

A Framework and Process for Curricular Integration and Innovation
Using Project Based Interdisciplinary Teams

Frank P. Coyle and Mitchell A. Thornton

Computer Science and Engineering Dept
Southern Methodist University

Dallas TX 75275
{coyle, mitch}@engr.smu.edu

Abstract

This paper describes a framework and process for

ongoing curricular integration and innovation based on
feedback from the performance of undergraduate
interdisciplinary teams working on problems that reflect
the needs of industry. The five-step process is based on a
top-down, objectives-based approach to bringing the
computer science and engineering curriculum in line with
computing practice. Critical to the effort is the selection
of projects for undergraduate teams since project
definitions serve both as an opportunity to challenge
students and to lay the foundation for departmental
direction. Each project is associated with a set of
capability requirements that reflect what team members
should both know and be able to do to meet project
requirements. Upon project completion, expectations and
actual performance are used in a curricular feedback
loop to identify possible curricular modifications.

We report on an ongoing implementation of this
framework at Southern Methodist University (SMU)
where integration between computer science and
computer engineering serves as a testbed for the
framework. At SMU, undergraduate students from
computer science and computer engineering are teamed
to develop applications that serve to bring core curricula
in line with current trends in computing and industry
needs.

1. Introduction
Moving forward into the 21st century we find society

growing ever more dependent on computing technology.
For the disciplines of computer science and computer
engineering (CS&E) the task of preparing students for
both research and industry is made difficult by the
changing nature of the field itself. As the report on
Strategic Directions in Computer Science Education [1]
points out, one of the complicating factors in addressing
how best to prepare CS&E students is that the distance
between the foundations of computing and its research
and application frontiers is considerably shorter in CS&E

than in other disciplines. In many ways computing is
different in character from other engineering disciplines,
due to both the intangible nature of software and the
discrete nature of software operations. While disciplines
such as Electrical and Mechanical Engineering are based
on laws and principles that reflect the nature of the
physical world, the relatively recent CS&E disciplines are
based on layers of abstraction that continue to build on
each other as the field advances.

1.1 Technology Evolution
To illustrate the changing nature of CS&E, Figure 1

illustrates the evolving nature of change in both computer
science and computer engineering. In the 1970s, an
understanding of lexical theory was important in building
compilers that could take advantage of ideas associated
with Abstract Data Types. However, the evolution of
compiler generators and the emergence of object-oriented
languages changed the focus from how to implement
languages to how to build systems using object-oriented
languages. The late 1980s and 1990s saw the widespread
use of languages such as C++ and Java that incorporated
and enforced the concept of Abstract Data Type. Then, in
the late 1990s, as a result of actually building systems
using object-oriented languages, design patterns emerged
as a way to manage the complexity in large systems
object systems. Today, we see many of these ideas
moving higher up the abstraction stack with concepts
such as Model Driven Architecture (MDA) providing
new abstractions that define new building blocks for
system building.

Similarly in the area of computer engineering, the
design of computer hardware has moved from schematic
capture and laboratory prototyping to the design of
circuits using abstractions that reflect Electronic Design
Automation (EDA) software tool capabilities. In terms of
hardware components, the development and configuration
of FPGAs and ASICs is accomplished via the use of
Hardware Description Languages (HDLs) such as Verilog
or VHDL. Because these tools operate at a higher level of
abstraction than the circuit boards of an earlier era,
computer engineers spend more time focusing on system-

level issues that include formal specification, hardware-
software co-design, and efficient integration of existing
specialized circuitry referred to as intellectual property
(IP).

The net effect is that today, computer engineering is
increasingly driven by higher level system issues. Rather
than emphasis on how to design a chip that performs
some particular function, computer engineering are now
attempting to put an entire system on a chip (SOC). From
an educational standpoint, understanding the inner
workings of flips flops and gates is not as important as
understanding the tradeoffs and issues surrounding SOC
design where at least one computational element (a DSP
or microcontroller), must coexist with and communicate
with peripheral interfaces, pipeline accelerators,
embedded firmware and IP blocks. The complexity of
such design tasks requires engineers able to work with
sophisticated tools and to understand abstraction
interfaces and the implications of various kinds of
interconnections as the key to successful design and
implementation.

Figure 1. CS&E foundations change as technology evolves

Technology Evolution
This paper describes a framework and process for

ongoing CS&E curricular integration and innovation
centered on undergraduate interdisciplinary teams. A
five-step process describes a top-down, objectives-based
approach based on the selection of team projects. Each
project is associated with a set of capability requirements
that reflect what team members should both know and be
able to accomplish in order to meet project requirements.
Upon project completion, expectations and actual
performance is used in a curricular feedback loop to
identify possible curricular modifications.

At Southern Methodist University (SMU) the
framework has been implemented by creating teams from

both computer science and computer engineering. This
serves as a laboratory for exposing undergraduate
students to significant application challenges while at the
same time gathering the data needed to bring the core
curricula in line with current trends in computing and
industry needs.

2. The Process
The project-based team approach to maintaining

curricular currency is described in five steps. The steps
include (i) project selection, (ii) project capabilities
definition, (iii) team configuration, (iv) project execution,
and (v) curricular feedback.

2.1 Process Elements
Figure 2 illustrates the flow from initial project

selection to the utilization of project data for curricular
modification.

Figure 2. Project-based process for maintaining curricular

currency

Project Selection. Project selection is the first and
most important step in using team projects to drive
curricular innovation. Projects should reflect both
departmental strengths and intended technical directions.
Project ideas may come from surveying the needs of
academic research groups either within or external to the
university. Open source projects are an excellent source
of project ideas since they are well suited to extension
and modification. In addition, local industry can serve as
a source of projects since it is often the local industries
that hire graduates and often serve as a source of research
funding.

Project Capabilities Definition. Defining the skills
and capabilities needed by team members to successfully
complete their project provides a baseline against which
to measure team performance. Capabilities are defined in

terms of Know-Do (KD) units, which specify what
factual knowledge students should know and what tasks
they should be capable of executing.

Team Configuration. Teams are assembled to carry

out the specified projects. When KD descriptions of
project requirements are available, students are asked to
self-evaluate both their knowledge and skill levels on
each of the KD units prior to the start of the project. For
departments with well-defined objectives-based courses,
these KD units can be added to a project database for
subsequent evaluation and input for the feedback.

Project Execution. During project execution,

projects are measured with respect to how well initial
objectives are met and student performance is tracked via
self-evaluation and project manager reports.

Curricular Feedback. At project completion,

objectives, capabilities and performance are analyzed
with the goal of determining the preparedness of students
for project tasks. It is at this stage in the process that
student capabilities (or lack thereof) are compared against
expected performance. Courses advertised to provide
required knowledge and performance skills are evaluated
with respect to student performance. Project performance
also provides an opportunity to identify required
capabilities not provide by the core curriculum. This
provides a department an opportunity to reevaluate its
curriculum and decide on ways (if any) to bring missing
capabilities into the curriculum.

2.2 Curricular Maturity Model
We realize that the full implementation of the

curricular feedback process described in section 2.1 takes
both time and resources. To provide a measure of the
degree to which an institution has adopted the team-
based, project-driven approach to curricular innovation,
we define an informal Computing Curriculum Maturity
Model (CCMM) modeled on the Capability Maturity
Model (CMM) widely used in the evaluation of software
engineering process maturity. [2]

As illustrated in Figure 3, the CCMM consists of five
maturity levels. An institution at Level 0 does not include
any team-based project activity in its curriculum. Level 1
means the institution has team based projects but these
projects are ad hoc and do not formally related to
assessment or evaluation.

Level 2 is where projects selection moves from ad-
hoc to some basis in departmental direction. At Level 3,
effort is made to define explicit project objectives and
capabilities in terms of Know-Do units. Level 4 adds
student capability tracking based on student KD units and
at Level 5, the curriculum is evaluated based on student
performance.

Figure 3. The curricular capability model (CCMM)

3. SMU’s Hardware-Software Co-Design
Project

The SMU Co-Design Project is a collaborative effort
between software engineering and computer engineering
faculty with technical, cultural and pedagogical
dimensions. Technically, the focus is on the development
of model-based architectures for systems with both
hardware and software components and tools that support
the transformation of high level models into either
hardware or software implementations. The capability to
generate either software or hardware enables hardware-
software allocation based on performance constraints
requirements rather than a priori decision before timing
bottlenecks have identified.

The Computer Science and Engineering Department
at SMU presents a unique opportunity as a testbed for the
CCMM framework in that it includes the subspecialties of
software engineering and computer engineering within
the same department. The department offers both a BS,
MS, and PhD in Computer Engineering as well as an MS
Software Engineering. Both the computer science and
computer engineering undergraduate programs have
senior level capstone courses where students work in
teams on specific projects. The computer science
capstone course is a two-semester course where students
work on team based projects. The computer engineering
capstone course is also two semesters and focuses on
circuit design using high level description languages such
as VHDL and Verilog. [3]

3.1 Curricular Integration
At SMU, interdisciplinary projects that bridge the

gap between software and computer engineering are
defined based on ongoing embedded systems research
and industry consultation. Projects are defined that

require some aspect of both hardware and software and
teams are composed from both the software and hardware
senior level design classes. Currently we define sets of
capabilities for each of our projects, which places our
efforts at Level 3 on our CCMM scale. In subsequent
semesters we plan to move to Level 4 by assessing the pre
and post capability level of students participating in the
projects.

This integrated approach has the advantage of
providing students with an opportunity to address real-
world problems while at the same time exposing students
to different cultures – i.e. that of computer science vs.
computer engineering. Our approach also has the
advantage of introducing students to research ideas
(currently the use of model-driven architecture for
hardware/software co-design). It is our belief that this
effort will provide feedback to the department about
student preparedness in tackling project level work and
create a process to help define departmental direction and
specialization. Among its many benefits, the approach
offers the opportunity to integrate the education and
research environment of the university.

3.2 Accreditation Impact
Adoption of the CCMM model makes provides a

built-in approach to satisfying the requirements of ABET
accreditation.[4] Among the ABET requirements are (a)
an ability to function on multi-disciplinary teams (b) an
ability to identify, formulate, and solve engineering
problems (c) broadening education to understand the
impact of engineering solutions in a global and societal
context (d) recognition of the need for, and an ability to
engage in life-long learning (e) an ability to use the
techniques, skills, and modern engineering tools
necessary for engineering practice.

4 Summary
In this paper we describes a framework and process

for curricular integration and innovation based on a team-
based undergraduate capstone course. The approach is
objectives-based and is based on the definition of
problems and associated capabilities needed to execute
the project. Project definitions serve both as an
opportunity to challenge students and to lay the
foundation for departmental direction. Upon project
completion, expectations and actual performance are used
in a curricular feedback loop to identify possible
curricular modifications. A Curricular Capability
Maturity Model is outlined that will help departments
assess their maturity in using team-based projects to fine-
tune their curriculum.

A description of an ongoing implementation of this
framework at SMU is provided based on senior level
capstone courses in software engineering and computer

engineering. While the project is in the early stages, we
hope to track data and use results to bring our curricula in
line with current trends in computing and industry needs.

References

[1] A. B. Tucker, "Strategic Directions in Computer

Science Education," ACM Computing Surveys, vol.
28, pp. 836 - 845, 1996.

[2] M. C. Paulk, C. V. Weber, B. Curtis, and M. B.
Chrissis, Capability Maturity Model, The: Guidelines
for Improving the Software Process: Addison-Wesley,
1995.

[3] D. J. Smith, HDL Chip Design. A practical guide for
designing, synthesizing and simulating ASICs and
FPGAs using VHDL or Verilog. Madison, AL.: Doone
Publications, 1996.

[4] A. E. A. Commission, "Criteria For Accrediting
Engineering Programs," 2003.

