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Abstract 
 

A key issue in symbolic equivalence checking 
algorithms is image computation. Conjunction scheduling 
is a strategy to keep the size of BDDs small for the 
intermediate results of image computation. Conjunction 
scheduling consists of ordering bit transition relations, 
clustering subsets of them and ordering the clusters. We 
present a genetic algorithm (GA) approach for 
conjunction scheduling based on the dependency matrix 
of transition relations. Our GA approach offers 
improvement over existing algorithms by minimizing the 
active lifetime and total lifetime of variables at the same 
time. Our experimental results show the effectiveness of 
the algorithm.  
 
 
1. Introduction 
 

The correct design of complex hardware continues to 
challenge engineers. Bugs in a design that are not 
uncovered in an early design stage can be extremely 
expensive. Simulation is a predominantly used tool to 
validate a design in industry. It can only validate all 
possible behaviors of a design in a brute-force manner. 
However, rapidly evolving markets demand short design 
cycles while the increasing complexity of a design makes 
simulation coverage less and less complete. Formal 
verification overcomes the weakness of exhaustive 
simulation by applying mathematical methodologies to 
validate a design. Formal approaches have the potential to 
scale to the complexity of VLSI designs because they 
exploit powerful tools in mathematics. 

Binary Decision Diagrams (BDD) have led to a 
breakthrough in formal verification methods such as 
model checking and equivalence checking. Symbolic 
equivalence checking algorithms rely on Finite State 
Machine (FSM) state-space traversal. Key issues of BDD-
based implementations of these algorithms include 

modeling a machine’s transition relation as a cluster of 
BDDs and image computation. Image computation 
computes the successor of a set of states and it can be a 
bottleneck that consumes a lot of time. The transition 
relation of a machine is a relation denoted as 
TR ( S , X , S ′ ), where S  and S ′  are present and next 
states respectively and X  represents the inputs. A 
particular ( , ,i iS X S ′ ) triplet is in the TR  if the machine 
will transition from state iS  to state iS ′  under the input 
vector X . For a deterministic circuit, each binary 
memory element of the circuit gives rise to one term of 
the transition relation called a bit relation. When the 
circuit is synchronous, the partitioning is conjunctive, and 
can be written as a product of bit relations. Construction 
of a monolithic transition relation BDD is typically 
impractical. Instead, a partitioned transition relation BDD 
is represented by a set of conjunctions of disjoint subsets 
of the bit relation BDDs.    

The efficient computation of images for partitioned 
transition relations depends heavily on the solutions to the 
following to two problems: 

Clustering: Clustering bit relations so that the number 
of clustered relations is reduced without negatively 
affecting the size of intermediate BDDs.  

Ordering: Ordering bit relations to cluster more bit 
relations and ordering clustered relations to minimize 
intermediate BDDs for image computation.  

 These two problems are not independent. A bad 
clustering usually results in a bad ordering. The benefit of 
clustering and ordering is early quantification. Early 
quantification quantifies out variables that will not appear 
in future computations. It is usually advantageous to 
quantify many variables soon, because the ensuing 
reduction in the support of the relations helps keep the 
size of the BDDs under control. Therefore, ordering and 
clustering relations is often viewed as the problem of 
finding a good quantification or conjunction schedule. 



This problem has attracted significant attention over 
the last few years. Since the problem is known to be NP-
hard [9], the algorithms that are commonly in use for 
clustering and ordering are heuristic in nature.  

The rest of the paper is organized as follows. In 
section 2, we review background material and related 
work.  Section 3 describes our GA approach and section 4 
describes experimental results. Conclusions are provided 
in Section 5.  
 
2. Preliminaries and related work 
 

Notation: A synchronous sequential circuit or machine 
can be represented as a FSM. An FSM is a quintuple, 

{ , , , , }M S X Y λ δ= , where X  denotes input wires, 
Y denotes output wires, S is a set of states, δ  is the next 
state function, and λ  is the output function. The next 
state function is a completely-specified function with 
domain ( X S× ) and range S .  

Given an FSM, its’ transition relation is represented as 
the Boolean function TR ( S , X , S ′ ). Variable sets S = 

1,... ns s , S ′= 1,... ns s′ ′  and X = 1,... nx x  are current state, 
next state, and input variables respectively. 
TR ( , ,i iS X S ′ ) = 1 ⇔ ( , )i iS X Sδ′ = . For a deterministic 
circuit, each binary memory element of the circuit gives 
rise to one term of the transition relation, called the bit 
relation. When the circuit is synchronous, the partitioning 
is conjunctive, and can be written as the product of bit 
relations. In this paper, we assume that the transition 
relation is given as a product of bit relations iTR .  

TR ( S , X , S ′ ) = 
1
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Partitioned transition relation: For a design that has 
over 20 bit relations, it is impractical to build a monolithic 
transition relation BDD for the entire machine. Therefore, 
ordering and clustering allow the transition relation to be 
written as:  

TR ( S , X , S ′ ) = 
^

1

( , , )
l

i i i
i

TR S X S
=
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where l n≤ , and each cluster 
^

iTR is the conjunction of 
some set of iTR ’s. The conjunction scheduling problem 
consists of deciding the value of l  and what bit relations 
are clustered together.  

Given an FSM with a transition relation TR  and a set 
of present states S , the image of S  is the set of its 
successors and is computed by: 

Img(S)=
^

1
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Early quantification: Usually, the size of the BDD 
reduces by quantifying away variables in its’ support set. 

Let Q  denote the variables to be quantified, which is 
Q X S= ∪  and iQ  denotes the set of variables which do 

not appear in 
^ ^

1 1,..., iTR TR − . The image computation can 
be performed as follows: 

Img(S)=
^ ^ ^

1 21 2( ( ( )))llQ TR Q TR Q TR S∃ ⋅ ∧ ∃ ⋅ ⋅ ⋅ ⋅∃ ⋅ ∧   (3) 
 
The size of intermediate BDDs and the effectiveness 

of early quantification depends heavily on the order in 
which BDDs are conjoined in Eq. 3.  

Conjunction scheduling: The ordering algorithm 
discussed here is based on the dependency matrix of the 
transition relation as defined in [6].  

Definition 1 (Moon et al): The dependence matrix of 
an ordered set of functions ( 1,..., mf f ) depending on 
variables 1,..., nx x  is a matrix D with m rows and n 
columns such that , 1i jd =  if function if depends on the 
variable jx , and , 0i jd =  otherwise. 

When ordering transition relations for image 
computation, the rows of the dependence matrix 
correspond to a permutation of the transition relations; 
while the columns correspond to the variables that should 
be quantified out (i.e. present state variables 1,... ns s and 
input variables 1,... mx x ). We will assume that the 
conjunction is taken in the order of a bottom-up manner 
(i.e., 1 2 1, ,..., ,m mf f f f− ). If ( )j jl h is the smallest (largest) 

index i in column j  such that , 1i jd =  respectively, then 
variable jx can be quantified as soon as the subrelation 
corresponding to id  is conjoined. This observation 
motivates the following definitions (Moon et al). 

The normalized average total lifetime of the variables 
in matrix D is given by 

1
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The normalized average active lifetime of the variables 
in matrix D is given by 

1
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The two quantities λ  and α  are related to the quality 
of a conjunction schedule.  

Related work: The importance of the quantification 
schedule was first recognized by Burch et al. [1] and 
Touati et al. [2]. Geist et al. [3] proposed a simple circuit 
independent heuristic algorithm, in which they ordered 
conjuncts by minimizing the maximal number of state 
variables of the intermediate BDDs in the processing of 



performing image computation. Ranjan et al. [4] proposed 
a successful heuristic procedure (known as IWLS95). The 
algorithm begins by first ordering the bit relations and 
then clustering them and finally ordering the clusters 
again using the same heuristics. The order of relations is 
chosen using four normalized factors; the number of 
variables that will be quantified, the number of present 
state and primary input variables, the number of next state 
variables that would be introduced, and the maximum 
BDD index of a variable that can be quantified. After the 
ordering phase, the clusters are derived by repeatedly 
conjoining the bit relations until the size of the clustered 
BDD exceeds a given threshold, at which point a new 
cluster is started.  

Bwolen Yang improved the IWLS95 heuristic in his 
thesis [5] by introducing a pre-merging phase where bit 
relations are initially merged pair-wise based on the 
sharing of support variables and the maximum BDD size 
constraint. Moon et al. [6] presented an ordering 
algorithm (known as FMCAD00) based on computing the 
Bordered Block Triangular form of the dependence 
matrix. Their ordering algorithm minimizes the active 
lifetime of variables, α . Instead of clustering ordered bit 
relations in a sequential order, the bit relations are 
clustered according to the affinity between them. Affinity 
measures the sharing of the support variables.  

Chauhan et al. [7] extended FMCAD2000 and used 
combinatorial algorithms to improve the performance (i.e. 
simulated annealing). They also argue in favor of using 
α . All these techniques are static techniques. 
Subsequently, the same clusters and ordering are used for 
all the image computations during symbolic analysis.  

Chauhan et al. [8] also proposed a non-linear dynamic 
quantification scheduling method by viewing the image 
computation as a problem of constructing an optimal 
parse tree for the image set. Their “Basic” algorithm is as 
follows: a heuristic score is computed for each variable in 
a set of variables Q  to be quantified. The variable with 
the lowest score, say q , is chosen and two smallest BDDs 
in whose support set that q  appears were conjoined. The 
overall approach is a two-phase approach combining 
static and dynamic schemes. Before image computation, 
only as many as the primary input variables are quantified 
out using the Basic algorithm.  Then, for each image 
computation step, the remaining input and all present 
state variables are quantified out using the Basic 
algorithm.  

 
3. Genetic Algorithm 
 

A genetic algorithm emulates the metaphor of natural 
biological evolution to solve optimization problems.  

Genetic algorithms operate as shown in figure 1 through a 
simple flow. 

1. Initializing population: find a collection of 
potential solutions to the problem, also called the 
current population. 
                     
 
 
 
 
 
 
 
 
 
 

Figure 1. EA operation flow 
 

2. Creating offspring: produce a new population 
through the application of genetic operations on 
selected members of the current generation.  
3. Evaluate fitness: evaluate the quality of the 
solution in the new generation. 
4. Applying selection: select solutions that will 
survive to become parents of the next generation based 
on their quality of solution to the problem. In this way, 
it is more likely that desirable characteristics are 
inherited by the offspring solutions.  
5. This cycle repeats until some threshold or stopping 
criterion is met. 
Typical genetic operations in a genetic algorithm 

include crossover, mutation and inversion. Crossover 
combines characteristics from two or more parents and 
places them in the resulting offspring. Mutation 
introduces new characteristics in the population by 
randomly modifying some of their building blocks, 
helping the search algorithm escape from local minima 
traps. Inversion rearranges the order of some 
characteristics. 

 
3.1 Fitness function and selection 

 
A fitness function measures the quality of each 

element. In [6] and [7], they both argue in favor of active 
lifetime α . However, the total lifetime λ  and active 
lifetime α  are not independent. A better λ  could also 
result in a better α . For example, consider a 3-bit counter 
with present state variables 1 2 3, ,s s s  and next state 
variables 1 2 3, ,s s s′ ′ ′ , where 3s  and 3s′  are the most 
significant bit. The transition relation of the counter can 
be expressed as the conjunction of the bit relations: 

1 1 1( )TR s s′= ≡ , 2 2 1 2( )TR s s s′= ≡ ⊕  and 

3 3 1 2 3( ( ) )TR s s s x′= ≡ ∧ ⊕ . Consider the following two 

Creating offspring  

Evaluating fitness  
No

Yes

Applying selection  Termination? 

Initializing population  



dependency matrices with order of 1 1 2 3( , , )TR TR TRπ  and 

2 3 2 1( , , )TR TR TRπ  as shown in Figure 2.  
The active lifetime and total lifetime for these two 

orders are 
1π

α = 2/3, 
2π

α = 2/3,
1π

λ = 2/3, 
2π

λ =1 
respectively. 

 
Figure 2. Dependency Matrices 

 
From the example, we can see that both orders have 

the same active lifetime, but order 1π  is better than order 

2π  because it has a small total lifetime. For order 1π , 
present state variables could be quantified out in the order 
of 3 2 1, ,s s s , while for order 2π , no variables can be 
smoothed out in the intermediate computation. An 
advantage of the GA algorithm is that we can minimize 
total lifetime α  and active lifetime λ  at the same time. 
The fitness function we use includes these two 
parameters, shown as follows: 

( )iC π = 0 1a aλ α+  
where iπ  is a permutation of transition relations. 

Weights 0 1,a a  are attached to two time parameters. 
The selection is performed by linear ranking selection 

(i.e the probability that one element is chosen is 
proportional to its fitness). The size of the population is 
constant after each generation. Additionally, some of the 
best elements of the old population are inherited in the 
new generation. This strategy guarantees that the best 
element never gets lost and a fast convergence is 
obtained. Genetic algorithm practice has shown that this 
method is usually advantageous [10].  

 
3.2 Genetic Operators 

 
Two genetic operators are used in the algorithm: 

Partially Matched Crossover (PMX) [11] and a random 
Mutation (MUT).     

PMX generates two children from two parents. The 
parents are selected by the method described above. The 
operator chooses two cut positions at random. Notice that 
a simple exchange of the parts between the cut positions 
would often produce invalid solutions. A validation 
procedure has to be executed after exchange. The detailed 
procedure for PMX follows.  

Construct the children by choosing the part between 
the cut positions from one parent and preserve the 
position and order of as many variables as possible from 

the second parent. For example, 1 (1,2,3,4)p π=  and 

2 (2, 4,3,1)p π=  are the parents while 1 1i =  and 2 3i =  
are the two cut positions. The resulting children before 
the application of the validation procedure are 

1 (1,4,3,4)c π′ = and 2 (2, 2,3,1)c π′ = . The validation 
procedure goes through the elements between the cut 
positions and restores the ordering. This results in the two 
valid children 1 (1,4,3,2)c π= and 2 (4, 2,3,1)c π= . 

MUT selects a parent by the method described above 
and  randomly choose two positions. Two values at these 
two positions are exchanged.  

 
3.3 Algorithm 

 
Our genetic algorithm is outlined as follows: 
1. The initial population is generated using the 
original order as first individual and by applying MUT 
to create more elements. 
2. Genetic operators are selected randomly according 
to a given probability. The selected operator is applied 
to the selected parent (MUT) or parents (PMX). The 
better half of the population is inherited in each 
iteration without modification.  
3. The new generation is updated according to their 
fitness.  
4. The algorithm stops if no improvement is obtained 
for 50 iterations. 

 
Genetic algorithm(){ 

Generate_initial_population; 
Update_population; 
do{ 

for( each child  i ){ 
 j =linear_ranking_selection(); 
 randomly_select_method; 
 case MUT: child( i ) = MUT(parent j ); 
 case PMX:  k = linear_ranking_selection(); 
 child( i , 1i + ) = MUT(parent j , k ); 

} 
} 

} 
 

4. Experimental results  
 

In order to evaluate the GA approach, we ran FSM 
traversal experiments on benchmarks from the ISCAS’89 
and LGSYNTH’91 suites. The algorithm is implemented 
using the CUDD BDD package. All experiments are 
carried out on a 733MHz HP PC running cygwin under 
Windows XP with 192MB of main memory.    

We compare the GA approach with FMCAD2000. 

 1s  2s  3s  

1TR  1   

2TR  1 1  

3TR  1 1 1 

 1s  2s  3s  

3TR  1 1 1 

2TR  1 1  

1TR  1   



FMCAD00 is implemented in VIS 2.0. All parameters are 
set as default. Dynamic BDD variable reordering is 
enabled in both approaches and a time limit of 7200 
seconds is used. The two parameters we measured are run 
time and peak number of live BDD nodes. Table 1 shows 
the result. Compared with FMCAD, our GA approach has 
a better result in most cases in terms of memory 
requirements. The GA approach spends significantly 
more time in the initial phase than FMCAD. When the 
number of image computations is large, the time cost of 
initial phase could be amortized. 
 
5. Discussion and future work  
 

We presented a Genetic Algorithm for the 
conjunction scheduling problem. It could be a practical 
alternative for existing methods. The result shows that 
GA performs well in terms of memory requirements.  

Future areas of research are based on this work. The 
drawback of the GA approach is that, in general, good 
results are obtained with respect to the quality of the 
solution but the running times are much larger that of 
classical heuristics. Drechsler indicates that combining 
classic heuristics with a GA approach could outperform 
purely a GA approach in [11]. This motivates us to 
investigate preprocessing the dependency matrix with  
Table 1. Comparison of FSM traversal 

Circuits Time (s) Peak live nodes 
(K) 

 FMCAD GA FMCA
D  

GA 

sbc 4.3 10.5 12.9 16.9 
clma 24.7 137 142.4 32.7 
clmb 30.6 137 141.6 32.7 
mm9a 2.8 5.6 29.4 10.2 
mm9b 55.4 5.57 702 17.1 
mm30a 21.8 113 268.3 106.4 
bigkey 88.8 1066 34.7 105.6 
s420.1 19.7 11.0 0.673 0.642 
s1512 641.6 371 121 65.9 
s1269 1267 2669 1743 2079 
s4863 242.5 6996 419.5 1014 
s3271 Time out 2758 11256* 686.9 

(* Reached to depth 12) 
 
FMCAD2000 and use the GA approach on the result. 
This would guarantee that the starting points are not too 
bad and thus the convergence would be sped up. Our 
current approach is a static approach.  The same clusters 
and ordering are used for all the image computations 
during symbolic analysis. A dynamic version of the GA 

approach is also a direction to explore.  Before image 
computation, a GA approach could be used to quantify 
out as many input variables as possible. Then for each 
image computation, a simple GA approach could be used 
repeatedly to find a good order for current computation.  
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