*

Low Power Optimization Technique for BDD Mapped Circuits

Per Lindgren Mikael Kerttu Mitch Thornton
Lulea University of Technology Mississippi State University
Lulea, Sweden Mississippi State, MS, USA
{pln,kerttu}@sm.luth.se mitch@ece.msstate.edu
Abstract

The minimization of power consumption is an important design constraint for circuits used in
portable devices. The switching activity of a circuit node in a CMOS digital circuit directly con-
tributes to overall power dissipation. By approximating the switching activity of circuit nodes as
internal switching probabilities in Binary Decision Diagrams (BDDs), it is possible to estimate the
dynamic power dissipation characteristic of circuits resulting from o structural mapping of a BDD.
A technique for minimizing the overall sum of switching probabilities is presented. The method is
based on efficient local operations on a BDD representing the functionality of the circuit to be real-
ized. The resulting circuit that is obtained by mapping the BDD to structural netlist has a reduced
power dissipation characteristic. Exzperimental results are given for this technique.

1 Introduction

The popularity of small, portable communications and computing devices has contributed to an
increasing interest in producing digital circuits optimized for low power dissipation. The design of
low power consumption circuits can allow for the production of devices that operate longer for a
given amount of battery power, are more reliable due to reduced heat generation and have lower
packaging costs. These facts motivate designers to place emphasis on optimization for low power
dissipation.

The power dissipation characteristic for CMOS based digital circuitry results from a static and a
dynamic component. The static component consists of contributions from “leakage” and “standby”
currents while the dynamic component is attributed to “switching” and “capacitive” currents. The
dynamic components only occur during the transition of internal circuit nodes from one logic level
to another.

At the architectural level, power dissipation has been reduced by the inclusion of automatic
power management techniques, scaling down the supply voltage and the clock frequency and using
more sophisticated packaging techniques that reduce the chip and package capacitance. At the
device level, there have been advances in the development of new CMOS properties that reduce
the static currents and for the development of “low-power” cell libraries. However, methods that
focus on reducing the internal circuit switching activity have not been as prevalent.

Here, we propose a heuristic method to reduce the estimated internal switching activity which
reduces the overall amount of dynamic switching current. The method is based on local, and hence
efficient, Binary Decision Diagram (BDD) operations. Since BDDs may be used as structural

*This work was supported in part by NSF grant CCR-9633085



descriptions of digital circuits, we focus on developing techniques that optimize the BDD such
that the resultant circuit obtained through a direct BDD mapping has a smaller overall switching
current.

The remainder of the paper is organized as follows. In the next two sections we briefly survey
the power dissipation characteristic of CMOS digital circuitry and basic properties of BDDs. Next,
we show how the output probability can be used to estimate the switching activity in a BDD-based
circuit. Furthermore, we show that the computation of a switching probability at an internal BDD
vertex can be manipulated through purely local operations on the graph. Based on these local
graph operations, we develop an approach for minimizing the overall switching activity and then
perform a set of experiments evaluating the effectiveness of the method and the effect on the size
of the resultant BDD.

2 Power Dissipation in CMOS Digital Circuits

Circuits based on NMOS and PMOS transistors using “CMOS technology” are known for good
power dissipation characteristics since very little current flows internally while a circuit is at some
logic level. The small amount of current that does flow is termed the “static” component and is
due to leakage currents (i.e. reverse bias currents in the FETSs) and subthreshold currents which
are the small magnitude currents flowing from Vg4 to ground. During a logic-level transition,
additional “dynamic” currents exist that can be classified as “capacitive” currents which are those
that are required for charging/discharging capacitive loads during transitions and as “switching”
currents which occur on DC paths between the supply rails during logic transitions. The total
power dissipation, PD, can then be described as a sum of the contributions from each of these
currents as given in Equation 1.

N N
PD = Vaq(iy + isup) + Vg feir: - Z Espy, - Cr + Vaa - Z Equ,, - tsc, (1)
k=1 k=1
Where, the following notation is used:

e V4 is the Supply voltage (Volts)

e i; is the leakage current (Amps)

® iy is the subthreshold current (Amps)

e fur is the circuit clock frequency (Hz)

e N is the total number of internal circuit nodes

e () is the capacitive load at circuit node k (farads)

® iy, is the short circuit current due to dynamic switching at circuit node k£ (Amps)

e E,,, is the switching probability at circuit node k

Equation 1 shows that the dynamic power dissipation component is dependent on the switching
activity parameter, Fj,, . Past research has shown that the switching activity parameter is highly
dependent on temporal correlations of circuit input signal values [8]. As an example, a combi-
national circuit that is responsible for generating next-state values in a synchronous finite state
machine exhibits a definite correlation between previously produced logic values and those to be



produced in the near future since only a subset of all possible states are reachable given the current
state. If it is assumed that all circuit input signals are statistically uncorrelated and are completely
independent, the switching activity, E,, , may be approximated by the switching probability, Py, .

In the work presented here, we develop a technique for minimizing the switching probability
value, Py, , in a digital circuit that is generated based on the structural information of a BDD. We
are thus, minimizing an estimate of the total power dissipation, PD as shown in Equation 2.

N N

PD = Vag(iy + isup) + Vig - fek = Y, Powy - Cr+ Vaa+ Y Powy * isc, (2)
k=1 k=1

3 Ordered Binary Decision Diagrams

Let fo (f1) denote the cofactor of f with respect to T (). A Boolean function, f : B™ — B, can
then be represented by the following formula commonly known as the Shannon Decomposition:

[ = Tfhodzf (3)

Consider a rooted, Directed Acyclic Graph (DAG), G, having terminals 0 and 1 and non-terminals
(internal nodes) labeled with binary decomposition variables, . Each internal node has two exiting
edges that point to cofactor subgraphs, fy and fi;. The edge with the attribute, 0(1), points to the
subgraph representing fo (f1). In this work, we only consider ordered BDDs [4] where each variable
can occur only once on each path and in the same order for any possible path. Vertices having
the same decomposition variable are considered to be at the same level in the diagram. Diagram
levels are enumerated from the root (top level) toward the terminals (bottom level). Furthermore,
we assume that the BDDs are fully reduced in that the following rules of “reduction” have been
applied:

e There exist no two subgraphs expressing the same function (i.e., no two subgraphs are graph-
isomorphic).

e There exist no redundant nodes (i.e. fo = fi does not occur).

A single graph can be used to represent both f and f, where the latter function is identified by a
complement attribute on the incoming edge [9, 3|. For a given ordering, a reduced BDD provides a
canonical representation of the function under some restrictions for the use of complemented edges.
The restrictions are that only one terminal is to be used (e.g., the 0-terminal), and complementation
is only allowed to occur on one type of the outgoing edges (e.g., the 1-edge).

The form of BDD described above can be used to also represent multiple-output functions by
allowing each single output to be rooted arbitrarily in the resulting shared-BDD.

4 Switching Probability

An output probability of a function, f, denoted as P[f] is the probability that the function has a
value of “1” at some arbitrary time of observation [10]. Consider a function f having the output
probability P[z] for the input variable z and the output probabilities P[fy] and P[f;] for its’
corresponding cofactors fo and fi. In terms of a BDD, this relationship is shown in Figure 1.

We seek the switching probability P, [f] of f. Switching occurs if and only if the value of f
changes from 0 to 1 or 1 to 0. We note that the probability that a function is O-valued is given



Py P,

()

Figure 1: Switching Probability in BDD Vertex

Table 1: Enumeration of the Probabilities for f Values at Subsequent Observations

P[ftl ) ft2] ftl ft2

((1 = Pla))(1 = P[fo]) + P[z](1 - P[f1]))” 010

((1 = Plz])(1 = P[fo]) + Plz](1 — P[f1])) (1 — Plz]) P[fo] + P[z](P[f1])) | O | 1
(1 = Plz])P[fo] + Plz](P[/1])((1 — Plz])(1 — P[fo]) + Plz](1 = P[f1])) | 1 | O
(1 = Pla))P[fo] + Pla](P[fi]))? 1] 1

as the probability that the variable,  and the cofactor fy are O-valued or that the variable, z is
1-valued but the cofactor, f; is 0-valued. A similar statement can be made for the probability that
f = 1. These relationships are given in the following equations.

(1= Plz))(1 = Pfo]) + P[z](1 = P[fi]) ~ forf=0 (4)

(1= Plz])(P[fo]) + Plz](P[f1])  forf =1 (5)

Now, consider the value of f at two different observation times f*' and f*2. f is considered to

“switch” if the value of f'! # f¥2. Table 1 enumerates the possible states of f at two subsequent
observation times, t1 and ¢2:

Due to the definition of “switching”, f'' # f¥?, we can derive the probability of switching based

on the output probabilities given in Table 1. Hence the switching probability Ps,[f] of f can be
computed as:

Pulf] = P =0n /2 = 1]+ P[f"' =10 f2 = 0] (6)

Using the expression in Table 1 and substituting them into Equation 6, we have the result:

Pow[f] = 2((1 = Plz])(1 = Pfo]) + Plz](1 = P[A])((X = Plz])(Plfo]) + Plel(PLf1]))  (7)

5 Circuits Based on BDD Mappings

An Ordered Binary Decision Diagram (OBDD) [4] can be directly mapped to a MUX based circuit
as described in [1], to a “timed” circuit as described in [7] or to a “pass-transistor” based circuit



as described in [2]. In all cases, the resulting circuit can be considered to be one that is obtained
by replacing BDD vertices with small subcircuits and BDD edges with wires.

It is known that the diagram size (and therefore the circuit complexity) is sensitive to the
ordering of the function variables (which represent circuit input signals), and may vary from linear
to exponential under different orderings for some functions. Both exact and heuristic methods
have been developed to tackle this problem. However, in this paper we are not only concerned
with the complexity of the circuit resulting from a BDD, but to an even greater extent, the power
dissipation.

As discussed in a previous section, one of the main factors of power drain in a CMOS digital
circuit is the switching probability of each subcircuit output. In order to provide the background
for our technique, we state the following Lemma:

Lemma 1 Consider a level | in the diagram and its corresponding set of nodes N; having decom-
position variable x;. The output probability of each node in N; is unaffected by the variable ordering
above and below I.

Proof 1 This follows from the properties of BDDs [5]. The cofactors to be implemented at level [
are independent of the ordering above . The cofactors implemented by level [ + 1 remain unaltered
as they are derived from [ only. As the output probability of nodes at N; are solely defined from the
output probabilities of nodes at Nyy1 and the probability of x; we have the lemma. O

Now, let us consider the switching probability of nodes N; at level [. As defined in 6, the
switching probability depends only on the output probability of the cofactors (P[N;11]) and (P[z;])
of variable z; under our assumptions. In the next section we show how this property can be utilized
in a reordering method for BDDs.

5.1 Local Variable Exchange

Many state of the art heuristics for BDD minimization are based on “sifting” operations which
are popular due to the ease in which local variable exchanges can be accomplished [6]. The key
property is that a local exchange of variables in a BDD can be done solely by redirecting edges (i.e.
pointers) locally in the diagram. Since our main concern is to minimize the overall sum of switching
activity of the resulting circuit nodes, we show that the switching probability can be computed by
local operations during sifting.

Lemma 2 The switching probability of f is independent of the variable ordering.

Proof 2 The switching probability of a function is a property of the function defined solely from
it’s ON and OFF set and the output probabilities of the dependent variables. Hence, the variable
order cannot influence the switching probability of f and we have the lemma. O

Consider a function f represented by a BDD. We can now show that changes in internal switching
probabilities can occur due to local BDD variable exchanges as illustrated in Figure 2. Due to the
reduction rules that are applied after a local variable exchange, some vertices and edges may be
eliminated resulting in fewer intermediate switching probability values. From formula 2 it follows
that the switching probability of f remains unaffected by local variable exchanges. Furthermore,
switching probabilities of subfunctions below the exchanged levels are also preserved, since the
cofactors at levels indicated by the word “below” are intact during sifting. This holds for exchanging
arbitrary (neighboring) levels in the diagram.



upper

lower

below

Plo Plox Pho Ph Plo Pho Pl Ph
N~~~ 7

(a) (b)

Figure 2: BDD Local Variable Exchange and Effect on Switching Probabilities

Finally we need to show that the switching probabilities of the nodes at levels denoted by the
word “lower” in Figure 2 can be computed locally. From Equation 6 we derive:

Pow[f-0] = 2((1 = Pla])(1 = Plfoo]) + Plal(1 = P[f10))((1 = Pla])(P[foo]) + Pla](P[f10]))  (8)
Pow[f-1] = 2((1 = Pla])(1 = P[fo1]) + Plal(1 = P[ful))((1 = Pla])(P[fo1]) + Plal(P[fu1]))  (9)

As the output probabilities { P[foo], P[f10], P[fo1], P[fo1]} are unaltered during sifting, the oper-
ation is local.

5.2 Complemented edges

The use of complemented edges has shown both to reduce BDD complexity and improve perfor-
mance of operations, [9, 3]. The Lemmas above apply for BDDs using complemented edges by
making the following observations:

1. The output probability P[f] of f is equal to 1 — P[f].
2. The switching probability Py,[f] of f is equal to Psy[f]-

We can utilize these properties to compute local switching probabilities during variable exchange
operations on BDDs with complemented edges.

5.3 Cross-Point BDD Nodes

In order to keep the variable exchange operation local, we leave the initial BDD representation
quasi-reduced where nodes are allowed to connect only to the next level in the diagram. This
will infer the occurrence of “cross-point nodes” which are essentially connections between levels
and would otherwise be eliminated through the reduction rules. Cross-point nodes use output and
switching probabilities of their corresponding child nodes since they are “virtual” vertices that
are included only for ease in implementing the local variable exchange operations and they do
not contribute to the circuitry obtained by structurally mapping the BDD. The use of cross-point
nodes tremendously simplifies the sifting procedure at the expense of maintaining redundant nodes



during minimization. Furthermore, cross-point nodes are useful to estimate the cost of resulting
circuit interconnections since they represent longer conductor paths when the BDD mapped circuit
undergoes routing. Figure 3 shows the effect of sifting on a quasi-reduced BDD.

f f

()/ ; 1
‘a’ ‘a)
0//\ )1 0//\ ‘)1
1 1
\ |
f_o f 1
(a) (b)

Figure 3: Sifting of a BDD with Cross-Point Nodes

6 Switching Probability Minimization

Given the results described above, we can now state the BDD based algorithm for the minimization
of total estimated switching activity in a circuit based on BDD mapping. The algorithm is similar
to those of BDD minimization based on local variable exchange but the cost measure is different.

6.1 Cost Model

We define the cost model based on the total circuit switching activity under given a set of dependent
variable output probabilities. We attempt to minimize the sum of all internal switching probabilities
at each BDD vertex. We neglect those values at cross-point nodes as they have no effect on the
circuit obtained through a structural mapping of the BDD.

This model has some assumptions. We assume the input signals of the resultant circuit to
be statistically independent from each other and uncorrelated in a temporal sense. This is the
assumption that allows us to use the switching probability computed in the BDD representation
as an estimate for the actual switching activity of a circuit.

Furthermore, we use a linear model for fan-out cost. This model can be refined if more informa-
tion is known about the target architecture properties, such as gate or inverter sizing, for cell library
or full custom implementations respectively. Also, we apply a unit cost for the load of each fan-in.
This measure can be further refined using technology dependent capacitance measures weighted by
the estimated length of the interconnection (as the number of cross-point nodes traversed).

Finally we consider only the dynamic power dissipation component of the circuitry. A technology
dependent measure for the static power dissipation of each subcircuit could also be applied easily
if the target circuit architecture is known in advance.



SP_min() {

1 compute Y Pgy[total]

2 for each variable {

3 sift to position minimizing Y P, [total]
4 } repeat until no further improvement

}

Figure 4: Minimization of Total Switching Probability

ref_update(level, i, ref) {
1 if (index == terminal) return

2 if (cross-point) {

3 BDD(level][i].ref 4+= ref

4 ref_update(level + 1, BDD[level][i].low, ref)

5 } else {

6 BDDJlevel + 1][BDD[level|[i].low].ref += ref
7 BDD(level + 1][BDD[level][i].high].ref += ref
8

}

Figure 5: Update of Reference Counters

6.2 Heuristic Minimization Algorithm

The heuristic minimization algorithm proposed here iteratively seeks a variable order reducing the
overall sum of the circuit’s switching activity. We outline the procedure in Figure 4. The sifting and
re-calculation of output and switching probabilities is performed solely through local operations on
the BDD representation. The total switching activity can also be updated by local operations,
with the exception that cross-point nodes leading to lower levels in the diagram are neglected.
In order to update the total switching probability we need to determine fan-out changes of the
lower levels in the diagram. Figure 5 outlines the recursive procedure. Note that the recursion
is terminated on the occurrence of a non cross-point node. This prevents us from traversing the
whole diagram below the two levels sifted. Figure 6 shows how the total switching probability is
updated during sifting. In line 1, we subtract the total switching probability dependent on the two
levels to be sifted. Pgy,[below], is the switching probability of nodes connecting directly or through
cross-points to the lower sifting levels. Note, for sifting based minimization targeting BDD size,
there is no need to consider Ps,[below]. However, targeting the total switching probability calls for
this consideration. The fan-out of lower levels might change during sifting, and thus, the total sum
of internal switching probabilities of the circuit will also. After a variable exchange is performed,
we compute the new switching probability in line 9. In Figures 4 5 and 6, we use the notation,
>~ Py, to indicate the total sum of switching probabilities at each of the BDD subgraphs (i.e. the
total, lower or upper).

Example 1 Figure 7 (a) shows a portion of a BDD before sifting. The numbers at each node
denote the number of incoming edges, (i.e, the fan-out in a MUX based mapping). Before sifting
we need to determine fan-out changes of the lower levels in the BDD, given as (b) in the Figure 7.
Note that only nodes below the dotted line in the diagram connect to the lower sifting level and are
updated. After sifting is performed, the new fan-out values of the nodes below the dotted line are



SP sift(upper, lower) {
> Psy [tOtal] = (Z Psw[upper] + > Psw [lO’LU@’I"] + > Psw[below])
for each node i at lower level {
ref_update(lower, i, -BDD[lower]]i].ref)
}

perform local variable exchange

for each node i at lower level {
ref_update(lower, i, BDD[lower][i].ref)

}

> Pyyltotal] += (30 Psyw[upper] + 3 Pyyllower] + 37 Py, [below)]
0}

— = O 00~ ULk W N

Figure 6: Updating Switching Probability During Sifting

computed, as shown in part (c) of Figure 7. The fan-out changes occurring below the dotted line
cause the total switching probability to change. This is accounted for by Psy,[below].

(@) (b) (©

Figure 7: Reference Count Update During Sifting

7 Experimental Results

We have implemented a prototype evaluation of this technique based on the CUDD 2.3.0 [11]
package for BDD manipulation with custom data types for the quasi-reduced BDD.

In the first set of experiments (Table 2), the output probabilities of the dependent variables are
set to 0.5 (i.e. we assume each variable is equally likely to have a value of ‘0’ or ‘1’). The columns
labeled “Naive Order” show the size and total switching probability sums under an initial variable
ordering obtained as the order in which the variables appear in the .pla files from the LGSynth93
benchmark suite. Note that the total switching probability sums are unitless values. The columns
“BDD Order” and “Power Order” compare the size and total switching activity estimates for
circuits minimized by size and our proposed method respectively (for size reduction, the group



Naive Order BDD Order Power Order
name | in/out | Size | Power | Size | Power | Size | Power
5xpl 7/10 74 66 41 32 41 30
add6 12/ 7| 308 272 28 23 28 23
apex7 | 49/37 | 1659 1237 | 289 176 | 316 158
bcO 26/11 | 589 369 | 522 320 | 540 310
chkn 29/7 | 741 208 | 267 132 | 361 85
duke2 22/29 | 972 268 | 355 107 | 361 93
exp 8/18 | 209 84 | 169 80 | 176 62
in2 19/10 | 2360 1464 | 234 116 | 244 95
in7 26/10 | 234 146 79 22 78 20
inc 7/ 9 76 47 70 45 70 45
intb 15/ 7 | 1033 687 | 537 349 | 556 305
misex3 | 14/14 | 1300 644 | 520 224 | 592 205
sao2 10/ 4| 154 73 80 36 87 34
tial 14/ 8 | 1306 1027 | 579 423 | 579 423
vg2 25/ 8 | 1043 650 80 46 80 46
x6dn 39/5 | 274 142 | 240 143 | 244 122

Table 2: All Output Probabilities of Dependent Variables are set to 0.5.

sifting algorithm with convergence [11] is applied). Optimized circuits outperform the initial ones
for all benchmarks. We observe a moderate reduction of switching activity in the circuits after
power minimization compared to the size reduced ones. This is attributed to the fact that our cost
model computes the sum of all internal switching probabilities and there are obviously fewer values
to be summed when the total number of vertices is reduced. The more interesting outcome of these
experiments is that in some cases, allowing the BDD to increase in size slightly (and thus increasing
the size of the underlying BDD-mapped circuit) can cause a further reduction in estimated dynamic
power dissipation.

In the second set of experiments (Table 3), the output probabilities of the dependent variables
are alternatively set to 0.1 and 0.9 (i.e., {P[z1] = 0.1, P[z2] = 0.9, P[z3] = 0.1,...}). Columns
“BDD Order” and “Power Order” compare the size and switching activity for circuits minimized
by size and our proposed algorithm respectively. On the average, the switching activity is reduced
by 20%, while the size increase is only 12%. For some cases, the switching probability can be
significantly reduced. As an example, consider “chkn”, “in2” and “x6dn”, where the switching
activity is reduced by less than 1/2, while the circuit sizes are increased only by 30%, 5% and 13%
respectively. These results show that knowledge about the statistics and correlation of the circuit
input signals can be exploited to sometimes give significant dynamic power dissipation reductions
in BDD-mapped circuits.

In order to evaluate the quality of the presented heuristic, an exhaustive enumeration is performed
on benchmarks having up to 10 variables. The worst and best results are shown in columns “Worst
Order” and “Best Order” respectively. The experiment shows our algorithm to obtain the optimal
results for the smaller tested functions.

8 Conclusions

A method for the reduction of the overall sum of internal switching probabilities for a BDD has been
presented based on efficient local variable exchange operations. When the switching probability is



BDD Order Power Order | Worst Order | Optimal Order
name | in/out | Size | Power | Size | Power Power Power
5xpl 7/10 42 16 41 15 43 15
add6 12/ 7 28 14 28 14 - -
apex7 | 49/37 | 289 54 | 329 47 - -
bcO 26/11 | 522 140 | 551 131 - -
chkn 29/7 | 267 77| 348 33 - -
duke2 22/29 | 355 79 | 399 72 - -
exp 8/18 | 169 48 | 174 39 73 39
in2 19/10 | 234 73| 247 25 - -
in7 26/10 79 6 86 5 - -
inc 7/9 70 20 75 19 45 19
intb 15/ 7 | 537 137 | 577 124 - -
misex3 | 14/14 | 520 150 | 592 122 - -
sao2 10/ 4 80 13 89 10 66 10
tial 14/ 8 | 579 242 | 691 227 - -
vg2 25/ 8 80 25 80 24 - -
x6dn 39/ 5| 240 78 | 272 28 - -

Table 3: Output Probabilities of Dependent Variables Alternate Between 0.1 and 0.9.

used as an estimate for circuit switching activity in BDD-mapped circuits, it is shown that dynamic
power dissipation can be reduced using the technique. The second set of experiments suggests that
if statistical information is known about the nature of the circuit input signals prior to using the
minimization technique, significant reductions in internal switching activity and hence, dynamic
power dissipation can occur. Furthermore, it is shown that the increase in the size of the resulting
circuits is relatively small as compared to that obtained through the use of a BDD size reduction
technique.

Our model can be tailored to the target technology at hand, further increasing the quality of the
overall power dissipation estimate through the inclusion of static terms and more knowledge about
the internal capacitances.

References

[1] S.B. Akers. Binary decision diagrams. IEEE Trans. on Comp., 27:509-516, 1978.

[2] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli. Decision diagrams and
pass transistor logic synthesis. In Int’l Workshop on Logic Synth., 1997.

[3] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a BDD package. In
Design Automation Conf., pages 40-45, 1990.

[4] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., 35(8):677-691, 1986.

[5] S.J. Friedman and K.J. Supowit. Finding the optimal variable ordering for binary decision
diagrams. In Design Automation Conf., pages 348-356, 1987.

[6] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams based on
exchange of variables. In Int’l Conf. on CAD, pages 472-475, 1991.



7]

L. Lavagno, P. McGeer, A. Saldanha, and A.L. Sangiovanni-Vincentelli. Timed shannon cir-
cuits: A power-efficient design style and synthesis tool. Technical report, CADENCE, Berkeley
Laboratories, 1994.

R. Marculescu, D. Marculescu, and M. Pedram. Efficient power estimation for highly correlated
input streams. In Design Automation Conf., June 1995.

S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation. In Design Automation Conf., pages 52-57, 1990.

K.P. Parker and E.J. McCluskey. Analysis of logic circuits with faults using input signal
probabilities. IEEE Trans. on Comp., 24:573-578, 1975.

F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0. University of Colorado at
Boulder, 1998.



