SW
boundary; (b) a priori definition of partitions, which
leads to sub-optimal designs; (c) lack of a well-defined
design flow, which makes specification revision difficult,
impacting time-to-market.

1.1 Hardware/Software Co-Design

To help address these problems, the area of
hardware/software co-design has developed as an
architectural approach to system design where decisions
concerning hardware-software allocation are deferred as
late as possible within the design cycle. Approaches to
hardware/software co-design include the development of
co-synthesis algorithms [2], simulation [3], and dataflow
techniques [4].

In this paper we present the use of Model Driven
Architecture (MDA) [5] to address the challenges of
hardware/software co-design. Specifically we outline
details of MODCO, a tool for transforming UML state
diagrams directly into HDL, the first step in the
automated synthesis of an FPGA circuits.

The paper is organized as follows: section 2 provides
an overview of the SMU Co-Design project and related

technologies; section 3 describes the MODCO tool for
generating HDL from high-level UML diagrams using
XML; section 4 outlines the implications of this work
and future directions, and section 5 provides a summary.

2 The SMU Co-Design Project

The SMU Co-Design Project is a collaborative effort
between software engineering and computer engineering
faculty to bring model-driven design to bear on the
problem of hardware/software co-design. The Computer
Science and Engineering Department at SMU includes
the subspecialties of Software Engineering and Computer
Engineering presenting a unique opportunity for
collaboration. The objective is to bring together hardware
and software practitioners to support the creation of fully
integrated and optimized systems.

The project focuses on the construction of high-level,
model-based system descriptions. Working from system
requirements, high-level UML models are created which
serve as the basis for either hardware or software
implementations. Collectively, these models comprise a
model driven architecture (MDA), an approach to system
construction supported by the Object Management Group
(OMG)[6] . Using models and notation drawn from the
defacto UML standard, our model-driven approach
captures system functionality and semantics at a high
level of abstraction and then uses tools to generate
different platform specific implementations, in this case
either hardware or software.

2.1 Model Driven Architecture

Model Driven Architecture (MDA) is an approach to
software development that focuses on the production of
high-level models that are used as the basis for
automating system implementation. As in all engineering
disciplines there is a gap between system models and the
actual system under construction. The goal of MDA is to
reduce that gap by automating coding and
implementation through the creation of knowledge-based
tools.

The MDA approach centers on the definition of a
Platform Independent Models (PIMs) using a high-level
specification language. The goal is to develop models
that are precise enough to support code generation so
that a PIM may be transformed into one or more
Platform Specific Models (PSMs) for the actual
implementation. The advantage of the MDA approach is
that models and code are more easily kept up to date and

incremental, iterative development is facilitated by the
direct transformation from model to code.[7]

2.2 Unified Modeling Language (UML)

While MDA is technically neutral about the syntax or
structure of the high-level models, UML [8] has emerged
as a common foundation for MDA modeling. Initially
proposed as a unifying notation for object-oriented
design, UML has added a semantic underpinning that
makes it possible to build platform independent
descriptions that can be used by designers and architects
to make informed decisions about their
hardware/software tradeoffs.

UML defines twelve types of diagrams, divided into
three categories: (i) Structural Diagrams which include
the Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram, (ii) Behavior
Diagrams which include the Use Case Diagram (used by
some methodologies during requirements gathering);
Sequence Diagram, Activity Diagram, Collaboration
Diagram, and Statechart Diagram, and (iii) Model
Management Diagrams which include Packages,
Subsystems, and Models. UML has been used across a
wide variety of domains, from computational to physical,
making it suitable for specifying systems independently
of whether the implementation is software or hardware.
The recent addition of action semantics to UML has led
to development of executable UML (xUML) which
supports the direct execution of UML models. [9]

UML is supported by a wide range of tools such as
IBM’s Rational Toolset [10] and I-Logix’s Rhapsody
[11]. The exchange of models between tools is supported
by the XMI standard [12], an XML-based description
language which captures the details of UML model
diagrams in a portable, machine readable format. Most
UML tools and serves can automatically generate XMI
which is used as the basis for our MODCO
transformation from UML to HDL.

Also part of UML is an underlying action semantics
model based on timed Petri Nets [13]. This provides the
basis for model execution centered on concurrently
executing action objects that take a set of inputs and
transform them into a set of outputs. This concurrency
model is a natural fit to the distributed execution
environment of modern enterprise and embedded systems
applications.

2.3 Hardware Description Language (HDL)

HDL is one of a class of computer languages used to
provide formal description of electronic circuitry [14].
An HDL standard text-based expression is capable of
describing the temporal behavior and/or (spatial) circuit
structure of an electronic system. HDL is widely used in
hardware design to specify details of chip design for
either specialized chips or FPGAs. For custom or
standard-cell based integrated circuit, such as a processor
or other kind of specialized digital logic chip, HDL
specifies a model for the expected behavior of a circuit
before that circuit is designed and built. Special logic
synthesis tools are then invoked that ultimately provide
the geometric information used to produce photo-
lithographic masks necessary for the fabrication of the
device.

For programmable logic devices such as FPGAs, HDL
code is first delivered to a logic compiler (FPGA
synthesis tool), and the output is uploaded into the
device. The unique property of this process, and of
programmable logic in general, is that it is possible to
alter the HDL code many times, compile it, and upload
into the same device for testing.

From an MDA perspective, the decision to go from
HDL to either an integrated circuit or FPGA may be
viewed as a decision to go from a PIM description (HDL)
to a PSM (ASIC or FPGA). Within the industry, the
decision to go FPGA or specialized IC is a complex one
and is based on factors that are traceable back to higher
level architectural and market considerations.

2.4 SMU Co-Design Project Overview

The SMU Co-Design project is organized around a
series of transformations that go from system
requirements to hardware/software implementation. The
transformational flow is illustrated in Figure 1. From a
process perspective, there are two major phases in going
from requirements to implementation.

Fig 1. UML models are the first stage in the transformation to either
hardware or software implementation.

Phase I consists of building a sufficiently detailed

system model to support the hardware vs. software
tradeoff decision. To accomplish this, UML system
models are generated from both functional and non-
functional system requirements. Functional
requirements, which describe basic system functionality,
are mapped to UML component, class, use case, and state
diagrams. Non-functional requirements, which describe
system quality attributes such as performance and timing
requirements, are mapped to UML annotations that
describe performance constraints using property-value
pairs defined by UML profiles – auxiliary domain-
specific semantic information that can be added to UML
models.

Phase II uses the UML models from phase I as the
basis for the automated generation of hardware or
software components. Our initial effort, as described in
this paper, is the generation of HDL directly from the
UML using our MODCO tool (described in detail in
section 4). The generated HDL provides a standard text-
based representation of the temporal behavior and
(spatial) circuit structure of an electronic system suitable
for FPGA construction. HDL provides explicit notation
for expressing time and concurrency based on data
coming from the UML

3. From UML to HDL

The transformation from high-level UML state
diagram to HDL is based on a multi-step process. Figure
2 illustrates the process which consists of the following
steps.

Fig. 2. The transformation from UML to HDL.

Step 1. State diagrams are created using UML state

diagram notation. These diagrams describe system
behavior using states, events and actions and correspond
closely with the high-level design approach taken by
circuit designers.

Step 2. UML diagrams are exported to XMI, a
standard XML-based intermediate form. XMI uses
predefined XML elements and attributes to specify the
states, events and actions that make up the state diagram.
The initial impetus for XMI was to enable UML
diagrams to be imported and exported across different
UML tools. Our approach uses the XMI as input to the
next stage of processing.

Step 3. The XML representation of state machines is
parsed by a Java-based XML parsing utility developed as
part of the MODCO tool.

Step 4. Data extracted from the XMI by the Java
parser is mapped to HDL templates, resulting in HDL
suitable for use in FPGA construction.

3.1 Transformation Example

The following example illustrates the conversion of a
simple UML state machine. We begin with a simple state
machine as illustrated in Figure 3.

Stat e0

/ x=0

St ate1
ev=01/ x=1

ev=10/ x=0,y=1

St ate2Stat e3

ev=11/ x=1,y=0ev=00/ x=0,y=1

ev=01/ y=1

ev=10/ y=0

Figure 3. A simple UML state machine

In the above state machine, events ev1 thru ev5 drive
the transitions from state to state. Transitions are of the
form “event / action” so that ev=01/x=1 is interpreted as
on the occurrence of event 01 the action, x=1 is taken.
Listing 1 shows the HDL output from the state diagram
transformation.

library ieee;
use ieee.std_logic_1164.all;
entity fsm is

port (signal EV: in std_logic_vector(1 downto 0);
signal INPT, CLK: in std_logic;
signal X, Y: out std_logic);

end fsm;

architecture BEHAVIORAL of FSM is

type STATES is (STATE0, STATE1, STATE2, STATE3);
signal PRES_STATE, NEXT_STATE : STATES;
signal X, Y, CLK, RESET : std_logic;

 signal EV: std_logic_vector(1 downto 0);
begin --Synchronous Portion with Asynchronous reset
CLOCKED_PROC : process (CLK, RESET)

 begin
 if (RESET = ‘1’) then
 PRES_STATE <= STATE0;
 elsif (CLK’event and CLK = ‘1’) then
 PRES_STATE <= NEXT_STATE;

 end if;
 end process CLOCKED_PROC;

COMB_PROC : process (INPUT, PRES_STATE)
 begin
case PRES_STATE is
 when STATE0 =>
 X <= ‘0’;
 if (EV = “01”) then
 begin

 X <= ‘1’;
 NEXT_STATE <= STATE1;
 end
 else
 NEXT_STATE <= STATE0;
 when STATE1 =>
 if (EV = “00”) then
 begin
 X <= ‘0’; Y <= ‘1’;
 EXT_STATE <= STATE2;
 end

 elsif(EV = “10”)
 begin

 X <= ‘0’; Y <= ‘1’;
 NEXT_STATE = STATE;
 end
 elsif(EV = “11)
 begin
 X <= ‘1’; Y <= ‘0’;
 NEXT_STATE <= STATE2;
 end
 else
 NEXT_STATE <= STATE1;
 end if;

 when STATE2 =>

 if (EV = “01”) then
 begin
 Y <= ‘1’;
 NEXT_STATE <= STATE3;
 end
 else
 NEXT_STATE <= STATE2;
 when STATE3 =>

 if (EV = “10”) then
 begin
 Y <= ‘0’;
 NEXT_STATE <= STATE0;
 end
 else
 NEXT_STATE <= STATE3;
end case;
end process COMB_PROC;
end BEHAVIORAL;

Listing 1. UML to HDL transform output

4 Implications and Future Directions

The ability to move from UML diagrams to HDL
hardware descriptors is the first step in an effort to use
model-based architecture to further optimize and
automate the embedded systems development. For
example, having made the decision to implement a
function using FPGAs, there are numerous decisions
concerning the positioning of components that will
impact product viability. One aspect of all circuit-level
designs that impacts the final deliverable is power
consumption. While the capability to temporarily shut
down chip subsystems for power savings is becoming
critical for many handheld devices, most hardware
design reflects previous generation thinking where
energy management is a mere afterthought. However, as
software moves more and more into the embedded
application space, power management plays an
increasingly important role in chip design and
deployment.

Currently, we are exploring ways to use MDA to help
configure subsystems for power savings by associating
power regions with system functionality so that
subsystem activation is correlated with scenarios of usage
as described in UML Use Cases. By analyzing the whole
system in terms of supporting software and hardware, it
is possible exploit new opportunities for power savings
that may not be apparent to a hardware design team
focused on a single hardware block.

5 Summary

In this paper we describe a model driven architectural
(MDA) approach to hardware-software co-design
through the generation of HDL from high-level UML
diagrams. In Phase I, UML system models are generated
from both functional and non-functional system
requirements leading to hardware-software partitioning.
In phase II, HDL descriptions are generated from UML
diagrams using XMI, an XML-based description
language initially designed to allow UML designs to

migrate between different vendor tools. In our approach,
XMI model descriptions are parsed by XML parsers,
which fill in details for predefined HDL templates. We
believe that this approach bridges the gap between
hardware and software design with broad applicability
for embedded systems development.

Beyond the technical aspects of this approach, we
believe that the collaborative work between software
engineering and computer engineering helps create a
community and infrastructure that will permit students
and faculty from two different subspecialties to work
more closely together in pursuit of common computing
objectives and agendas.

References

[1] A. A. Jerraya and W. Wolf, "Hardware/Software
Interface Codesign for Embedded Systems,"
Computer, vol. 38, 2005.

[2] Y. Li and W. W. Wolf, "Hardware/Software Co-
Synthesis with Memory Hierarchies," in
Readings in Hardware/Software Co-Design, G.
D. Micheli, R. Ernst, and W. Wolf, Eds. San
Francisco: Morgan Kaufmann, 2002, pp. 265-
277.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschmitt, " Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous
Systems," International Journal of Computer
Simulation, special issue on "Simulation
Software Development," vol. 4, pp. 155-182.

[4] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E.
A. Lee, "Generating Compact Code From
Dataflow Specifications Of Multirate Signal
Processing Algorithms," IEEE Transactions on
Circuits and Systems, vol. 42, pp.? 1995.

[5] D. Frankel, Model Driven Architecture:
Applying MDA to Enterprise Computing: OMG
Press, 2003.

[6] "http://www.omg.org/mda."
[7] J. Warmer and A. Kleppe, The Object

Constraint Language Second Edition: Getting
Your Models Ready for MDA.: Addison-Wesley,
2003.

[8] G. Booch, I. Jacobson, and J. Rumbaugh,
Unified Modeling Language User Guide:
Addison-Wesley, 1998.

[9] S. J. Mellor and M. J. Balcer, Executable UML.
A Foundation for Model-Driven Architecture.
Indianapolis: Addison-Wesley, 2002.

[10] "http://www-306.ibm.com/software/rational/."
[11]

 "http://www.ilogix.com/rhapsody/rhaps
ody.cfm."

[12] "http://www.omg.org/technology/xml/."
[13] J. L. Peterson, Petri Net Theory and the

Modeling of Systems. Englewood Cliffs:
Prentice Hall, 1981.

[14] D. J. Smith, HDL Chip Design. A practical
guide for designing, synthesizing and simulating
ASICs and FPGAs using VHDL or Verilog.
Madison, AL.: Doone Publications, 1996.

