
A Fine-Grain Phased Logic CPU

Robert B. Reese Mitchell A. Thornton Cherrice Traver
 Mississippi State University Southern Methodist University Union College
 reese@ece.msstate.edu mitch@engr.smu.edu traverc@union.edu

Abstract

A five-stage pipelined CPU based on the MIPs ISA is
mapped to a self-timed logic family known as Phased
Logic (PL). The mapping is performed automatically from
a netlist of D-Flip-Flops and 4-input Lookup Tables
(LUT4s) to a netlist of Phased Logic gates. Each PL gate
implements a 4-input Lookup Table in addition to control
logic required for the PL control scheme. PL offers a
speedup technique known as Early Evaluation that can be
used to boost performance at the cost of additional PL
gates. Several different PL gate-level implementations are
produced to explore different architectural tradeoffs
using early evaluation. Simulations run for five
benchmark programs show an average speedup of 1.48
over the clocked netlist at the cost of 17% additional PL
gates.

1. Introduction

Various design communities view global clocking
problems substantially differently. For the ASIC
community, global clocking issues are still at the stage
where a combination of innovative designers and hard
work can solve global clocking challenges. Of course, the
amount of needed innovation and hard work keeps
increasing, but it is has not yet reached the 'broken' stage.
A different perspective on global clocking issues exists in
the programmable logic community, which can be
separated into consumers and vendors. Consumers expect
a combination of tool, methodology, and silicon substrate
that will input RTL descriptions of complex designs and
produce working implementations that run at
specification. Consumers expect global clocking issues to
be solved by the vendor, usually by vendor provided tools
in addition to the programmable logic substrate.
Consumers balance many factors in choosing
programmable logic such as density, cost, speed, power,
and ease of use. The ease of use is important because
consumers are dependent upon vendor provided
design/verification methodologies for implementation and
the effectiveness of these methodologies in directly
impacting time to market. Furthermore, programmable
logic consumers tend to work in smaller design teams than
ASIC designers, but still must deal with designs in the
hundreds of thousands to millions of gates. This means

that designer productivity must be high, and must continue
to increase as programmable logic densities increase.
Design reuse for consumers means the ability to reuse
RTL blocks in new programmable logic designs, either by
the same vendor or a different vendor.

Programmable logic vendors are faced with providing
the magical tool, methodology, and silicon substrate
combination that programmable logic consumers desire.
To deal with global clocking issues, programmable logic
vendors are using the techniques of ASIC designers,
except they are lagging behind ASICs by anywhere from
2-5 years in terms of the aggressiveness of their solutions.
PLLs and DLLs are now common on all high end FPGAs.
It is only a matter of time before high-end FPGAs begin
including the local clock generation/management/active-
deskewing that is now common in high-performance
ASIC and CPU design [1]. Because vendors must provide
a solution for global clocking issues to users, the vendors
face the additional problem of consumer education in
whatever methodology they provide that allows
consumers to reach timing closure. Complex clocking
strategies that cause a reduction in ease-of-use, difficulty
in reaching timing closure, or has a steep learning curve
that increases time to market may result in consumers
seeking an alternate solution.

This paper discusses a self-timed design methodology
known as Phased Logic that eliminates the need for a
global clock and could form the basis for a new family of
programmable logic devices. Elimination of the global
clock network benefits programmable logic vendors as it
provides a scalable architecture that requires no
significant architecture or methodology changes as the die
size grows. Our methodology satisfies the needs of
programmable logic consumers in that it provides
automated mapping from a netlist of D-flip-flops and
combinational logic to our self-timed architecture. This
means that the familiar synchronous RTL design
methodology and tools used by programmable logic
consumers are compatible with our proposed approach.

2. Phased Logic

2.1 Background

Sutherland’s micropipelining [2] is a self-timed
methodology that uses bundled data signaling and Muller
C-elements [3] for controlling data movement between

pipeline stages. Level Encoded Dual Rail (LEDR)
signaling was introduced in [4] as a method for providing
delay insensitive signaling for micropipelines. The term
phase is used in [4] to distinguish successive computation
cycles in the LEDR micropipeline, with the data
undergoing successive even and odd phase changes. The
systems demonstrated in [2][4] were all linear pipelined
datapaths, with some limited fork/join capability also
demonstrated, but with no indication of how general
digital systems could be mapped to these structures. This
problem was solved in [5] via a methodology termed
Phased Logic (PL), which uses marked graph theory [6]
as the basis for an automated method for mapping a
clocked netlist composed of D-Flip-Flops, combinational
gates, and clocked by a single global clock to a self-timed
netlist of PL gates. Logically, a PL gate is simply a
Sutherland micropipeline block with the state of the
Muller C-element known as the gate phase, which can be
either even or odd. In this paper, a fine-grain PL gate will
be used that has only one output, a compute function
composed of a single logic function, and which uses
LEDR signaling for data. A PL gate is said to fire (the
Muller C-element changes state) when the phase of all
data inputs match the gate phase. This firing causes the
output data to be updated with the result of the
computation block of the gate.

Figure 1. LEDR Encoding and PL Gate Firing

The algorithm for mapping a clocked netlist to a fine-
grain PL netlist was developed in [5] and is summarized
below:
• All DFFs are mapped one-to-one to barrier gates in

the PL netlist. A barrier gate is a PL gate whose logic
function is a buffer function, and whose output phase
always matches the gate phase. This means that after
reset, all barrier gates will have tokens (active data)
on their outputs.

• All combinational gates are mapped one-to-one to
through gates in the PL netlist. A through gate is a PL
gate whose logic function is the same as the original

combinational gate, and whose output phase is always
opposite the gate phase.

• Single rail signals called feedbacks are added where
necessary to ensure liveness and safety of the
resulting marked graph. Liveness means that every
signal is part of a loop that has at least one gate ready
to fire. Safety means that a gate cannot fire again until
all destination gates have consumed its output data.
Feedbacks cannot be added between two barrier gates
because this would cause a loop with two tokens on
it, violating the safety constraint. If necessary, buffer-
function through gates (called splitter gates) are
inserted between barrier gates to provide a source and
termination for feedback.

• Feedbacks that originate from a barrier gate have an
initial token on them since all outputs from barrier
gates have tokens. This implies that feedbacks from
barrier gates must terminate on a through gate.

• A feedback that originates from a through gate and
terminates on a through gate must have an initial
token since the output of the destination through gate
will not have an initial token.

• A feedback that originates from a through gate and
terminates on a barrier gate must not have an initial
token since the output of the destination barrier gate
will have an initial token.

Figure 2. Translation and Fire of a 2-bit Counter

A signal that is part of a loop that is both live and safe

is said to be covered. All signals in the circuit must be
covered to satisfy liveness and safety. Signals that are part
of naturally occurring loops that satisfy liveness and safety
critera are already covered and do not require feedbacks.
It is possible for a single feedback signal to create a loop

EVEN

PL Gate PL Gate
ODD

EVEN

EVEN

a. LEDR encoding

EVEN
 “0”

ODD
 “1”

EVEN
 “1”

ODD
 “0”

phase:
EVEN EVEN

EVEN
phase:
ODD

b. Ready to fire c. After gate fires

E

feedback (odd)
G4 G3

G2 G1

E

E

E

odd 1

even 0

even 0

odd 0

E

feedback (even)
G4 G3

G2 G1

E

O

O

even 1

even 0

even 0

even 0

D Q

D Q

a. Clocked 2-bit Counter

b. Translated PL Counter (reset state) c. PL Counter after G2,G4 fire

that covers multiple signals. Figure 1 illustrates the LEDR
encoding of the dual rail signals used between PL gates.
Notice that the “value signal” (top), is the actual logical
value and the two signals together define the phase. A
sample gate firing is also shown in Figure 1.

Figure 2 illustrates the translation of a clocked 2-bit
counter to a PL netlist and a sample firing of the circuit.
The signal between gate G4 and G1 in the PL netlist is a
feedback net added to ensure safety.

2.2 A Fine-Grain PL Gate

Figure 3 shows a Phased Logic gate [9] (PL4gate) that
uses a 4-input Lookup Table (LUT4) for the computation
element. The Muller C-element is used to detect operand
arrival (a,b,c,d) from the LEDR inputs. The fi input is a
feedback input to the gate; an external C-element is used
to concentrate multiple feedbacks if required. The
feedback_out signal is used to provide feedback to gate
sources if needed (the negation of this signal is also
provided but not shown). The gating signal (GC) to the
output latches is delayed until the LUT output value is
stable.

Figure 3: LUT-4 Based Phased Logic Gate

A PL netlist is continually firing even if no data values
are changing, just as a clock signal toggles even in the
presence of unchanging data. There is a one-to-one
mapping of clock cycles in the original clocked netlist to
computation cycles in the PL netlist. One advantage of
this aspect of a PL system is that it makes it easy to
interface a PL system to a clocked system as long as the
time for a computation cycle in the PL system is less than
the clock period of the clocked system. One disadvantage
of continuous token circulation is that the PL control
network is always dissipating power. For power
efficiency, each PL computation function (i.e., a LUT4)
should be large compared to the control logic in order to
amortize the control power over a large compute function.
A power savings feature in fine-grain PL systems is that
latches on the output of each PL gate tend to reduce the

number of transient computations in a fine-grain PL
system. In [7] it was shown that PL systems using the
gate in Figure 3 could be more power efficient than the
clocked equivalents.

2.3 Early Evaluation
One disadvantage of micropipelines, and PL systems in

general, is that the output latch latency adds to the critical
path delay. However, there are other features of PL that
can overcome this gate-level performance disadvantage
and allow PL systems to outperform their clocked
equivalents.

“Early evaluation” [7] is said to occur when a PL gate
fires upon arrival of a subset of inputs. This can improve
performance as it adds parallelism to the system; gates
downstream of the early evaluation gate can be firing in
parallel with the gates producing the ‘tardy’ inputs. Early
evaluation gates do not introduce a liveness problem
because they do not alter the number of gate firings, only
the sequence of gate firings. To maintain safety, all
inputs/outputs of early evaluation gates must be in a loop
that has a feedback signal that originates from or
terminates on the early evaluation gate.

Figure 4: An Evaluation Gate from Two PL Gates

Figure 4 illustrates how an early evaluation gate can be

constructed from two PL4gates. The upper gate is termed
the master and contains the normal logic function. The
lower gate is named the trigger and contains the early
evaluation function based on a subset of the inputs to the
master gate. In this example, the master gate implements
the carry function for a full adder (A and B are data bits,
and C is the carry-in bit). The trigger function is the
logical OR of the kill and propagate functions which
allows the master gate output to fire upon arrival of only
the A and B inputs. This speedup technique for the carry
chain of an adder is a well-known self-timed speedup
mechanism for addition but PL allows it to be generalized
to any logic function [8].

a_t
a_v
b_t
b_v
c_t
c_v
d_t
d_v

C

D Q
G

a_v

LUT4

D Q
Q

Clr
G

Reset

t

Feedback_in

v

Clr

Pre

Reset (if needed)

Preset (if needed)

Gate Phase

GC

b_v
c_v
d_v

t_b
Dly

Feedback_outa_t
a_v
a_t
a_v
b_t
b_v
b_t
b_v
c_t
c_v
c_t
c_v
d_t
d_v
d_t
d_v

C

D Q
G

a_v

LUT4

D Q
Q

Clr
G

Reset

t

Feedback_in

v

Clr

Pre

Reset (if needed)

Preset (if needed)

Gate Phase

GC

b_v
c_v
d_v

t_b
Dly

Feedback_out

C

D Q
G

a_v

LUT4

D Q
Q

Clr
G

Reset

t

Feedback_in

v

Clr

Pre

Reset (if needed)

Preset (if needed)

Gate Phase

GC

b_v
c_v
d_v

t_b
DlyDly

Feedback_out

Feedback from
master destinations

fo

A
B
C

v
t

F(Se)

PL4gate
master

A
B fi

v
t

PL4gate
trigger

C

F = C(A+B) + A B

F = A'B' + AB

Feedback to all
master, trigger
sources

Pe

Pe F(Se)

Feedback from
master destinations

fo

A
B
C

v
t

F(Se)

PL4gate
master

A
B fi

v
t

PL4gate
trigger

CC

F = C(A+B) + A B

F = A'B' + AB

Feedback to all
master, trigger
sources

Pe

Pe F(Se)

2.4 Loop Delay Averaging
The cycle time of a PL system is bounded by the

longest register-to-register delay in the original clocked
netlist, but the average cycle time can be less than this
value because of the averaging of loop cycle times of
different lengths [5]. The circuit in Figure 5 shows a two-
stage, unbalanced pipeline. The DF block in each circuit
represents a D-flip-flop, and the G block a combinational
block. The dot shown on particular signals represent the
initial tokens (active data) for the PL netlist; the dashed
nets are feedback signals added in the PL system for
liveness and safety.

Figure 5: Two-stage, unbalanced Pipeline

If each combinational gate has a delay of 10 units, and

the DFF delay plus setup time is also 10 units, then the
longest path in the clocked system would be 40, or 4 gate
delays. To simplify this particular explanation, we assume
that a PL gate has the same delay as its corresponding gate
in the clocked netlist. Analysis verified by simulation
shows that each gate in the PL system fires in a repeating
pattern of 40 time units, 20 time units, for an average
delay of 30 time units. Note that if the original clocked
system had balanced pipeline stages, then the longest path
would be 30 time units. This automatic averaging of loop
paths gives more freedom in the placement of logic
between DFFs. Even if logic is balanced between pipeline
stages in the clocked system, early evaluation firings can
create unbalanced loop delay times and delay averaging of
these different loop times will still occur.

Figure 6: Token buffering to improve performance

2.5 Token Buffering
The flow of data within a PL system can be inhibited if

there are not enough gates within a path to take advantage
of the available parallelism [11]. Circuit A in Figure 6 is
a minor modification of the two-stage unbalanced pipeline
of Figure 5. Simulation results show that Circuit A fires in
a repeating pattern of 40, 40 time units which is lower
performance than Figure 5. However, adding a buffer as
shown in Circuit B changes the fire pattern to 40, 20 for
an average of 30 time units, the same as Figure 5. We call
this buffer a token buffer, and it adds no functionality to
the circuit, but does increase performance.
3. Comparisons to Other Work

Phased Logic is unique in that it offers an automated
mapping from a clocked system to a self-timed system
from the netlist level. This allows a designer to produce
the netlist using familiar design tools and HDLs with the
restriction that the clocked netlist has only one global
clock. Most asynchronous and self-timed design
methodologies [10] use custom synthesis tools and HDLs
for design specification and this requires a substantial time
investment on the part of the designer to learn the new
methodology.

A self-timed design methodology known as Null
Convention Logic (NCL) [13] allows the use of standard
HDLs (VHDL) but it places restrictions on how the RTL
is written and what gates the RTL is synthesized to. The
NCL synthesis methodology requires that the RTL be
written in a restrictive manner that separates the
combinational logic and storage elements, because the
NCL synthesis methodology uses a different synthesis
path for registers versus combinational logic. This
prevents the use of third party RTL without a significant
effort to rewrite the RTL in the NCL style. Designers
must also specify the data completion structures and
request/acknowledge logic needed at each register, which
is an added burden on the designer. The RTL is
synthesized to a restricted subset of functions that is then
mapped to a set of predefined macros that can be
implemented in NCL. NCL uses dual rail signaling where
one rail represents TRUE and other FALSE. When both
wires are negated this is known as the NULL state; when
one wire is high this is the DATA state. A computation
asserts one of the rails (the DATA state) followed by the
NULL state after an acknowledgement is received. This
means that during each computation half of the wires are
making a transition from ‘0’ to ‘1’ and back to ‘0’. By
contrast, in PL half of the wires make a single transition
during a computation; either to ‘1’ or ‘0’. In [14],
Theseus logic applies NCL to the Atmel FPGA
architecture by replacing the cell internals with a N-of-4
NCL macrocell that can implement 9 different
combinational functions: two 2-input functions, three 3-

DF G G G DF GDF G G G DF G

D1 G G G DF G

D2

D1 G G G DF G

D1 buff

Circuit A, no buffering

Circuit B, token buffer
added

D1 G G G DF G

D2

D1 G G G DF G

D1 buff

Circuit A, no buffering

Circuit B, token buffer
added

input functions, and four 4-input functions. The NCL
macro cell is inherently state holding so registers are
implemented with this same macrocell. Combinational
logic must be synthesized to this limited subset of logic
functions. By contrast, PL allows any possible LUT4
function. It is difficult to compare NCL performance to
Phased Logic performance or to clocked performance
because there are no published NCL papers that contain
this performance information. Most importantly, there is
no concept of early evaluation in NCL so this speedup
path is not available to NCL.

A self-timed FPGA based upon LUT3s and using
LEDR encoding was presented in [15]. The cell design
presented in Figure 3 is a variation of the cell design used
in [15]. In [15], three feedback inputs are included in each
cell, so the Muller C-element has 6 inputs (3 data, 3
acknowledge). The author uses the cell in the context of
Sutherland’s micropipelines [2] and self-timed iterative
rings [11]. Both methods require a feedback signal for
each output destination. The PL methodology removes
the need for a feedback for every output signal destination
as multiple signals along a path can be covered by the
same feedback signal, and some signals need no feedback
signal if they are already part of a loop.

An FPGA-based architecture for asynchronous logic is
also proposed in [16]. This FPGA architecture was aimed
at accommodating a range of asynchronous design styles,
and allowed for mixed synchronous and asynchronous
designs. All signals were single rail. By contrast, our
proposed function block is only intended for supporting
the PL design style, and thus implements PL designs more
efficiently than [16]. Two other asynchronous FPGA
architectures are presented in [17][18][19]. These
proposed architectures are for bundled data systems,
which are not delay insensitive and thus require
programmable delay elements. Neither approach allows
automated synthesis to the architectures. Finally,
prototyping of asynchronous circuits in commercially
available FPGAs is demonstrated in [20]. While it is
possible to implement a limited set of asynchronous
circuits in current FPGAs, the fact that these FPGAs are

optimized for clocked designs means that these mappings
are far from optimal and would be much better served via
a custom architecture.

4. A Phased Logic CPU

Previously published designs that have been mapped to
Phased Logic include an iterative multiplier, a filter
datapath, and arithmetic structures [7]. A test case that
has been used in the past for other asynchronous
methodologies is a CPU implementation such as the MIPs
integer subset [21], the ARM processor [22], and the 8051
[23]. However, there are more important reasons for
mapping a CPU to PL other than for testing the
methodology. Processors have become important features
of programmable logic families, either implemented as a
soft macro [24] or as a hard macro. Soft macro
processors are parameterized by bus width and
synthesized from an RTL description. As such, it is
important to show that Phased Logic can support this
methodology.

In order to show that the Phased Logic methodology is
compatible with RTL written by others, we searched the
WWW for freely available processors specified in RTL.
Our search produced a VHDL specification of a MIPs
ISA (integer subset) implemented as a 5-stage pipeline
[12]. The documentation provided with the model has
synthesis and simulation results that shows the model is
functional when targeted to a Xilinx XC4000 device. We
found the processor to be functional as both RTL and
when synthesized to a netlist of LUT4s and DFFs. The
CPU was implemented with the standard fetch, decode,
execute, memory and writeback stages. A simplified
diagram of the CPU datapath appears in Figure 7 (the
memory interface is not shown). Because the design was
intended for an FPGA, the register file RTL used edge-
triggered devices instead of latches. The ALU did not
implement a multiplication operation. Forwarding paths
were used to solve data hazards in the pipeline without
having to use stalls. The MIPS branch delay slot plus the

R
egfile

A
LU

+

4

Branch Compute

Fetch Decode Execute Mem WB

Figure 7: Simplified CPU Datapath Diagram

PC

R
egfile

A
LU

+

4

Branch Compute

Fetch Decode Execute Mem WB

Figure 7: Simplified CPU Datapath Diagram

PC

use of a forwarding path for the branch computation
meant that no stalls were needed for branch or jump
instructions. The same memory interface was used by
both fetch and memory stages, so a stall was generated
whenever the memory interface was required by the
memory stage.

4.1 Mapping to a PL Netlist

Figure 8 shows the methodology used to go from RTL
to a gate-level Phased Logic netlist. Synopsys Design
Compiler is used as the synthesis tool for mapping the
RTL to an EDIF netlist of D-flip-flops and LUT4s. A
DesignWare Library optimized for LUT4s is used to map
arithmetic operations.

Figure 8: Clocked netlist to PL netlist methodology

The mapping program reads the EDIF netlist and

creates a VHDL netlist of PL4gates and 4-input Muller C-
elements. The Muller C-elements are used for feedback
concentration when multiple feedbacks converge on one
PL4gate. The PL4gate used in the VHDL netlist is the
same gate as described in Figure 3. The model was
modified to replace the bidirectional data bus with a
separate I/O databus as our mapping program does not yet
support tri-state or bi-directional gates. The RTL
operators for addition/subtraction in the ALU, for branch
computation, and for PC+4 increment were replaced with
Synopsys DesignWare components that were optimized
for LUT4s. This was done to improve the quality of the
resulting implementation. The Mentor Graphics Modelsim
environment was used for simulating the original RTL and
the PL netlist. The clock period for the RTL simulation
was set based upon the longest timing paths reported by
Synopsys after the design was synthesized to a netlist of
D-flip-flops and LUT4s. The gate delay of the PL4gate
was set to 40% higher than a LUT4 delay to account for

the output latch latency. This value was derived from
delay values for LUT4s and D-flip-flops from Altera and
Xilinx datasheets. This means that the PL netlist begins
with a 40% performance penalty when compared to the
clocked netlist.

Our mapping program produced several versions of the
PL CPU; these versions are summarized in Table 1.

Table 1: Fine-Grain CPU Implementations

Version % Extra
LUT4s

a) No EE gates, no token buffering (4855
LUT4s)

0%

b) Manually inserted EE gates, no token
buffering

1.5%

c) Version (b) + token buffering 2.1%
d) Version (c) + automated insertion of EE
gates, with trigger gates chosen by a cost
function that weights signal arrival times with a
trigger function coverage of 50% or better

16.9%

e) Version (c) + automated insertion of EE gates
on all LUTs with input signal arrival time
differences of one LUT delay or better

38.4%

Version (a) used no Early Evaluation (EE) gates and

did not have any token buffers. Version (b) used
manually inserted EE gates in the form of multiplexers in
datapaths where one operand had a significantly earlier
arrival time than the other operand. One of these
datatpaths was the ALU result forwarding path to the
idecode stage and branchpc computation. An example of
ALU forwarding is shown below in which the result of the
first addition is required as an operand in the second
instruction.

 Add r5, r6, r9
 Add r4, r5, r10

A second datapath that used these manually inserted
EE gates was the branchpc computation; if the instruction
was not a jump or branch, then the PC+4 value required
for the next instruction fetch could be produced faster.
The multiplexers that interfaced the external input databus
to the rest of the CPU were also replaced with EE gates. If
the instruction was not a load word (lw), this allowed the
rest of the CPU to proceed without having to wait for the
memory interface to fire. The circled multiplexers in
Figure 7 show where early evaluation gates were added in
the ALU forwarding path and the branchpc computation.

Examination of the simulation results for version (b)
indicated that performance was limited by the lack of
token buffers in the execute stage where the ALU opcode
fanned out to several levels of logic without buffering.
Version (c) included buffers on these control lines that
were inserted manually by modifying the RTL VHDL.

RTL
VHDL

Synopsys
Design
Compiler

LUT4+DFF library,
Design Ware LUT4 library,
L. Syn constraints

EDIF
netlist
(LUT4
+ DFFs)

PL
Mapper
program

Feedback
generation
constraints

VHDL
netlist
of pl4gates
(LUT4
based)

Model
Tech
VHDL
Simulator

VHDL
netlist
(LUT4
+ DFFs
)

RTL
VHDL

Synopsys
Design
Compiler

LUT4+DFF library,
Design Ware LUT4 library,
L. Syn constraints

EDIF
netlist
(LUT4
+ DFFs)

PL
Mapper
program

Feedback
generation
constraints

VHDL
netlist
of pl4gates
(LUT4
based)

Model
Tech
VHDL
Simulator

VHDL
netlist
(LUT4
+ DFFs
)

We plan on adding automated insertion of token buffers in
the next version of our mapping program.

Our mapping program supports automated insertion of
EE gates [8] by traversing the netlist and searching for
trigger functions based upon signal arrival times. Version
(d) augmented version (c) with automated insertion of EE
gates chosen by a cost function that weighted signal
arrival times with a trigger function coverage of 50% or
better. Version (e) inserted the maximum number of EE
gates by inserting an EE gate for any LUT4 that had signal
arrival differences of one LUT4 delay or better.

4.2 Simulation Results

The VHDL PL fine-grain netlists were simulated using
the Mentor Modelsim environment. The output latches of
Figure 3 were assigned a 0.4 LUT4 delay. Four input C-
elements that were used for feedback concentration were
assigned a 0.6 LUT4 delay. Five benchmark programs
were used for performance measurement: (a) fibonnaci
(fib), a value of 7 was used, (b) bubblesort, an array size
of 10 was used, (c) crc, calculate a CRC table with 256
entries, (d) sieve – find prime numbers, stopping point set
to 40 (e) matrix transpose - a 20x30 matrix was used.

Table 2: CPU results for CRC program

 Fast Mem Slow Mem

Version CRC
CRC
(RO) CRC

CRC
(RO)

(a) -1.05 -1.05 -1.31 -1.31
(b) 1.08 1.11 1.08 1.11
(c) 1.28 1.38 1.09 1.11
(d) 1.45 1.55 1.10 1.11
(e) 1.46 1.56 1.10 1.11

All programs were written in C and compiled with gcc

using the –O option to produce an assembly language file
that was then assembled via a Perl script to produce an
input file read by the VHDL memory model. Table 2
shows the speedup results for the fine-grain PL CPU
compared to the clocked netlist for the crc program. The
clocked netlist was simulated with a clock cycle time of
24 LUT4s which was the critical path as reported by
Synopsys, which ran through the execute, branch
computation, and idecode stages. The speedup was
calculated by dividing the longer simulation time by the
smaller simulation time, with a negative sign used to
indicate a slowdown of the PL netlist compared to the
clocked netlist. The memory access time was set to the
maximum slack allowable in the 24 LUT4 cycle time of
the clocked netlist so that memory was not the bottleneck
for the clocked netlist. The “slow mem” columns uses
this memory access time for the PL netlist, while the “fast
mem” columns assume that memory bandwidth can be

increased such that it is not the bottleneck in the PL
netlist. The CRC columns show the speedup for the
different fine-grain PL versions for the crc benchmark.
The 5% slowdown for the non-EE, fast memory case is
not as bad as expected given the 40% latency penalty of
the output latch for each fine-grain PL gate. Clearly, loop
averaging is helping to overcome this delay penalty. The
addition of the manual EE gates produced a small
speedup, but this speedup was limited by lack of
buffering. The large jump in performance between
versions (b) and (c) indicates the importance of buffering
to take full advantage of available parallelism in the
netlist. The automated insertion of EE gates provided
another sizeable increase in performance. However, there
is diminishing returns on performance as shown with the
negligible performance increase between versions (d) and
(e). We also do not rule out the possibility that the
performance of version (e) is being limited due to
inadequate buffering. An area of future work is a
performance tool that can be used to identify bottlenecks
due to improper buffering.

The CRC RO columns use a version of the benchmark
that has the instructions manually reordered in order to
decrease the amount of ALU operand forwarding. For
example, a typical code segment produced by gcc is
shown below:
 addi r4,r4,1

 slti r2, r2, 8
 bne r2, r0, L10

ALU forwarding is required for the bne instruction
because r2 is a destination in the slti instruction, and a
source in the bne instruction. However, the instructions
can be reordered as shown below:

slti r2, r2, 8
addi r4,r4,1
bne r2, r0, L10

Functionally, the two code streams are equivalent, but
the second code stream does not require ALU forwarding
for the bne instruction, which increases the number of
early evaluation firings and hence the performance.
Instruction reordering was done manually by examining
the assembly code of the critical loops. Table 3 shows the
results for all fine grain CPU versions for the re-ordered
instruction benchmarks under the fast memory
assumptions.

Table 3: Fast memory, reordered inst. benchmarks

Pgm Ver (a) Ver(b) Ver(c) Ver(d) Ver(e)

Fib -1.05 1.10 1.37 1.50 1.51
Bubbl
e

-1.05 1.09 1.30 1.44 1.45

CRC -1.05 1.11 1.38 1.55 1.56

Sieve -1.05 1.08 1.27 1.43 1.45

Tpose -1.05 1.09 1.32 1.47 1.50

Avg -1.05 1.09 1.33 1.48 1.49

Table 4 shows performance results for streams of

individual instructions executed on version (d) using the
fast memory assumption. The average cycle time is given
in LUT4 delays and the fire pattern is the repeating
pattern of cycle times for the instruction stream. The
jump and branch streams are two instruction streams
because of the branch delay slot of the MIPs ISA; a nop
was placed in the branch delay slot.

Table 4: Individual instruction timings

The descriptors fwd, nofwd indicate if ALU operand

forwarding was done between instructions. In general, the
instructions that required forwarding are slower than those
that do not. The logical instructions are the fastest with
branches being the slowest. One of the reasons for the
complex fire pattern of the load instruction is the stall that
is generated during the load operation.

Table 5: Instruction Statistics for Benchmarks
 fib bubble crc sieve mtpose
brnch 13.4% 17.0% 19.7% 21.0% 7.7%
jmp 12.9% 0.0% 4.7% 0.3% 0.3%
log 10.0% 0.6% 16.3% 0.7% 0.7%
shift 19.9% 25.3% 34.9% 26.8% 26.4%
slt 0.0% 23.0% 11.6% 18.5% 10.5%
addsub 12.2% 17.5% 11.6% 22.0% 32.5%
lw 17.4% 15.3% 0.0% 3.3% 7.5%
sw 14.2% 1.3% 1.2% 7.4% 14.4%

Table 5 shows the dynamic instruction frequency for

the benchmarks. The crc benchmark has the largest
percentage of logical instruction which helps explains its
high performance.

Table 6: Early Evaluation Statistics

 mem efire branch efire alufwd efire
fib 89% 74% 77%
bubbl 85% 82% 65%
crc 100% 76% 76%

sieve 97% 75% 64%
mtpose 92% 92% 73%

Table 6 shows the percentage of early firings in terms

of instruction cycles for CPU version (c) executing the
reordered benchmarks under the fast memory assumption.
The crc benchmark had 100% early firing of the memory
databus input multiplexer because this benchmark did not
read memory; it started with a fixed seed for the CRC
table. Note that the fib benchmark had the highest number
of ALU operand forwarding early fires, which helps to
explain its status as the second highest performing
benchmark.

4.3 Netlist Statistics
The netlist statitistics for the designs are shown in

Table 7.
Table 7: Netlist Statistics

 Ver a Ver b Ver c Ver d Ver e
Signal
Fanout 17149 17558 17614 17614 17614
% unsafe 72.7% 83.8% 83.9% 84.1% 84.1%
Signal
Nets 6346 6569 6164 6164 6164
Fdbck
Nets 4578 4762 4791 4799 4799
Max FB
Inputs 239 244 164 164 164
4-input
Celem 2596 3153 3168 3204 3225
LUT4s 4855 4928 4957 5674 6719
%increase
(LUT4s) 1.5% 2.1% 16.9% 38.4%

The signal fanout is interesting as this represents the
maximum number of signals that would need to be
covered by feedback signals. The worst case in terms of
required feedback signals would be one feedback net for
each signal fanout. However, some signals are part of
naturally occurring loops and do not have to be covered.
The %unsafe row shows the percentage of signals that
must be covered via feedback net insertion. The max fb
inputs row is the maximum number of feedbacks
concentrated at a PL gate. This large concentration was
due to a rdy signal used in the bus interface that can be
used to halt the processor. The rdy signal acts as a
conditional load on many of the registers within the CPU.
Any large fanout, synchronous signal in the clocked netlist
will generate a large number of feedbacks terminating at
the originating PL gate in the PL netlist. In versions c, d,
and e some buffering was inserted on this signal path to
reduce the maximum number of required feedback inputs.
Trees of 4-input C-elements were inserted for feedback
signal concentration. These C-elements would have to be
included as a separate resource on the programmable
substrate, perhaps one four-input C-element for each PL

Instr. Seq.
(run on PL(d)

Avg
Cycle
Time

Fire Pattern

Jump, nop 14.4 15.4,13.4
branch, nop 17.0 19.8,14.0
load 15.6 17.4,12.6,16.2,18.0
store 14.4 14.8,14.0
add (nofwd) 14.4 15.4,13.4
add (fwd) 16.8 16.8
and (nofwd) 14.4 13.0,15.8
and (fwd) 14.8 13.2,15.6
shift (nofwd) 14.4 15.6,13.2
shift(fwd) 16.8 16.8

gate. Figure 9 shows the distribution of inputs for the C-
elements in version (d) of the CPU. The large input C-
elements are rare as can be seen from the figure. The
spikes at 32 and 33 are due to the 32-bit datapaths in the
design.

Figure 9: Distribution of Inputs for C-elements

All of the PL designs in Table 5 were generated with

feedback signal lengths restricted to the preceding gate
level, or a path length of one gate. This means that the
maximum number of feedbacks was inserted into all of
these designs. Table 8 shows the effect of different
feedback arrangements on version (a) (the non-early
evaluation gate netlist) on the speedup of the bubblesort
benchmark.

Table 8: Effect of Feedback on Performance
PLEN Speedup Feedback Signals

1 -1.05 4578
2 -1.05 4472
4 -1.05 4397
8 -1.31 4401

∞(13) -1.05 4401

The PLEN parameter specifies the number of gate

levels to trace back from an originating gate to look for
feedback termination candidates. The last row shows
PLEN set to a large value with the number in parenthesis
the maximum feedback length actually used in the netlist.
The current feedback generation algorithm cycles through
all gates in the netlist, ranking candidate feedback
termination gates by the scoring function shown below:

fbscore = (covered_signals) – (fb_inputs)
 – (0.1* path_length)
 + (covered_signals – path_length)

The covered_signals term is the number of signals
made safe by adding this feedback. The fb_inputs term is
the number of feedbacks already terminating at this node;
a negative weight encourages spreading feedbacks among
gates. The path_length term is the number of gate levels

from the feedback source to the destination. The third
term in the score assigns a small penalty based on
feedback length. The fourth term assigns a penalty that is
the difference between the number of signals covered and
the feedback length. Ties are broken in favor of shorter
feedback signals. The current algorithm does not consider
netlist performance when placing feedbacks; its only goal
is to reduce the number of feedbacks. No claims are made
as to the optimality of this heuristic approach.

 In Table 8, the number of feedbacks decreases as
PLEN increases, because feedbacks are allowed to
traverse multiple gate levels and hence cover multiple
signals. However, the decrease in the number of feedbacks
is small because the register file has a large number of
paths that have only one gate between two D flip-flops.
This forces feedbacks with a path length of 1, and
increasing the PLEN parameter will not affect these
feedbacks. The scoring function does not guarantee the
minimum number of feedbacks as evidenced by the fact
that the cases of PLEN=8,∞ has more feedbacks than for
PLEN=4.

The speedup column illustrates a problem with the
current feedback placement algorithm in that the case of
PLEN=8 had significantly lower performance. This
means that a feedback net critical to performance just
happened to be placed correctly for the case of PLEN=∞,
and incorrectly for PLEN=8. An area of future work is to
incorporate PL system performance considerations into
the feedback net placement algorithm.

5. Acknowledgements

The authors would like to thank Lokesh

Shivakumaraiah and Pritam Kokate for assistance in
running benchmarks, the creation of the C-to-object code
path, and for RTL modifications that removed the tri-state
memory bus. Thanks also go to Kenneth Fazel for
discussions on parameter settings for controlling insertion
of early evaluation gates. This work was funded in part by
an award from the National Science Foundation (CCR-
0098272).

6. Summary

This paper has presented a design methodology known
as Phased Logic (PL) that allows a netlist of D-flip-flops
and combinational logic clocked by a single global clock
to be automatically mapped to a self-timed circuit. This
methodology was applied to a publicly available RTL
VHDL model of a 5-stage pipelined MIPs. The RTL was
synthesized via a commercial synthesis tool to a netlist of
D flip-flops and 4-input Lookup tables and then mapped
to several different self-timed PL netlists that explored
various tradeoffs in the automated mapping process. One
benefit of PL is averaging of loop cycle times, which

means that performance is not necessarily limited to the
longest delay path between registers. This fact was
clearly illustrated in the measured performance data that
showed a PL netlist without early evaluation only had a
5% slowdown instead of the expected 40%. Another
benefit of PL is that speedup can be achieved by inserting
early evaluation gates which trigger when only a subset of
their inputs arrive. The simulation results also
demonstrated the importance of buffering in order to take
full advantage of the available parallelism in the netlist.
Four different PL designs that varied the number of early
evaluation gates and buffering gates were simulated using
a suite of five benchmark programs and showed average
speedups of between 1.09 and 1.49 when compared to the
clocked netlist. These results indicate that fine-grained
PL systems would be advantageous from a performance
viewpoint as the basis for a new family of SRAM-based
FPGAs.

7. References

[1] S. Tam, S. Ruso, U. Desai Nagarji, R. Kim, Ji Zhang, I.

Young, “Clock generation and distribution for the first IA-
64 microprocessor”, IEEE Journal of Solid-State Circuits,
Volume 35, Issue 11, Nov 2000, pp. 1545-1552.

[2] I. Sutherland, “Micropipelines”, Communications of the
ACM, Vol 32, No. 6, June 1989, pp. 720-738.

[3] D.E. Muller and W. S. Bartky, "A Theory of Asynchronous
Circuits", in Proc. Int. Symp. on Theory of Switching, vol.
29, 1959, pp. 204-243.

[4] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR),”
in Advanced Research in VLSI, 1991, pp. 55-70.

[5] Daniel H. Linder and James C. Harden, “Phased Logic:
Supporting the Synchronous Design Paradigm with Delay-
insensitive Circuitry.” IEEE Transactions on Computers,
Vol. 45, No 9, September 1996, pp. 1031-1044.

[6] F. Commoner, A. W. Hol, S. Even, A. Pneuli, "Marked
Directed Graphs", J. Computer and System Sciences, Vol.
5, 1971, pp. 511-523.

[7] R. B. Reese, M. A. Thornton, and C. Traver, “Arithmetic
Logic Circuits using Self-timed Bit-Level Dataflow and
Early Evaluation”, Proceedings of the 2001 International
Conference on Computer Design, September 2001, pp. 18-
23.

[8] M. A. Thornton, K. Fazel, R.B. Reese, and C. Traver,
“Generalized Early Evaluation in Self-Timed Circuits”,
Proc. Design, Automation and Test In Europe (DATE),
Paris, France, March 4-8, 2002.

[9] C. Traver, R. B. Reese, M. A. Thornton, “Cell Designs for
Self-timed FPGAs”, Proceedings of the 2001 ASIC/SOC
Conference, September 2001, pp. 175-179

[10] Scott Hauck, “Asynchronous Design Methodologies: An
Overview”, Proceedings of the IEEE, Vol. 83, No. 1,
January, 1995, pp. 69-93.

[11] M.R. Greenstreet, T.E. Williams, and J. Staunstrup, "Self-
Timed Iteration", VLSI '87, C. H. Sequin (Ed.), Elsevier
Science Publishers, 1988, pp. 309-322.

[12] Anders Wallander, “A VHDL Implementation of a MIPS”,
Project Report, Dept. of Computer Science and Electrical
Engineering, Luleå University of Technology,
http://www.ludd.luth.se/~walle/projects/myrisc.

[13] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin,
Alex Kondratyev, "Asynchronous Design Using
Commercial HDL Synthesis Tools", In Sixth Int. Symp. on
Advanced Research in Asynchronous Circuits and Systems
(Async 2000), Eilat, Israel, April 2000.

[14] K. Meekins, D. Ferguson, M. Basta, “Delay insensitive
NCL reconfigurable logic”, Proceedings of the IEEE
Aerospace Conference, Vol. 4, 2002, pp. 1961-1967.

[15] Dana L. How, “A Self Clocked FPGA for General Purpose
Logic Emulation”, in proceedings of IEEE 1996 Custom
Integrated Circuits Conference, 1996, pp. 148-151.

[16] Scott Hauck, Steven Burns, Gaetano Borriello, Carl
Ebeling, “An FPGA for Implementing Asychronous
Circuits”, IEEE Design and Test of Computers, Fall 1994,
pp. 60-69.

[17] R. Payne, “Asynchronous FPGA Architectures”, IEE Proc.-
Comput. Digit. Tech, Vol. 143, No. 5. September 1996, pp.
282-286.

[18] Maheswaran, K., “Implementing self-timed circuits in field
programmable gate array”, Master’s thesis, U.C.Davis,
1995.

[19] R. Payne, “Self-timed FPGA Systems”, 5th International
workshop on Field programmable logic and applications,
LNCS 975, 1995, pp. 21-25.

[20] E. Brunvand, “Using FPGAs to implement self-timed
systems’, J. VLSI Signal Processing, 1993, Vol. 6, No 2,
pp. 173-190.

[21] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P.
Penzes, R. Southworth, U. Cummings, Tak Kwan Lee,
“The Design of an Asynchronous MIPS R3000
Microprocessor”, Proceedings of the 17th Conference on
Advanced Research in VLSI, pp. 164-181.

[22] J. D. Garside, S. B. Furber, and S. B. Chung, “AMULET3
Revealed”, Proc. Async. ’99, Barcelona, April 1999, pp.
51-59.

[23] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann,
D. Gloor, G. Stegmann, “An Asynchronous Low-Power
8C51 Microcontroller”, Fourth Intl. Symp. on Symp. on
Advanced Research in Asynchronous Circuits and Systems
(Async 1998), San Diego, California, March 1998, pp. 96-
107.

[24] “Nios 2.1 CPU Datasheet”, Altera Corporation, April 2002,
Version 1.1.
http://www.altera.com/literature/ds/ds_nioscpu.pdf.

