
  
 

 

  
Abstract--This work presents an improved design for a carry-

free adder featuring on-line error detection. The salient 
contribution of this work is an extremely quick and cost-
effective method of conversion from either two's complement or 
signed magnitude format into the internal 1-out-of-3 code used 
within this adder.  
 

Index Terms--carry-free addition, on-line error detection, 
signed binary digits, 1-out-of-3 code 

I. INTRODUCTION 

ddition is one of the most fundamental operations for 
digital computations. Thus much effort has been invested 

in research that has led to faster and more efficient ways to 
perform this operation. [4, 5, 11, 15]. Nonetheless carry 
lookahead, carry select, and carry skip adders are all still 
constrained by the carry propagation delay. Residue number 
systems provide one way to restrict the carry propagation 
delay, signed digit representations offer another solution.  
 Interest in on-line error detection continues to grow as VLSI 
circuits increase in complexity. On-line error detection is  
increasingly becoming a desirable characteristic due to its 
ability to detect transient faults that may occur in a circuit 
during normal operation. On-line error detection provides an 
opportunity for self-diagnosis and self-correction within a 
circuit design [10, 16]. 
 This work presents an improved design for a carry-free 
adder featuring on-line error detection. The use of parity 
encoding to enable the detection of incorrect operation in a 
signed binary digit adder was first suggested in [19]. The 
carry-free features of this adder draw upon the ideas from 
signed digit representations, but represent these digits 
internally using a 1-out-of-3 code facilitating the on-line error 
detection. The use of this encoding in a carry-free adder was 
first described in [6]. 

The salient contribution of this work is an extremely quick 
and cost-effective method of conversion from either two's 
complement or signed magnitude representation into the 1-out-
of-3 code used internally within this adder. Another feature of 

 
This work was supported in part by the National Science Foundation 

under grant CCR-0000891 and CCR-0098272. 

this design includes a reduction in the size of the internal 
representation when compared to the design described in [6] 
resulting in area savings for both the adder circuit itself and 
also for the accompanying self-testing checker circuit. 
 The organization of this paper is as follows. Part II provides 
the necessary background in the areas of carry-free arithmetic 
using signed digit representations, numerical encoding, and 
on-line error detection. Part III describes the methodology 
used in the design of this adder. Part IV presents conclusions 
and highlights a few of the many possibilities for 
implementation of this design.   

II. BACKGROUND 

The design of this adder incorporates ideas from carry-free 
arithmetic using signed number representations, numerical 
encoding, and on-line error detection. 

A. Carry-Free Arithmetic 

One way to remove the penalty of carry propagation delay is 
through the use of carry-free addition. Carry-free addition 
permits addition to become a parallel operation in which 
completion time is no longer dependant upon the number of 
bits to be added. Carry-free addition is possible through the 
use of redundant number systems. Common number systems 
have digits sets that have the same cardinality as the value of 
the radix. In contrast, a redundant number system can be 
implemented by a digit set which has more digits in the set 
than the value of the radix. This allows a given number to have 
more than one representation [2]. 

1) Signed Digit Numbers 
The first redundant number systems proposed used radices 

of greater than two. [2, 12]. Each digit within these digit sets 
with the exception of zero is present in both positive and 
negative polarities. A line drawn above the digit indicates a 
negative-valued digit. In these systems, the carry-free addition 
is implemented by restricting the possible intermediate sum 
and carry word digits such that a carry out can never occur 
when the final sum is computed.  

2) Signed Binary Digits 
Radix-2 or signed binary digit number representations are of 

particular interest. The signed binary digit number set 
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Figure 1. Block Diagram of Carry -Free Adder with Error Detection  
 

consists of {1,0,1} . Due to these restricted possibilities for 

the digit set, the digits that generate the intermediate sum and 
carry word cannot be predetermined. Implementation of a radix-
2 signed digit number representation requires the additional 
constraint that the next lower bit position also be considered 
during computation of the intermediate sum and carry word. 
Several different encodings of signed binary digits have been 
described in [3, 17, 19]. 

B.  Numerical Encoding 

Different ways to perform numerical encoding have long 
been of interest as a means of error detection and error 
correction [6].  

1) m-out-of-n Codes 
An m-out-of-n code is a particular type of encoding in which 

m and only m 1's occur in every valid code word of length n. 
These m-out-of-n codes have been studied with respect to 
error detection via totally self-checking checkers in [1, 18]. The 
parity encoding for error detection in carry-free addition 
proposed in [19] would result in an k-out-of-2k encoding, 
which are a subset of the m-out-of n codes. Totally self-
checking checkers for these codes were also considered in [1]. 

2) 1-out-of-n Codes 
Much research effort has been invested in another subset of 

m-out-of-n codes, the 1-out-of-n encodings. The adder design 
presented in this work utilizes 1-out-of-3 encoded bit strings. A 
1-out-of-3 encoding has three valid code words, 001, 010, and 
100; all other possible encodings of 3 bits are invalid code 
words. Checkers for 1-out-of-3 codes have been studied in 
[20]. 

C.  On-Line Error Detection 

An on-line error detecting circuit consists of a circuit with 
two parts; one a functional part that performs the desired 
computational function of the circuit and the other a checker 
part that verifies the correct operation of the functional part of 
the circuit [7, 9, 14]. A totally self-checking checker (TSC) is 
used to check  the  output  from  the  functional  part  of  the  

circuit. The TSC is designed to output a two-rail code, which 
during normal operation is a 1-out-of-2 code. The TSC will 
output an error in the presence of either an internal fault within 
its own circuit or in the presence of an incorrect input from the 
functional circuitry. The two-rail checker needed to detect the 
output from the 1-out-of-3 checkers has been described in [8, 
13]. 

III. METHODOLOGY 

As an overview of the design, the block diagram of the 
adder design is shown in Figure 1. Two n-bit numbers are 
encoded into 1-out-of-3 bit strings in the leftmost blocks of the 
figure. In the next block the intermediate sum and carry word 
are calculated. In the following block the final sum is 
computed. This result is then passed to both the decoder for 
conversion from the 1-out-of-3 encoded bit strings and also to 
the checker for error detection. This circuit will detect all 
transient and static faults including stuck-at, stuck-open, and 
bridging faults that cause a unidirectional error. These faults 
will manifest themselves by violating the 1-out-of-3 code.  

A. Encoding 

The adder circuit described here uses the theory of signed 
binary digit arithmetic to create its carry-free addition. In 
contrast to the circuit described in [6] however, this method 
does not actually convert the addend and augend into signed 
binary digits prior to 1-out-of-3 encoding. Instead the 1-out-of-
3 encoding is computed directly from either a two's 
complement or a signed magnitude representation of the 
addend and augend. Also in contrast to [6], no additional bit 
strings are required, only n 1-out-of-3 encoded bit strings are 
needed to represent an n-bit addend or an n-bit augend. This 
encoding is completed by a series of two XOR gates for each 
of the n-1 bits that represent the magnitude of the number and 
a differently configured set of two XOR gates for the nth bit 
that encodes the sign of the number.  
 For this encoding method, 100 represents a -1, 010 
represents a 0, and 001 represents a +1. All the n-1 bits of an 

 
 

 



 
 

 
TABLE I. INTERMEDIATE SUM AND CARRY WORD CALCULATION 

 
Addend [i] Augend [i] Augend [i-1] Carry Word Intermediate Sum 

100 100 100, 010, 001 100 010 
 100 100 001 
 

010 
010, 001 010 100 

 001 100, 010, 001 010 010 

100 100 001 010 100 
010, 001 010 100 

 010 100, 010, 001 010 010 
 100, 010  010 001 
 

001 
001 001 100 

100 100, 010, 001 010 010 
100, 010 010 001 010 

001 001 100 

001 

001 100, 010, 001 001 010 

  
 

operand will be converted into either 010 or 001 while the nth 
bit will become either 100 or 010. An example for an addend 
equal to +5 and an augend equal to -3 represented first astwo's 
complement 4-bit numbers and then converted into 1-out-of-3 
encoded bit strings is shown.  

 
Addend  +5  0101  010 001 010 001 
Augend  -3   1101  100 001 010 001 

 
This encoding does not alter the value of the numbers as can 
be shown by expressing them in radix polynomial form as 
illustrated below. 

 
Addend  = 010 x 23 + 001 x 22 + 010 x 21 + 001 x 20 

= 0 x 23 + 1 x 22 + 0 x 21 + 1 x 20 
= 0 + 4 + 0 + 1  
= +5 
 

Augend  = 100 x 23 + 001 x 22 + 010 x 21 + 001 x 20 
= -1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 
= -8 + 4 + 0 + 1  
= -3 
 

B.  Partial Sum & Carry Word 

Once the addend and the augend have been converted into 
the 1-out-of-3 encoded bit strings, the actual addition begins. 
Each of the n encoded digits of the operands are added 
together using Table I. This addition is shown for our example 
operands.  

As shown in Table I, the i - 1 augend will have no effect on 
the choice made for the ith position for some combinations. 
The intermediate sum and the carry word generated in this 

block are then passed to the final sum block as shown in 
Figure 1.  

      010  001 010 001  Addend 
      100  001 010 001  Augend     

             100  010 010 010  Intermediate Sum 
          010  001 010 001                  Carry Word   
 

C.  Final Sum 

The intermediate sum and the carry word are combined 
within the final sum block to form the final sum. Due to the 
restrictions imposed by the addition table used for the 
previous block no carry will be generated. This is because the 
two additions that could generate a carry, 1 + 1 and -1 + -1, are 
guaranteed never to occur. The addition in this block is 
performed using Table II. The calculation of the final sum for 
the example operands is shown below.  

 
100 010 010 010  Intermediate Sum 

 010 001 010 001           Carry Word    
  010 010 010 001 010  Final Sum  
 

The leftmost bit pattern is the carry out from the addition and 
the resulting sum is present in the remaining four encoded bit 
strings.  

D.  Decoding 

The last step in the calculation is to convert the encoded 
result back into either two's complement or signed 
magnitude form. This is accomplished by creating two n-bit 
words. The first word contains all of the positive one bit 
strings represented by 1's and all of the zero bit strings and 
all of the negative one bit strings represented as 0's.



  
 

TABLE II. FINAL SUM CALCULATION 
 

Intermediate  
Sum  

Carry  
Word  

Final  
Sum 

100 010 100 
 001 010 

010 100 100 
 010 010 
 001 001 

100 010 001 
010 001 

  
Conversely, in the second word all of the negative one bit 
strings are represented as 1's and all of the zero bit strings and 
all of the positive one bit strings are represented as 0's. The 
second word is then subtracted from the first word to produce 
the decoded result.  

E.  1-out-of-3 Checkers 

Concurrent with decoding, the output of the addition circuit 
is also checked for errors. If any bit string has more or less 
than one 1 an error has occurred. The output of these checkers 
is a two-rail code that should be either 01 or 10. If a 00 or a 11 
bit string should occur then there has been an error either 
within the functional circuit or within the checkers themselves.  

IV. CONCLUSIONS AND FUTURE WORK 

This paper has presented the design of an efficient carry-
free adder with on-line error detection. This adder has been 
designed to use the idea of signed binary digit representation 
but represents its digits internally using a 1-out-of-3 code. Next 
the adder must be implemented to enable further study. While 
a straight forward implementation is the next step, it is 
anticipated that much more interesting results will come not 
from the mere simplistic implementation of this adder, but will 
result from research into its implementation within more 
complex circuits such as multipliers, dividers, and other 
complex arithmetic circuits. These implementations will be able 
to take greater advantage of the adder's carry-free properties 
and will also be better able to bear the overhead of the on-line 
error detection as well as to benefit from its advantages.  
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