
A Genetic Approach for Conjunction Scheduling
in Symbolic Equivalence Checking

Lun Li, Mitchell A. Thornton, Stephen A. Szygenda
Department of Computer Science and Engineering

Southern Methodist University, Dallas, TX 75275, USA
lli,mitch,szygenda@engr.smu.edu

Abstract

A key issue in symbolic equivalence checking
algorithms is image computation. Conjunction scheduling
is a strategy to keep the size of BDDs small for the
intermediate results of image computation. Conjunction
scheduling consists of ordering bit transition relations,
clustering subsets of them and ordering the clusters. We
present a genetic algorithm (GA) approach for
conjunction scheduling based on the dependency matrix
of transition relations. Our GA approach offers
improvement over existing algorithms by minimizing the
active lifetime and total lifetime of variables at the same
time. Our experimental results show the effectiveness of
the algorithm.

1. Introduction

The correct design of complex hardware continues to
challenge engineers. Bugs in a design that are not
uncovered in an early design stage can be extremely
expensive. Simulation is a predominantly used tool to
validate a design in industry. It can only validate all
possible behaviors of a design in a brute-force manner.
However, rapidly evolving markets demand short design
cycles while the increasing complexity of a design makes
simulation coverage less and less complete. Formal
verification overcomes the weakness of exhaustive
simulation by applying mathematical methodologies to
validate a design. Formal approaches have the potential to
scale to the complexity of VLSI designs because they
exploit powerful tools in mathematics.

Binary Decision Diagrams (BDD) have led to a
breakthrough in formal verification methods such as
model checking and equivalence checking. Symbolic
equivalence checking algorithms rely on Finite State
Machine (FSM) state-space traversal. Key issues of BDD-
based implementations of these algorithms include

modeling a machine’s transition relation as a cluster of
BDDs and image computation. Image computation
computes the successor of a set of states and it can be a
bottleneck that consumes a lot of time. The transition
relation of a machine is a relation denoted as
TR (S , X , S ′), where S and S ′ are present and next
states respectively and X represents the inputs. A
particular (, ,i iS X S ′) triplet is in the TR if the machine
will transition from state iS to state iS ′ under the input
vector X . For a deterministic circuit, each binary
memory element of the circuit gives rise to one term of
the transition relation called a bit relation. When the
circuit is synchronous, the partitioning is conjunctive, and
can be written as a product of bit relations. Construction
of a monolithic transition relation BDD is typically
impractical. Instead, a partitioned transition relation BDD
is represented by a set of conjunctions of disjoint subsets
of the bit relation BDDs.

The efficient computation of images for partitioned
transition relations depends heavily on the solutions to the
following to two problems:

Clustering: Clustering bit relations so that the number
of clustered relations is reduced without negatively
affecting the size of intermediate BDDs.

Ordering: Ordering bit relations to cluster more bit
relations and ordering clustered relations to minimize
intermediate BDDs for image computation.

 These two problems are not independent. A bad
clustering usually results in a bad ordering. The benefit of
clustering and ordering is early quantification. Early
quantification quantifies out variables that will not appear
in future computations. It is usually advantageous to
quantify many variables soon, because the ensuing
reduction in the support of the relations helps keep the
size of the BDDs under control. Therefore, ordering and
clustering relations is often viewed as the problem of
finding a good quantification or conjunction schedule.

This problem has attracted significant attention over
the last few years. Since the problem is known to be NP-
hard [9], the algorithms that are commonly in use for
clustering and ordering are heuristic in nature.

The rest of the paper is organized as follows. In
section 2, we review background material and related
work. Section 3 describes our GA approach and section 4
describes experimental results. Conclusions are provided
in Section 5.

2. Preliminaries and related work

Notation: A synchronous sequential circuit or machine
can be represented as a FSM. An FSM is a quintuple,

{ , , , , }M S X Y λ δ= , where X denotes input wires,
Y denotes output wires, S is a set of states, δ is the next
state function, and λ is the output function. The next
state function is a completely-specified function with
domain (X S×) and range S .

Given an FSM, its’ transition relation is represented as
the Boolean function TR (S , X , S ′). Variable sets S =

1,... ns s , S ′= 1,... ns s′ ′ and X = 1,... nx x are current state,
next state, and input variables respectively.
TR (, ,i iS X S ′) = 1 ⇔ (,)i iS X Sδ′ = . For a deterministic
circuit, each binary memory element of the circuit gives
rise to one term of the transition relation, called the bit
relation. When the circuit is synchronous, the partitioning
is conjunctive, and can be written as the product of bit
relations. In this paper, we assume that the transition
relation is given as a product of bit relations iTR .

TR (S , X , S ′) =
1

(, ,)
n

i i i
i

TR S X S
=

′∏ =
1

((,))
n

i i
i

S X Sδ
=

′ ≡∏

Partitioned transition relation: For a design that has
over 20 bit relations, it is impractical to build a monolithic
transition relation BDD for the entire machine. Therefore,
ordering and clustering allow the transition relation to be
written as:

TR (S , X , S ′) =
^

1

(, ,)
l

i i i
i

TR S X S
=

′∏ (1)

where l n≤ , and each cluster
^

iTR is the conjunction of
some set of iTR ’s. The conjunction scheduling problem
consists of deciding the value of l and what bit relations
are clustered together.

Given an FSM with a transition relation TR and a set
of present states S , the image of S is the set of its
successors and is computed by:

Img(S)=
^

1

. . (, ,)
l

i i i
i

S X S TR S X S
=

⎛ ⎞′∃ ∃ ∧⎜ ⎟
⎝ ⎠

∏ (2)

Early quantification: Usually, the size of the BDD
reduces by quantifying away variables in its’ support set.

Let Q denote the variables to be quantified, which is
Q X S= ∪ and iQ denotes the set of variables which do

not appear in
^ ^

1 1,..., iTR TR − . The image computation can
be performed as follows:

Img(S)=
^ ^ ^

1 21 2((()))llQ TR Q TR Q TR S∃ ⋅ ∧ ∃ ⋅ ⋅ ⋅ ⋅∃ ⋅ ∧ (3)

The size of intermediate BDDs and the effectiveness

of early quantification depends heavily on the order in
which BDDs are conjoined in Eq. 3.

Conjunction scheduling: The ordering algorithm
discussed here is based on the dependency matrix of the
transition relation as defined in [6].

Definition 1 (Moon et al): The dependence matrix of
an ordered set of functions (1,..., mf f) depending on
variables 1,..., nx x is a matrix D with m rows and n
columns such that , 1i jd = if function if depends on the
variable jx , and , 0i jd = otherwise.

When ordering transition relations for image
computation, the rows of the dependence matrix
correspond to a permutation of the transition relations;
while the columns correspond to the variables that should
be quantified out (i.e. present state variables 1,... ns s and
input variables 1,... mx x). We will assume that the
conjunction is taken in the order of a bottom-up manner
(i.e., 1 2 1, ,..., ,m mf f f f−). If ()j jl h is the smallest (largest)

index i in column j such that , 1i jd = respectively, then
variable jx can be quantified as soon as the subrelation
corresponding to id is conjoined. This observation
motivates the following definitions (Moon et al).

The normalized average total lifetime of the variables
in matrix D is given by

1
(1)

n

j
i

m l

n m
λ =

− +
=

⋅

∑

The normalized average active lifetime of the variables
in matrix D is given by

1
(1)

n

j j
i

h l

n m
α =

− +
=

⋅

∑

The two quantities λ and α are related to the quality
of a conjunction schedule.

Related work: The importance of the quantification
schedule was first recognized by Burch et al. [1] and
Touati et al. [2]. Geist et al. [3] proposed a simple circuit
independent heuristic algorithm, in which they ordered
conjuncts by minimizing the maximal number of state
variables of the intermediate BDDs in the processing of

performing image computation. Ranjan et al. [4] proposed
a successful heuristic procedure (known as IWLS95). The
algorithm begins by first ordering the bit relations and
then clustering them and finally ordering the clusters
again using the same heuristics. The order of relations is
chosen using four normalized factors; the number of
variables that will be quantified, the number of present
state and primary input variables, the number of next state
variables that would be introduced, and the maximum
BDD index of a variable that can be quantified. After the
ordering phase, the clusters are derived by repeatedly
conjoining the bit relations until the size of the clustered
BDD exceeds a given threshold, at which point a new
cluster is started.

Bwolen Yang improved the IWLS95 heuristic in his
thesis [5] by introducing a pre-merging phase where bit
relations are initially merged pair-wise based on the
sharing of support variables and the maximum BDD size
constraint. Moon et al. [6] presented an ordering
algorithm (known as FMCAD00) based on computing the
Bordered Block Triangular form of the dependence
matrix. Their ordering algorithm minimizes the active
lifetime of variables, α . Instead of clustering ordered bit
relations in a sequential order, the bit relations are
clustered according to the affinity between them. Affinity
measures the sharing of the support variables.

Chauhan et al. [7] extended FMCAD2000 and used
combinatorial algorithms to improve the performance (i.e.
simulated annealing). They also argue in favor of using
α . All these techniques are static techniques.
Subsequently, the same clusters and ordering are used for
all the image computations during symbolic analysis.

Chauhan et al. [8] also proposed a non-linear dynamic
quantification scheduling method by viewing the image
computation as a problem of constructing an optimal
parse tree for the image set. Their “Basic” algorithm is as
follows: a heuristic score is computed for each variable in
a set of variables Q to be quantified. The variable with
the lowest score, say q , is chosen and two smallest BDDs
in whose support set that q appears were conjoined. The
overall approach is a two-phase approach combining
static and dynamic schemes. Before image computation,
only as many as the primary input variables are quantified
out using the Basic algorithm. Then, for each image
computation step, the remaining input and all present
state variables are quantified out using the Basic
algorithm.

3. Genetic Algorithm

A genetic algorithm emulates the metaphor of natural
biological evolution to solve optimization problems.

Genetic algorithms operate as shown in figure 1 through a
simple flow.

1. Initializing population: find a collection of
potential solutions to the problem, also called the
current population.

Figure 1. EA operation flow

2. Creating offspring: produce a new population
through the application of genetic operations on
selected members of the current generation.
3. Evaluate fitness: evaluate the quality of the
solution in the new generation.
4. Applying selection: select solutions that will
survive to become parents of the next generation based
on their quality of solution to the problem. In this way,
it is more likely that desirable characteristics are
inherited by the offspring solutions.
5. This cycle repeats until some threshold or stopping
criterion is met.
Typical genetic operations in a genetic algorithm

include crossover, mutation and inversion. Crossover
combines characteristics from two or more parents and
places them in the resulting offspring. Mutation
introduces new characteristics in the population by
randomly modifying some of their building blocks,
helping the search algorithm escape from local minima
traps. Inversion rearranges the order of some
characteristics.

3.1 Fitness function and selection

A fitness function measures the quality of each

element. In [6] and [7], they both argue in favor of active
lifetime α . However, the total lifetime λ and active
lifetime α are not independent. A better λ could also
result in a better α . For example, consider a 3-bit counter
with present state variables 1 2 3, ,s s s and next state
variables 1 2 3, ,s s s′ ′ ′ , where 3s and 3s′ are the most
significant bit. The transition relation of the counter can
be expressed as the conjunction of the bit relations:

1 1 1()TR s s′= ≡ , 2 2 1 2()TR s s s′= ≡ ⊕ and

3 3 1 2 3(())TR s s s x′= ≡ ∧ ⊕ . Consider the following two

Creating offspring

Evaluating fitness
No

Yes

Applying selection Termination?

Initializing population

dependency matrices with order of 1 1 2 3(, ,)TR TR TRπ and

2 3 2 1(, ,)TR TR TRπ as shown in Figure 2.
The active lifetime and total lifetime for these two

orders are
1π

α = 2/3,
2π

α = 2/3,
1π

λ = 2/3,
2π

λ =1
respectively.

Figure 2. Dependency Matrices

From the example, we can see that both orders have

the same active lifetime, but order 1π is better than order

2π because it has a small total lifetime. For order 1π ,
present state variables could be quantified out in the order
of 3 2 1, ,s s s , while for order 2π , no variables can be
smoothed out in the intermediate computation. An
advantage of the GA algorithm is that we can minimize
total lifetime α and active lifetime λ at the same time.
The fitness function we use includes these two
parameters, shown as follows:

()iC π = 0 1a aλ α+
where iπ is a permutation of transition relations.

Weights 0 1,a a are attached to two time parameters.
The selection is performed by linear ranking selection

(i.e the probability that one element is chosen is
proportional to its fitness). The size of the population is
constant after each generation. Additionally, some of the
best elements of the old population are inherited in the
new generation. This strategy guarantees that the best
element never gets lost and a fast convergence is
obtained. Genetic algorithm practice has shown that this
method is usually advantageous [10].

3.2 Genetic Operators

Two genetic operators are used in the algorithm:

Partially Matched Crossover (PMX) [11] and a random
Mutation (MUT).

PMX generates two children from two parents. The
parents are selected by the method described above. The
operator chooses two cut positions at random. Notice that
a simple exchange of the parts between the cut positions
would often produce invalid solutions. A validation
procedure has to be executed after exchange. The detailed
procedure for PMX follows.

Construct the children by choosing the part between
the cut positions from one parent and preserve the
position and order of as many variables as possible from

the second parent. For example, 1 (1,2,3,4)p π= and

2 (2, 4,3,1)p π= are the parents while 1 1i = and 2 3i =
are the two cut positions. The resulting children before
the application of the validation procedure are

1 (1,4,3,4)c π′ = and 2 (2, 2,3,1)c π′ = . The validation
procedure goes through the elements between the cut
positions and restores the ordering. This results in the two
valid children 1 (1,4,3,2)c π= and 2 (4, 2,3,1)c π= .

MUT selects a parent by the method described above
and randomly choose two positions. Two values at these
two positions are exchanged.

3.3 Algorithm

Our genetic algorithm is outlined as follows:
1. The initial population is generated using the
original order as first individual and by applying MUT
to create more elements.
2. Genetic operators are selected randomly according
to a given probability. The selected operator is applied
to the selected parent (MUT) or parents (PMX). The
better half of the population is inherited in each
iteration without modification.
3. The new generation is updated according to their
fitness.
4. The algorithm stops if no improvement is obtained
for 50 iterations.

Genetic algorithm(){

Generate_initial_population;
Update_population;
do{

for(each child i){
 j =linear_ranking_selection();
 randomly_select_method;
 case MUT: child(i) = MUT(parent j);
 case PMX: k = linear_ranking_selection();
 child(i , 1i +) = MUT(parent j , k);

}
}

}

4. Experimental results

In order to evaluate the GA approach, we ran FSM
traversal experiments on benchmarks from the ISCAS’89
and LGSYNTH’91 suites. The algorithm is implemented
using the CUDD BDD package. All experiments are
carried out on a 733MHz HP PC running cygwin under
Windows XP with 192MB of main memory.

We compare the GA approach with FMCAD2000.

 1s 2s 3s

1TR 1

2TR 1 1

3TR 1 1 1

 1s 2s 3s

3TR 1 1 1

2TR 1 1

1TR 1

FMCAD00 is implemented in VIS 2.0. All parameters are
set as default. Dynamic BDD variable reordering is
enabled in both approaches and a time limit of 7200
seconds is used. The two parameters we measured are run
time and peak number of live BDD nodes. Table 1 shows
the result. Compared with FMCAD, our GA approach has
a better result in most cases in terms of memory
requirements. The GA approach spends significantly
more time in the initial phase than FMCAD. When the
number of image computations is large, the time cost of
initial phase could be amortized.

5. Discussion and future work

We presented a Genetic Algorithm for the
conjunction scheduling problem. It could be a practical
alternative for existing methods. The result shows that
GA performs well in terms of memory requirements.

Future areas of research are based on this work. The
drawback of the GA approach is that, in general, good
results are obtained with respect to the quality of the
solution but the running times are much larger that of
classical heuristics. Drechsler indicates that combining
classic heuristics with a GA approach could outperform
purely a GA approach in [11]. This motivates us to
investigate preprocessing the dependency matrix with
Table 1. Comparison of FSM traversal

Circuits Time (s) Peak live nodes
(K)

 FMCAD GA FMCA
D

GA

sbc 4.3 10.5 12.9 16.9
clma 24.7 137 142.4 32.7
clmb 30.6 137 141.6 32.7
mm9a 2.8 5.6 29.4 10.2
mm9b 55.4 5.57 702 17.1
mm30a 21.8 113 268.3 106.4
bigkey 88.8 1066 34.7 105.6
s420.1 19.7 11.0 0.673 0.642
s1512 641.6 371 121 65.9
s1269 1267 2669 1743 2079
s4863 242.5 6996 419.5 1014
s3271 Time out 2758 11256* 686.9

(* Reached to depth 12)

FMCAD2000 and use the GA approach on the result.
This would guarantee that the starting points are not too
bad and thus the convergence would be sped up. Our
current approach is a static approach. The same clusters
and ordering are used for all the image computations
during symbolic analysis. A dynamic version of the GA

approach is also a direction to explore. Before image
computation, a GA approach could be used to quantify
out as many input variables as possible. Then for each
image computation, a simple GA approach could be used
repeatedly to find a good order for current computation.

Acknowledgement

The authors would like to thank Dr. Nicole Drechsler
for providing the PMX routine.

6. References

[1] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic

Model Checking with partitioned transition relations”, In
Proceedings of the International Conference on Very Large
Scale Integration, Edinburgh, Scotland, August 1991.

[2] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Implicit enumeration of finite
state machines using BDDs”, In Proceedings of the
International Conference on Computer Aided Design
(ICCAD), November 1990, pp. 130–133.

[3] D. Geist and I. Beer, Efficient Model Checking by
automated ordering of transition relation partitions”, In
Proceedings of Sixth Conference on Computer Aided
Verification (CAV), vol. 818 of LNCS, Stanford, USA,
1994, pp. 299–310.

[4] R. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. Brayton,
“Efficient BDD algorithms for FSM synthesis and
verification. In Proceedings of International Workshop on
Logic Synthesis, Lake Tahoe, 1995.

[5] B. Yang, “Optimizing Model Checking Based on BDD
Characterization”, PhD thesis, Carnegie Mellon University,
May 1999.

[6] I. Moon and F. Somenzi, “Border-block triangular form
and conjunction schedule in image computation”, In
Proceedings of the Formal Methods in Computer Aided
Design (FMCAD), vol. 1954 of LNCS, November 2000,
pp. 73–90.

[7] P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D.
Wang, “Using combinatorial optimization methods for
quantification scheduling”, In Proceedings of the 11th
Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME),
September 2001.

[8] P. Chauhan, E. Clarke, S. Jha, J. Kukula, T. Shiple, H.
Veith, and D. Wang,” Nonlinear Quantification Scheduling
in Image Computation”, In Proceedings of International
Conference on Computer Aided Design (ICCAD), 2001.

[9] R. Hojati, S. C. Krishnan, and R. K. Brayton. “Early
Quantification and Partitioned Transition Relations”, In
Proceedings of the International Conference on Computer
Design (ICCD), pp. 12-19, Austin, TX, October 1996.

[10] R. Drechsler, B. Becker, and N. Göckel, “A genetic
algorithm for variable ordering of OBDDs”, ”, In
Proceedings of the International Workshop on Logic
Synthesis, Granlibakken, CA, May 1995.

[11] R. Drechsler, Evolutionary Algorithm for VLSI CAD,
Kluwer Academic Publication, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

