

Abstract--This work presents an improved design for a carry-

free adder featuring on-line error detection. The salient
contribution of this work is an extremely quick and cost-
effective method of conversion from either two's complement or
signed magnitude format into the internal 1-out-of-3 code used
within this adder.

Index Terms--carry-free addition, on-line error detection,
signed binary digits, 1-out-of-3 code

I. INTRODUCTION

ddition is one of the most fundamental operations for
digital computations. Thus much effort has been invested

in research that has led to faster and more efficient ways to
perform this operation. [4, 5, 11, 15]. Nonetheless carry
lookahead, carry select, and carry skip adders are all still
constrained by the carry propagation delay. Residue number
systems provide one way to restrict the carry propagation
delay, signed digit representations offer another solution.
 Interest in on-line error detection continues to grow as VLSI
circuits increase in complexity. On-line error detection is
increasingly becoming a desirable characteristic due to its
ability to detect transient faults that may occur in a circuit
during normal operation. On-line error detection provides an
opportunity for self-diagnosis and self-correction within a
circuit design [10, 16].
 This work presents an improved design for a carry-free
adder featuring on-line error detection. The use of parity
encoding to enable the detection of incorrect operation in a
signed binary digit adder was first suggested in [19]. The
carry-free features of this adder draw upon the ideas from
signed digit representations, but represent these digits
internally using a 1-out-of-3 code facilitating the on-line error
detection. The use of this encoding in a carry-free adder was
first described in [6].

The salient contribution of this work is an extremely quick
and cost-effective method of conversion from either two's
complement or signed magnitude representation into the 1-out-
of-3 code used internally within this adder. Another feature of

This work was supported in part by the National Science Foundation

under grant CCR-0000891 and CCR-0098272.

this design includes a reduction in the size of the internal
representation when compared to the design described in [6]
resulting in area savings for both the adder circuit itself and
also for the accompanying self-testing checker circuit.
 The organization of this paper is as follows. Part II provides
the necessary background in the areas of carry-free arithmetic
using signed digit representations, numerical encoding, and
on-line error detection. Part III describes the methodology
used in the design of this adder. Part IV presents conclusions
and highlights a few of the many possibilities for
implementation of this design.

II. BACKGROUND

The design of this adder incorporates ideas from carry-free
arithmetic using signed number representations, numerical
encoding, and on-line error detection.

A. Carry-Free Arithmetic

One way to remove the penalty of carry propagation delay is
through the use of carry-free addition. Carry-free addition
permits addition to become a parallel operation in which
completion time is no longer dependant upon the number of
bits to be added. Carry-free addition is possible through the
use of redundant number systems. Common number systems
have digits sets that have the same cardinality as the value of
the radix. In contrast, a redundant number system can be
implemented by a digit set which has more digits in the set
than the value of the radix. This allows a given number to have
more than one representation [2].

1) Signed Digit Numbers
The first redundant number systems proposed used radices

of greater than two. [2, 12]. Each digit within these digit sets
with the exception of zero is present in both positive and
negative polarities. A line drawn above the digit indicates a
negative-valued digit. In these systems, the carry-free addition
is implemented by restricting the possible intermediate sum
and carry word digits such that a carry out can never occur
when the final sum is computed.

2) Signed Binary Digits
Radix-2 or signed binary digit number representations are of

particular interest. The signed binary digit number set

On-Line Error Detection in a Carry-Free Adder

Whitney J. Townsend and Mitchell A. Thornton Parag K. Lala

 Electrical and Computer Engineering Computer Science and Computer Engineering
 Mississippi State University University of Arkansas
 Mississippi State, MS Fayetteville, AR
 {wjt1, mitch}@ece.msstate.edu lala@engr.uark.edu

A

1-out-of-3
encoding

1-out-of-3
encoding

Int.
Sum

&
Carry
Word

Final
Sum

Decoder

1-out-of-3
checkers

Figure 1. Block Diagram of Carry -Free Adder with Error Detection

consists of {1,0,1} . Due to these restricted possibilities for

the digit set, the digits that generate the intermediate sum and
carry word cannot be predetermined. Implementation of a radix-
2 signed digit number representation requires the additional
constraint that the next lower bit position also be considered
during computation of the intermediate sum and carry word.
Several different encodings of signed binary digits have been
described in [3, 17, 19].

B. Numerical Encoding

Different ways to perform numerical encoding have long
been of interest as a means of error detection and error
correction [6].

1) m-out-of-n Codes
An m-out-of-n code is a particular type of encoding in which

m and only m 1's occur in every valid code word of length n.
These m-out-of-n codes have been studied with respect to
error detection via totally self-checking checkers in [1, 18]. The
parity encoding for error detection in carry-free addition
proposed in [19] would result in an k-out-of-2k encoding,
which are a subset of the m-out-of n codes. Totally self-
checking checkers for these codes were also considered in [1].

2) 1-out-of-n Codes
Much research effort has been invested in another subset of

m-out-of-n codes, the 1-out-of-n encodings. The adder design
presented in this work utilizes 1-out-of-3 encoded bit strings. A
1-out-of-3 encoding has three valid code words, 001, 010, and
100; all other possible encodings of 3 bits are invalid code
words. Checkers for 1-out-of-3 codes have been studied in
[20].

C. On-Line Error Detection

An on-line error detecting circuit consists of a circuit with
two parts; one a functional part that performs the desired
computational function of the circuit and the other a checker
part that verifies the correct operation of the functional part of
the circuit [7, 9, 14]. A totally self-checking checker (TSC) is
used to check the output from the functional part of the

circuit. The TSC is designed to output a two-rail code, which
during normal operation is a 1-out-of-2 code. The TSC will
output an error in the presence of either an internal fault within
its own circuit or in the presence of an incorrect input from the
functional circuitry. The two-rail checker needed to detect the
output from the 1-out-of-3 checkers has been described in [8,
13].

III. METHODOLOGY

As an overview of the design, the block diagram of the
adder design is shown in Figure 1. Two n-bit numbers are
encoded into 1-out-of-3 bit strings in the leftmost blocks of the
figure. In the next block the intermediate sum and carry word
are calculated. In the following block the final sum is
computed. This result is then passed to both the decoder for
conversion from the 1-out-of-3 encoded bit strings and also to
the checker for error detection. This circuit will detect all
transient and static faults including stuck-at, stuck-open, and
bridging faults that cause a unidirectional error. These faults
will manifest themselves by violating the 1-out-of-3 code.

A. Encoding

The adder circuit described here uses the theory of signed
binary digit arithmetic to create its carry-free addition. In
contrast to the circuit described in [6] however, this method
does not actually convert the addend and augend into signed
binary digits prior to 1-out-of-3 encoding. Instead the 1-out-of-
3 encoding is computed directly from either a two's
complement or a signed magnitude representation of the
addend and augend. Also in contrast to [6], no additional bit
strings are required, only n 1-out-of-3 encoded bit strings are
needed to represent an n-bit addend or an n-bit augend. This
encoding is completed by a series of two XOR gates for each
of the n-1 bits that represent the magnitude of the number and
a differently configured set of two XOR gates for the nth bit
that encodes the sign of the number.
 For this encoding method, 100 represents a -1, 010
represents a 0, and 001 represents a +1. All the n-1 bits of an

TABLE I. INTERMEDIATE SUM AND CARRY WORD CALCULATION

Addend [i] Augend [i] Augend [i-1] Carry Word Intermediate Sum

100 100 100, 010, 001 100 010
 100 100 001

010
010, 001 010 100

 001 100, 010, 001 010 010

100 100 001 010 100
010, 001 010 100

 010 100, 010, 001 010 010
 100, 010 010 001

001
001 001 100

100 100, 010, 001 010 010
100, 010 010 001 010

001 001 100

001

001 100, 010, 001 001 010

operand will be converted into either 010 or 001 while the nth
bit will become either 100 or 010. An example for an addend
equal to +5 and an augend equal to -3 represented first astwo's
complement 4-bit numbers and then converted into 1-out-of-3
encoded bit strings is shown.

Addend +5 0101 010 001 010 001
Augend -3 1101 100 001 010 001

This encoding does not alter the value of the numbers as can
be shown by expressing them in radix polynomial form as
illustrated below.

Addend = 010 x 23 + 001 x 22 + 010 x 21 + 001 x 20

= 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20
= 0 + 4 + 0 + 1
= +5

Augend = 100 x 23 + 001 x 22 + 010 x 21 + 001 x 20
= -1 x 23 + 1 x 22 + 0 x 21 + 1 x 20
= -8 + 4 + 0 + 1
= -3

B. Partial Sum & Carry Word

Once the addend and the augend have been converted into
the 1-out-of-3 encoded bit strings, the actual addition begins.
Each of the n encoded digits of the operands are added
together using Table I. This addition is shown for our example
operands.

As shown in Table I, the i - 1 augend will have no effect on
the choice made for the ith position for some combinations.
The intermediate sum and the carry word generated in this

block are then passed to the final sum block as shown in
Figure 1.

 010 001 010 001 Addend
 100 001 010 001 Augend

 100 010 010 010 Intermediate Sum
 010 001 010 001 Carry Word

C. Final Sum

The intermediate sum and the carry word are combined
within the final sum block to form the final sum. Due to the
restrictions imposed by the addition table used for the
previous block no carry will be generated. This is because the
two additions that could generate a carry, 1 + 1 and -1 + -1, are
guaranteed never to occur. The addition in this block is
performed using Table II. The calculation of the final sum for
the example operands is shown below.

100 010 010 010 Intermediate Sum

 010 001 010 001 Carry Word
 010 010 010 001 010 Final Sum

The leftmost bit pattern is the carry out from the addition and
the resulting sum is present in the remaining four encoded bit
strings.

D. Decoding

The last step in the calculation is to convert the encoded
result back into either two's complement or signed
magnitude form. This is accomplished by creating two n-bit
words. The first word contains all of the positive one bit
strings represented by 1's and all of the zero bit strings and
all of the negative one bit strings represented as 0's.

TABLE II. FINAL SUM CALCULATION

Intermediate
Sum

Carry
Word

Final
Sum

100 010 100
 001 010

010 100 100
 010 010
 001 001

100 010 001
010 001

Conversely, in the second word all of the negative one bit
strings are represented as 1's and all of the zero bit strings and
all of the positive one bit strings are represented as 0's. The
second word is then subtracted from the first word to produce
the decoded result.

E. 1-out-of-3 Checkers

Concurrent with decoding, the output of the addition circuit
is also checked for errors. If any bit string has more or less
than one 1 an error has occurred. The output of these checkers
is a two-rail code that should be either 01 or 10. If a 00 or a 11
bit string should occur then there has been an error either
within the functional circuit or within the checkers themselves.

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented the design of an efficient carry-
free adder with on-line error detection. This adder has been
designed to use the idea of signed binary digit representation
but represents its digits internally using a 1-out-of-3 code. Next
the adder must be implemented to enable further study. While
a straight forward implementation is the next step, it is
anticipated that much more interesting results will come not
from the mere simplistic implementation of this adder, but will
result from research into its implementation within more
complex circuits such as multipliers, dividers, and other
complex arithmetic circuits. These implementations will be able
to take greater advantage of the adder's carry-free properties
and will also be better able to bear the overhead of the on-line
error detection as well as to benefit from its advantages.

REFERENCES
[1] D. A. Anderson and G. Metze, "Design of totally self-checking

check circuits for m-out-of-n codes", IEEE Trans. on Computers,
vol. 22, pp. 263-269, March 1973.

[2] A. Avizienis, "Signed-digit number representations for fast parallel
arithmetic", IRE Trans. on Electronic Computers, vol. 10, pp. 389-
400, September 1961.

[3] H. Edamatsu, T. Taniguchi, T. Nishiyama, and S. Kuninobu, "A 33
mflops floating point processor using redundant binary
representation", In IEEE International Solid-State Circuits Conf.,
pp. 152-153 and 342-343, February 1988.

[4] M. J. Flynn and S. F. Oberman, Advanced Computer Arithmetic
Design. New York, NY: John Wiley & Sons, 2001.

[5] I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ:
Prentice Hall Publishers, 1993.

[6] P. K. Lala, and A. Walker, "On-line error detectable carry-free
adder design", in International Symp. on Defect and Fault
Tolerance in VLSI Systems, pp. 66-71, October 2001.

[7] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. San
Diego, CA: Academic Press, 2001.

[8] J. C. Lo, "Novel area-time efficient static cmos totally self-
checking comparator", IEEE Journal of Solid-State Circuits, vol.
28, pp. 165-168, February 1993.

[9] T. Nanya and T. Kawamura, "On error indication for totally self-
checking systems", in IEEE Trans. on Computers, vol. 36, pp.
1389-1392, November 1987.

[10] M. Nicolaidis, "Efficient implementations of self-checking adders
and alus", in 23rd International Symp. on Fault-Tolerant
Computing, pp. 586-595, June 1993.

[11] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs. New York, NY: Oxford University Press, 2000.

[12] B. Parhami, "Generalized signed-digit number systems: a unifying
framework for redundant number representations", IEEE Trans. on
Computers, vol. 39, pp. 89-98, January 1990.

[13] S. J. Piestrak, "Design method of a class of embedded
combinational self-testing checkers for two-rail codes", IEEE
Trans. on Computers, vol. 51, pp. 229-234, February 2002.

[14] S. J. Piestrak, "Self-checking design in eastern Europe", IEEE
Design & Test of Computers, vol. 13, pp. 16-25, Spring 1996.

[15] E. E. Swartzlander, Jr. (Ed.), Computer Arithmetic, Volume II. Los
Alamitos, CA: IEEE Computer Society Press, 1990.

[16] N. Takagi and S. Yajima, "On-line error-detectable high-speed
multiplier using redundant binary representation and three-rail
logic", IEEE Trans. on Computers, vol. 36, pp. 1310-1317,
November 1987.

[17] N. Takagi, H. Yasura, and S. Yajima, "High-speed vlsi
multiplication algorithm with a redundant binary adder tree", IEEE
Trans. on Computers, vol. 34, pp. 789-796, September 1985.

[18] D. L. Tao, C. R. P. Hartmann, and P. K. Lala, "A general technique
for designing totally self-checking checker for 1-out-of-n code with
minimum gate delay", IEEE Trans. on Computers, vol. 41, pp.
881-886, July 1992.

[19] M. A. Thornton, "Signed binary addition circuitry with inherent
even parity outputs", IEEE Trans. on Computers, vol. 46, pp. 811-
816, July 1997.

[20] J. Q. Wang, and P. K. Lala, "Partially strongly fault secure and
partially strongly code disjoint 1-out-of-3 code checker", IEEE
Trans. on Computers, vol. 43, pp. 1238-1240, October 1994.

