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Abstract 
 

A five-stage pipelined CPU based on the MIPs ISA is 
mapped to a self-timed logic family known as Phased 
Logic (PL). The mapping is performed automatically from 
a netlist of D-Flip-Flops and 4-input Lookup Tables 
(LUT4s) to a netlist of Phased Logic gates. Each PL gate 
implements a 4-input Lookup Table in addition to control 
logic required for the PL control scheme.  PL offers a 
speedup technique known as Early Evaluation that can be 
used to boost performance at the cost of additional PL 
gates. Several different PL gate-level implementations are 
produced to explore different architectural tradeoffs 
using early evaluation. Simulations run for five 
benchmark programs show an average speedup of 1.48 
over the clocked netlist at the cost of 17% additional PL 
gates. 
 
1. Introduction 
 

Various design communities view global clocking 
problems substantially differently.  For the ASIC 
community, global clocking issues are still at the stage 
where a combination of innovative designers and hard 
work can solve global clocking challenges. Of course, the 
amount of needed innovation and hard work keeps 
increasing, but it is has not yet reached the 'broken' stage. 
A different perspective on global clocking issues exists in 
the programmable logic community, which can be 
separated into consumers and vendors.  Consumers expect 
a combination of tool, methodology, and silicon substrate 
that will input RTL descriptions of complex designs and 
produce working implementations that run at 
specification.  Consumers expect global clocking issues to 
be solved by the vendor, usually by vendor provided tools 
in addition to the programmable logic substrate.  
Consumers balance many factors in choosing 
programmable logic such as density, cost, speed, power, 
and ease of use.   The ease of use is important because 
consumers are dependent upon vendor provided 
design/verification methodologies for implementation and 
the effectiveness of these methodologies in directly 
impacting time to market.  Furthermore, programmable 
logic consumers tend to work in smaller design teams than 
ASIC designers, but still must deal with designs in the 
hundreds of thousands to millions of gates.  This means 

that designer productivity must be high, and must continue 
to increase as programmable logic densities increase.  
Design reuse for consumers means the ability to reuse 
RTL blocks in new programmable logic designs, either by 
the same vendor or a different vendor. 

Programmable logic vendors are faced with providing 
the magical tool, methodology, and silicon substrate 
combination that programmable logic consumers desire.  
To deal with global clocking issues, programmable logic 
vendors are using the techniques of ASIC designers, 
except they are lagging behind ASICs by anywhere from 
2-5 years in terms of the aggressiveness of their solutions.  
PLLs and DLLs are now common on all high end FPGAs. 
It is only a matter of time before high-end FPGAs begin 
including the local clock generation/management/active-
deskewing that is now common in high-performance 
ASIC and CPU design [1]. Because vendors must provide 
a solution for global clocking issues to users, the vendors 
face the additional problem of consumer education in 
whatever methodology they provide that allows 
consumers to reach timing closure.  Complex clocking 
strategies that cause a reduction in ease-of-use, difficulty 
in reaching timing closure, or has a steep learning curve 
that increases time to market may result in consumers 
seeking an alternate solution. 

This paper discusses a self-timed design methodology 
known as Phased Logic that eliminates the need for a 
global clock and could form the basis for a new family of 
programmable logic devices.  Elimination of the global 
clock network benefits programmable logic vendors as it 
provides a scalable architecture that requires no 
significant architecture or methodology changes as the die 
size grows.  Our methodology satisfies the needs of 
programmable logic consumers in that it provides 
automated mapping from a netlist of D-flip-flops and 
combinational logic to our self-timed architecture. This 
means that the familiar synchronous RTL design 
methodology and tools used by programmable logic 
consumers are compatible with our proposed approach. 
 
2. Phased Logic 
 
2.1 Background 

Sutherland’s micropipelining [2] is a self-timed 
methodology that uses bundled data signaling and Muller 
C-elements [3] for controlling data movement between 



pipeline stages. Level Encoded Dual Rail (LEDR) 
signaling was introduced in [4] as a method for providing 
delay insensitive signaling for micropipelines. The term 
phase is used in [4] to distinguish successive computation 
cycles in the LEDR micropipeline, with the data 
undergoing successive even and odd phase changes.    The 
systems demonstrated in [2][4] were all linear pipelined 
datapaths, with some limited fork/join capability also 
demonstrated, but with no indication of how general 
digital systems could be mapped to these structures.  This 
problem was solved in [5] via a methodology termed 
Phased Logic (PL), which uses marked graph theory [6] 
as the basis for an automated method for mapping a 
clocked netlist composed of D-Flip-Flops, combinational 
gates, and clocked by a single global clock to a self-timed 
netlist of PL gates.  Logically, a PL gate is simply a 
Sutherland micropipeline block with the state of the 
Muller C-element known as the gate phase, which can be 
either even or odd. In this paper, a fine-grain PL gate will 
be used that has only one output, a compute function 
composed of a single logic function, and which uses 
LEDR signaling for data. A PL gate is said to fire (the 
Muller C-element changes state) when the phase of all 
data inputs match the gate phase. This firing causes the 
output data to be updated with the result of the 
computation block of the gate.  

 

 

 

 

 

 

 

 

 

Figure 1.  LEDR Encoding and PL Gate Firing 
 

The algorithm for mapping a clocked netlist to a fine-
grain PL netlist was developed in [5] and is summarized 
below: 
• All DFFs are mapped one-to-one to barrier gates in 

the PL netlist.  A barrier gate is a PL gate whose logic 
function is a buffer function, and whose output phase 
always matches the gate phase. This means that after 
reset, all barrier gates will have tokens (active data) 
on their outputs. 

• All combinational gates are mapped one-to-one to 
through gates in the PL netlist. A through gate is a PL 
gate whose logic function is the same as the original 

combinational gate, and whose output phase is always 
opposite the gate phase. 

• Single rail signals called feedbacks are added where 
necessary to ensure liveness and safety of the 
resulting marked graph.  Liveness means that every 
signal is part of a loop that has at least one gate ready 
to fire. Safety means that a gate cannot fire again until 
all destination gates have consumed its output data.  
Feedbacks cannot be added between two barrier gates 
because this would cause a loop with two tokens on 
it, violating the safety constraint. If necessary, buffer-
function through gates (called splitter gates) are 
inserted between barrier gates to provide a source and 
termination for feedback. 

• Feedbacks that originate from a barrier gate have an 
initial token on them since all outputs from barrier 
gates have tokens.  This implies that feedbacks from 
barrier gates must terminate on a through gate. 

• A feedback that originates from a through gate and 
terminates on a through gate must have an initial 
token since the output of the destination through gate 
will not have an initial token.  

• A feedback that originates from a through gate and 
terminates on a barrier gate must not have an initial 
token since the output of the destination barrier gate 
will have an initial token.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Translation and Fire of a 2-bit Counter 
 
A signal that is part of a loop that is both live and safe 

is said to be covered.  All signals in the circuit must be 
covered to satisfy liveness and safety. Signals that are part 
of naturally occurring loops that satisfy liveness and safety 
critera are already covered and do not require feedbacks.  
It is possible for a single feedback signal to create a loop 
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that covers multiple signals. Figure 1 illustrates the LEDR 
encoding of the dual rail signals used between PL gates.  
Notice that the “value signal” (top), is the actual logical 
value and the two signals together define the phase.  A 
sample gate firing is also shown in Figure 1.  

Figure 2 illustrates the translation of a clocked 2-bit 
counter to a PL netlist and a sample firing of the circuit.  
The signal between gate G4 and G1 in the PL netlist is a 
feedback net added to ensure safety. 

 
2.2 A Fine-Grain PL Gate 

Figure 3 shows a Phased Logic gate [9] (PL4gate) that 
uses a 4-input Lookup Table (LUT4) for the computation 
element.  The Muller C-element is used to detect operand 
arrival (a,b,c,d) from the LEDR inputs. The fi input is a 
feedback input to the gate; an external C-element is used 
to concentrate multiple feedbacks if required. The 
feedback_out signal is used to provide feedback to gate 
sources if needed (the negation of this signal is also 
provided but not shown).  The gating signal (GC) to the 
output latches is delayed until the LUT output value is 
stable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: LUT-4 Based Phased Logic Gate 
 

A PL netlist is continually firing even if no data values 
are changing, just as a clock signal toggles even in the 
presence of unchanging data.  There is a one-to-one 
mapping of clock cycles in the original clocked netlist to 
computation cycles in the PL netlist.  One advantage of 
this aspect of a PL system is that it makes it easy to 
interface a PL system to a clocked system as long as the 
time for a computation cycle in the PL system is less than 
the clock period of the clocked system.  One disadvantage 
of continuous token circulation is that the PL control 
network is always dissipating power. For power 
efficiency, each PL computation function (i.e., a LUT4) 
should be large compared to the control logic in order to 
amortize the control power over a large compute function.  
A power savings feature in fine-grain PL systems is that 
latches on the output of each PL gate tend to reduce the 

number of transient computations in a fine-grain PL 
system.   In [7] it was shown that PL systems using the 
gate in Figure 3 could be more power efficient than the 
clocked equivalents. 

 
2.3 Early Evaluation 
One disadvantage of micropipelines, and PL systems in 

general, is that the output latch latency adds to the critical 
path delay. However, there are other features of PL that 
can overcome this gate-level performance disadvantage 
and allow PL systems to outperform their clocked 
equivalents.  

“Early evaluation” [7] is said to occur when a PL gate 
fires upon arrival of a subset of inputs. This can improve 
performance as it adds parallelism to the system; gates 
downstream of the early evaluation gate can be firing in 
parallel with the gates producing the ‘tardy’ inputs.   Early 
evaluation gates do not introduce a liveness problem 
because they do not alter the number of gate firings, only 
the sequence of gate firings.  To maintain safety, all 
inputs/outputs of early evaluation gates must be in a loop 
that has a feedback signal that originates from or 
terminates on the early evaluation gate.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: An Evaluation Gate from Two PL Gates 
 
Figure 4 illustrates how an early evaluation gate can be 

constructed from two PL4gates.  The upper gate is termed 
the master and contains the normal logic function.  The 
lower gate is named the trigger and contains the early 
evaluation function based on a subset of the inputs to the 
master gate.  In this example, the master gate implements 
the carry function for a full adder (A and B are data bits, 
and C is the carry-in bit).  The trigger function is the 
logical OR of the kill and propagate functions which 
allows the master gate output to fire upon arrival of only 
the A and B inputs.  This speedup technique for the carry 
chain of an adder is a well-known self-timed speedup 
mechanism for addition but PL allows it to be generalized 
to any logic function [8]. 
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2.4 Loop Delay Averaging 
The cycle time of a PL system is bounded by the 

longest register-to-register delay in the original clocked 
netlist, but the average cycle time can be less than this 
value because of the averaging of loop cycle times of 
different lengths [5]. The circuit in Figure 5 shows a two-
stage, unbalanced pipeline. The DF block in each circuit 
represents a D-flip-flop, and the G block a combinational 
block.  The dot shown on particular signals represent the 
initial tokens (active data) for the PL netlist; the dashed 
nets are feedback signals added in the PL system for 
liveness and safety. 

 
 
 
 
 

Figure 5: Two-stage, unbalanced Pipeline 
 
If each combinational gate has a delay of 10 units, and 

the DFF delay plus setup time is also 10 units, then the 
longest path in the clocked system would be 40, or 4 gate 
delays.  To simplify this particular explanation, we assume 
that a PL gate has the same delay as its corresponding gate 
in the clocked netlist. Analysis verified by simulation 
shows that each gate in the PL system fires in a repeating 
pattern of 40 time units, 20 time units, for an average 
delay of 30 time units. Note that if the original clocked 
system had balanced pipeline stages, then the longest path 
would be 30 time units.  This automatic averaging of loop 
paths gives more freedom in the placement of logic 
between DFFs. Even if logic is balanced between pipeline 
stages in the clocked system, early evaluation firings can 
create unbalanced loop delay times and delay averaging of 
these different loop times will still occur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Token buffering to improve performance 
 
 

2.5 Token Buffering 
The flow of data within a PL system can be inhibited if 

there are not enough gates within a path to take advantage 
of the available parallelism [11].  Circuit A in Figure 6 is 
a minor modification of the two-stage unbalanced pipeline 
of Figure 5. Simulation results show that Circuit A fires in 
a repeating pattern of 40, 40 time units which is lower 
performance than Figure 5.  However, adding a buffer as 
shown in Circuit B changes the fire pattern to 40, 20 for 
an average of 30 time units, the same as Figure 5.  We call 
this buffer a token buffer, and it adds no functionality to 
the circuit, but does increase performance. 
3. Comparisons to Other Work 
 

Phased Logic is unique in that it offers an automated 
mapping from a clocked system to a self-timed system 
from the netlist level.  This allows a designer to produce 
the netlist using familiar design tools and HDLs with the 
restriction that the clocked netlist has only one global 
clock.   Most asynchronous and self-timed design 
methodologies [10] use custom synthesis tools and HDLs 
for design specification and this requires a substantial time 
investment on the part of the designer to learn the new 
methodology.   

A self-timed design methodology known as Null 
Convention Logic (NCL) [13] allows the use of standard 
HDLs (VHDL) but it places restrictions on how the RTL 
is written and what gates the RTL is synthesized to.  The 
NCL synthesis methodology requires that the RTL be 
written in a restrictive manner that separates the 
combinational logic and storage elements, because the 
NCL synthesis methodology uses a different synthesis 
path for registers versus combinational logic. This 
prevents the use of third party RTL without a significant 
effort to rewrite the RTL in the NCL style.  Designers 
must also specify the data completion structures and 
request/acknowledge logic needed at each register, which 
is an added burden on the designer.   The RTL is 
synthesized to a restricted subset of functions that is then 
mapped to a set of predefined macros that can be 
implemented in NCL.  NCL uses dual rail signaling where 
one rail represents TRUE and other FALSE.  When both 
wires are negated this is known as the NULL state; when 
one wire is high this is the DATA state.  A computation 
asserts one of the rails (the DATA state) followed by the 
NULL state after an acknowledgement is received.   This 
means that during each computation half of the wires are 
making a transition from ‘0’ to ‘1’ and back to ‘0’.  By 
contrast, in PL half of the wires make a single transition 
during a computation; either to ‘1’ or ‘0’.  In [14], 
Theseus logic applies NCL to the Atmel FPGA 
architecture by replacing the cell internals with a N-of-4 
NCL macrocell that can implement 9 different 
combinational functions: two 2-input functions, three 3-
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input functions, and four 4-input functions.  The NCL 
macro cell is inherently state holding so registers are 
implemented with this same macrocell.  Combinational 
logic must be synthesized to this limited subset of logic 
functions. By contrast, PL allows any possible LUT4 
function.   It is difficult to compare NCL performance to 
Phased Logic performance or to clocked performance 
because there are no published NCL papers that contain 
this performance information.  Most importantly, there is 
no concept of early evaluation in NCL so this speedup 
path is not available to NCL. 

A self-timed FPGA based upon LUT3s and using 
LEDR encoding was presented in [15].  The cell design 
presented in Figure 3 is a variation of the cell design used 
in [15]. In [15], three feedback inputs are included in each 
cell, so the Muller C-element has 6 inputs (3 data, 3 
acknowledge).  The author uses the cell in the context of 
Sutherland’s micropipelines [2] and self-timed iterative 
rings [11].  Both methods require a feedback signal for 
each output destination.  The PL methodology removes 
the need for a feedback for every output signal destination 
as multiple signals along a path can be covered by the 
same feedback signal, and some signals need no feedback 
signal if they are already part of a loop. 

An FPGA-based architecture for asynchronous logic is 
also proposed in [16].  This FPGA architecture was aimed 
at accommodating a range of asynchronous design styles, 
and allowed for mixed synchronous and asynchronous 
designs. All signals were single rail.   By contrast, our 
proposed function block is only intended for supporting 
the PL design style, and thus implements PL designs more 
efficiently than [16].  Two other asynchronous FPGA 
architectures are presented in [17][18][19]. These 
proposed architectures are for bundled data systems, 
which are not delay insensitive and thus require 
programmable delay elements. Neither approach allows 
automated synthesis to the architectures.  Finally, 
prototyping of asynchronous circuits in commercially 
available FPGAs is demonstrated in [20].  While it is 
possible to implement a limited set of asynchronous 
circuits in current FPGAs, the fact that these FPGAs are 

optimized for clocked designs means that these mappings 
are far from optimal and would be much better served via 
a custom architecture.  
 
4. A Phased Logic CPU 
 

Previously published designs that have been mapped to 
Phased Logic include an iterative multiplier, a filter 
datapath, and arithmetic structures [7].   A test case that 
has been used in the past for other asynchronous 
methodologies is a CPU implementation such as the MIPs 
integer subset [21], the ARM processor [22], and the 8051 
[23]. However, there are more important reasons for 
mapping a CPU to PL other than for testing the 
methodology. Processors have become important features 
of programmable logic families, either implemented as a 
soft macro [24] or as a hard macro.   Soft macro 
processors are parameterized by bus width and 
synthesized from an RTL description.  As such, it is 
important to show that Phased Logic can support this 
methodology. 

In order to show that the Phased Logic methodology is 
compatible with RTL written by others, we searched the 
WWW for freely available processors specified in RTL.  
Our search produced a VHDL specification of a MIPs 
ISA (integer subset) implemented as a 5-stage pipeline 
[12].  The documentation provided with the model has 
synthesis and simulation results that shows the model is 
functional when targeted to a Xilinx XC4000 device.  We 
found the processor to be functional as both RTL and 
when synthesized to a netlist of LUT4s and DFFs. The 
CPU was implemented with the standard fetch, decode, 
execute, memory and writeback stages. A simplified 
diagram of the CPU datapath appears in Figure 7 (the 
memory interface is not shown). Because the design was 
intended for an FPGA, the register file RTL used edge-
triggered devices instead of latches. The ALU did not 
implement a multiplication operation.  Forwarding paths 
were used to solve data hazards in the pipeline without 
having to use stalls.  The MIPS branch delay slot plus the 
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use of a forwarding path for the branch computation 
meant that no stalls were needed for branch or jump 
instructions.  The same memory interface was used by 
both fetch and memory stages, so a stall was generated 
whenever the memory interface was required by the 
memory stage. 

 
4.1 Mapping to a PL Netlist 
 

Figure 8 shows the methodology used to go from RTL 
to a gate-level Phased Logic netlist. Synopsys Design 
Compiler is used as the synthesis tool for mapping the 
RTL to an EDIF netlist of D-flip-flops and LUT4s.  A 
DesignWare Library optimized for LUT4s is used to map 
arithmetic operations.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Clocked netlist to PL netlist methodology 
 
The mapping program reads the EDIF netlist and 

creates a VHDL netlist of PL4gates and 4-input Muller C-
elements.  The Muller C-elements are used for feedback 
concentration when multiple feedbacks converge on one 
PL4gate. The PL4gate used in the VHDL netlist is the 
same gate as described in Figure 3. The model was 
modified to replace the bidirectional data bus with a 
separate I/O databus as our mapping program does not yet 
support tri-state or bi-directional gates. The RTL 
operators for addition/subtraction in the ALU, for branch 
computation, and for PC+4 increment were replaced with 
Synopsys DesignWare components that were optimized 
for LUT4s.   This was done to improve the quality of the 
resulting implementation. The Mentor Graphics Modelsim 
environment was used for simulating the original RTL and 
the PL netlist.  The clock period for the RTL simulation 
was set based upon the longest timing paths reported by 
Synopsys after the design was synthesized to a netlist of 
D-flip-flops and LUT4s.  The gate delay of the PL4gate 
was set to 40% higher than a LUT4 delay to account for 

the output latch latency.  This value was derived from 
delay values for LUT4s and D-flip-flops from Altera and 
Xilinx datasheets.   This means that the PL netlist begins 
with a 40% performance penalty when compared to the 
clocked netlist. 

Our mapping program produced several versions of the 
PL CPU; these versions are summarized in Table 1.  

 
Table 1: Fine-Grain CPU Implementations 

Version % Extra 
LUT4s 

a) No EE gates, no token buffering (4855 
LUT4s) 

0% 

b) Manually inserted EE gates, no token 
buffering 

1.5% 

c) Version (b) + token buffering  2.1% 
d) Version (c) + automated insertion of EE 
gates, with trigger gates chosen by a cost 
function that weights signal arrival times with a 
trigger function coverage of 50% or better 

16.9% 

e) Version (c) + automated insertion of EE gates 
on all LUTs with input signal arrival time 
differences of one LUT delay or better 

38.4% 

 
Version (a) used no Early Evaluation (EE) gates and 

did not have any token buffers.  Version (b) used 
manually inserted EE gates in the form of multiplexers in 
datapaths where one operand had a significantly earlier 
arrival time than the other operand. One of these 
datatpaths was the ALU result forwarding path to the 
idecode stage and branchpc computation. An example of 
ALU forwarding is shown below in which the result of the 
first addition is required as an operand in the second 
instruction. 

 
 Add    r5, r6, r9 
 Add    r4, r5, r10 

A second datapath that used these manually inserted 
EE gates was the branchpc computation; if the instruction 
was not a jump or branch, then the PC+4 value required 
for the next instruction fetch could be produced faster.   
The multiplexers that interfaced the external input databus 
to the rest of the CPU were also replaced with EE gates. If 
the instruction was not a load word (lw), this allowed the 
rest of the CPU to proceed without having to wait for the 
memory interface to fire. The circled multiplexers in 
Figure 7 show where early evaluation gates were added in 
the ALU forwarding path and the branchpc computation. 

Examination of the simulation results for version (b) 
indicated that performance was limited by the lack of 
token buffers in the execute stage where the ALU opcode 
fanned out to several levels of logic without buffering.  
Version (c) included buffers on these control lines that 
were inserted manually by modifying the RTL VHDL.  
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We plan on adding automated insertion of token buffers in 
the next version of our mapping program.  

Our mapping program supports automated insertion of 
EE gates [8] by traversing the netlist and searching for 
trigger functions based upon signal arrival times. Version 
(d) augmented version (c) with automated insertion of EE 
gates chosen by a cost function that weighted signal 
arrival times with a trigger function coverage of 50% or 
better.   Version (e) inserted the maximum number of EE 
gates by inserting an EE gate for any LUT4 that had signal 
arrival differences of one LUT4 delay or better. 

 
4.2 Simulation Results 

The VHDL PL fine-grain netlists were simulated using 
the Mentor Modelsim environment.  The output latches of 
Figure 3 were assigned a 0.4 LUT4 delay. Four input C-
elements that were used for feedback concentration were 
assigned a 0.6 LUT4 delay. Five benchmark programs 
were used for performance measurement: (a) fibonnaci  
(fib), a value of 7 was used, (b) bubblesort, an array size 
of 10 was used,  (c) crc, calculate a CRC table with 256 
entries, (d) sieve – find prime numbers, stopping point set 
to 40 (e) matrix transpose - a 20x30 matrix was used.  

 
Table 2: CPU results for CRC program 

 Fast Mem Slow Mem 

Version CRC 
CRC 
(RO) CRC  

CRC 
(RO)  

(a) -1.05 -1.05 -1.31 -1.31 
(b) 1.08 1.11 1.08 1.11 
(c) 1.28 1.38 1.09 1.11 
(d) 1.45 1.55 1.10 1.11 
(e) 1.46 1.56 1.10 1.11 
 
All programs were written in C and compiled with gcc 

using the  –O option to produce an assembly language file 
that was then assembled via a Perl script to produce an 
input file read by the VHDL memory model.  Table 2 
shows the speedup results for the fine-grain PL CPU 
compared to the clocked netlist for the crc program.  The 
clocked netlist was simulated with a clock cycle time of 
24 LUT4s which was the critical path as reported by 
Synopsys, which ran through the execute, branch 
computation, and idecode stages.  The speedup was 
calculated by dividing the longer simulation time by the 
smaller simulation time, with a negative sign used to 
indicate a slowdown of the PL netlist compared to the 
clocked netlist. The memory access time was set to the 
maximum slack allowable in the 24 LUT4 cycle time of 
the clocked netlist so that memory was not the bottleneck 
for the clocked netlist.  The “slow mem” columns uses 
this memory access time for the PL netlist, while the “fast 
mem” columns assume that memory bandwidth can be 

increased such that it is not the bottleneck in the PL 
netlist.  The CRC columns show the speedup for the 
different fine-grain PL versions for the crc benchmark.  
The 5% slowdown for the non-EE, fast memory case is 
not as bad as expected given the 40% latency penalty of 
the output latch for each fine-grain PL gate. Clearly, loop 
averaging is helping to overcome this delay penalty. The 
addition of the manual EE gates produced a small 
speedup, but this speedup was limited by lack of 
buffering. The large jump in performance between 
versions (b) and (c) indicates the importance of buffering 
to take full advantage of available parallelism in the 
netlist.  The automated insertion of EE gates provided 
another sizeable increase in performance. However, there 
is diminishing returns on performance as shown with the 
negligible performance increase between versions (d) and 
(e). We also do not rule out the possibility that the 
performance of version (e) is being limited due to 
inadequate buffering.  An area of future work is a 
performance tool that can be used to identify bottlenecks 
due to improper buffering. 

The CRC RO columns use a version of the benchmark 
that has the instructions manually reordered in order to 
decrease the amount of ALU operand forwarding.  For 
example, a typical code segment produced by gcc is 
shown below: 
 addi   r4,r4,1 

 slti   r2, r2, 8 
 bne    r2, r0, L10 

ALU forwarding is required for the bne instruction 
because r2 is a destination in the slti instruction, and a 
source in the bne instruction. However, the instructions 
can be reordered as shown below: 

slti   r2, r2, 8 
addi   r4,r4,1 
bne    r2, r0, L10 

Functionally, the two code streams are equivalent, but 
the second code stream does not require ALU forwarding 
for the bne instruction, which increases the number of 
early evaluation firings and hence the performance.  
Instruction reordering was done manually by examining 
the assembly code of the critical loops. Table 3 shows the 
results for all fine grain CPU versions for the re-ordered 
instruction benchmarks under the fast memory 
assumptions. 

 
Table 3:  Fast memory, reordered inst. benchmarks 

Pgm Ver (a) Ver(b) Ver(c) Ver(d) Ver(e) 

Fib  -1.05 1.10 1.37 1.50 1.51 
Bubbl
e 

-1.05 1.09 1.30 1.44 1.45 

CRC  -1.05 1.11 1.38 1.55 1.56 

Sieve  -1.05 1.08 1.27 1.43 1.45 

Tpose -1.05 1.09 1.32 1.47 1.50 



Avg -1.05 1.09 1.33 1.48 1.49 
 
Table 4 shows performance results for streams of 

individual instructions executed on version (d) using the 
fast memory assumption. The average cycle time is given 
in LUT4 delays and the fire pattern is the repeating 
pattern of cycle times for the instruction stream.  The 
jump and branch streams are two instruction streams 
because of the branch delay slot of the MIPs ISA; a nop 
was placed in the branch delay slot. 

Table 4: Individual instruction timings 

 
The descriptors fwd, nofwd indicate if ALU operand 

forwarding was done between instructions. In general, the 
instructions that required forwarding are slower than those 
that do not.  The logical instructions are the fastest with 
branches being the slowest.  One of the reasons for the 
complex fire pattern of the load instruction is the stall that 
is generated during the load operation. 

Table 5: Instruction Statistics for Benchmarks 
 fib bubble crc sieve mtpose 
brnch 13.4% 17.0% 19.7% 21.0% 7.7% 
jmp 12.9% 0.0% 4.7% 0.3% 0.3% 
log 10.0% 0.6% 16.3% 0.7% 0.7% 
shift 19.9% 25.3% 34.9% 26.8% 26.4% 
slt 0.0% 23.0% 11.6% 18.5% 10.5% 
addsub 12.2% 17.5% 11.6% 22.0% 32.5% 
lw 17.4% 15.3% 0.0% 3.3% 7.5% 
sw 14.2% 1.3% 1.2% 7.4% 14.4% 
 
Table 5 shows the dynamic instruction frequency for 

the benchmarks.  The crc benchmark has the largest 
percentage of logical instruction which helps explains its 
high performance.   

Table 6: Early Evaluation Statistics 

 mem efire branch efire alufwd efire 
fib 89% 74% 77% 
bubbl 85% 82% 65% 
crc 100% 76% 76% 

sieve 97% 75% 64% 
mtpose 92% 92% 73% 

 
Table 6 shows the percentage of early firings in terms 

of instruction cycles for CPU version (c) executing the 
reordered benchmarks under the fast memory assumption.  
The crc benchmark had 100% early firing of the memory 
databus input multiplexer because this benchmark did not 
read memory; it started with a fixed seed for the CRC 
table.  Note that the fib benchmark had the highest number 
of ALU operand forwarding early fires, which helps to 
explain its status as the second highest performing 
benchmark. 

 
4.3 Netlist Statistics 
The netlist statitistics for the designs are shown in 

Table 7. 
Table 7: Netlist Statistics 

 Ver a Ver b Ver c Ver d Ver e 
Signal 
Fanout 17149 17558 17614 17614 17614 
% unsafe 72.7% 83.8% 83.9% 84.1% 84.1% 
Signal 
Nets 6346 6569 6164 6164 6164 
Fdbck 
Nets 4578 4762 4791 4799 4799 
Max FB 
Inputs 239 244 164 164 164 
4-input 
Celem 2596 3153 3168 3204 3225 
LUT4s 4855 4928 4957 5674 6719 
%increase 
(LUT4s)  1.5% 2.1% 16.9% 38.4% 

The signal fanout is interesting as this represents the 
maximum number of signals that would need to be 
covered by feedback signals.  The worst case in terms of 
required feedback signals would be one feedback net for 
each signal fanout.  However, some signals are part of 
naturally occurring loops and do not have to be covered.  
The %unsafe row shows the percentage of signals that 
must be covered via feedback net insertion.  The max fb 
inputs row is the maximum number of feedbacks 
concentrated at a PL gate.  This large concentration was 
due to a rdy signal used in the bus interface that can be 
used to halt the processor. The rdy signal acts as a 
conditional load on many of the registers within the CPU. 
Any large fanout, synchronous signal in the clocked netlist 
will generate a large number of feedbacks terminating at 
the originating PL gate in the PL netlist.  In versions c, d, 
and e some buffering was inserted on this signal path to 
reduce the maximum number of required feedback inputs.  
Trees of 4-input C-elements were inserted for feedback 
signal concentration.  These C-elements would have to be 
included as a separate resource on the programmable 
substrate, perhaps one four-input C-element for each PL 

Instr. Seq. 
(run on PL(d) 

Avg 
Cycle 
Time 

Fire Pattern 

Jump, nop 14.4 15.4,13.4 
branch, nop 17.0 19.8,14.0 
load 15.6 17.4,12.6,16.2,18.0 
store 14.4 14.8,14.0 
add (nofwd) 14.4 15.4,13.4 
add (fwd) 16.8 16.8 
and (nofwd) 14.4 13.0,15.8 
and (fwd) 14.8 13.2,15.6 
shift (nofwd) 14.4 15.6,13.2 
shift(fwd) 16.8 16.8 



gate. Figure 9 shows the distribution of inputs for the C-
elements in version (d) of the CPU.  The large input C-
elements are rare as can be seen from the figure. The 
spikes at 32 and 33 are due to the 32-bit datapaths in the 
design.    

 
Figure 9: Distribution of Inputs for C-elements 

 
All of the PL designs in Table 5 were generated with 

feedback signal lengths restricted to the preceding gate 
level, or a path length of one gate.  This means that the 
maximum number of feedbacks was inserted into all of 
these designs.  Table 8 shows the effect of different 
feedback arrangements on version (a) (the non-early 
evaluation gate netlist) on the speedup of the bubblesort 
benchmark.  

Table 8: Effect of Feedback on Performance 
PLEN Speedup Feedback Signals 

1  -1.05 4578 
2  -1.05 4472 
4  -1.05 4397 
8 -1.31 4401 

∞(13) -1.05 4401 
 
The PLEN parameter specifies the number of gate 

levels to trace back from an originating gate to look for 
feedback termination candidates. The last row shows 
PLEN set to a large value with the number in parenthesis 
the maximum feedback length actually used in the netlist. 
The current feedback generation algorithm cycles through 
all gates in the netlist, ranking candidate feedback 
termination gates by the scoring function shown below: 

fbscore = (covered_signals) – (fb_inputs)  
                                                – (0.1* path_length) 
                      + (covered_signals – path_length) 
 

The covered_signals term is the number of signals 
made safe by adding this feedback.  The fb_inputs term is 
the number of feedbacks already terminating at this node; 
a negative weight encourages spreading feedbacks among 
gates.  The path_length term is the number of gate levels 

from the feedback source to the destination. The third 
term in the score assigns a small penalty based on 
feedback length. The fourth term assigns a penalty that is 
the difference between the number of signals covered and 
the feedback length. Ties are broken in favor of shorter 
feedback signals. The current algorithm does not consider 
netlist performance when placing feedbacks; its only goal 
is to reduce the number of feedbacks.  No claims are made 
as to the optimality of this heuristic approach.   

 In Table 8, the number of feedbacks decreases as 
PLEN increases, because feedbacks are allowed to 
traverse multiple gate levels and hence cover multiple 
signals. However, the decrease in the number of feedbacks 
is small because the register file has a large number of 
paths that have only one gate between two D flip-flops. 
This forces feedbacks with a path length of 1, and 
increasing the PLEN parameter will not affect these 
feedbacks. The scoring function does not guarantee the 
minimum number of feedbacks as evidenced by the fact 
that the cases of PLEN=8,∞ has more feedbacks than for 
PLEN=4. 

The speedup column illustrates a problem with the 
current feedback placement algorithm in that the case of 
PLEN=8 had significantly lower performance.  This 
means that a feedback net critical to performance just 
happened to be placed correctly for the case of PLEN=∞, 
and incorrectly for PLEN=8. An area of future work is to 
incorporate PL system performance considerations into 
the feedback net placement algorithm. 
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6. Summary 

This paper has presented a design methodology known 
as Phased Logic (PL) that allows a netlist of D-flip-flops 
and combinational logic clocked by a single global clock 
to be automatically mapped to a self-timed circuit.  This 
methodology was applied to a publicly available RTL 
VHDL model of a 5-stage pipelined MIPs. The RTL was 
synthesized via a commercial synthesis tool to a netlist of 
D flip-flops and 4-input Lookup tables and then mapped 
to several different self-timed PL netlists that explored 
various tradeoffs in the automated mapping process.  One 
benefit of PL is averaging of loop cycle times, which 



means that performance is not necessarily limited to the 
longest delay path between registers.  This fact was 
clearly illustrated in the measured performance data that 
showed a PL netlist without early evaluation only had a 
5% slowdown instead of the expected 40%.   Another 
benefit of PL is that speedup can be achieved by inserting 
early evaluation gates which trigger when only a subset of 
their inputs arrive.  The simulation results also 
demonstrated the importance of buffering in order to take 
full advantage of the available parallelism in the netlist. 
Four different PL designs that varied the number of early 
evaluation gates and buffering gates were simulated using 
a suite of five benchmark programs and showed average 
speedups of between 1.09 and 1.49 when compared to the 
clocked netlist.   These results indicate that fine-grained 
PL systems would be advantageous from a performance 
viewpoint as the basis for a new family of SRAM-based 
FPGAs. 
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