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Abstract

A technique to detect and realize a parity logic
function using a linear number of spectral coefficients
is presented. Recent advances in computation meth-
ods for the spectra of a Boolean function have resulted
in the determination of a single coefficient very effi-
ciently. The use of a small set of spectral coefficients
offers low cost and attractive alternatives to more tra-
ditional digital logic design and analysis techniques
when coupled with the use of the new spectral compu-
tation approach. The detection and realization of the
class of parity functions is an important problem since
it generally requires the computation of 27 Walsh coef-
ficients when spectral methods are used, or, extensive
symbolic algebraic manipulation when other methods
are used. The method presented in this paper only
requires the computation of n + 2 Walsh coefficients
and n + 1 non-Walsh coefficients to detect and realize
a parity function.

1 Introduction

With the recent advent of an efficient method for
the computation of a single spectral coefficient of a
Boolean function comes a renewed interest in the use
of these quantities for circuit design and analysis tasks
[1]. In particular, methods that use a small subset of
spectral coefficients are especially attractive since the
computational efficiency provided by the new calcula-
tion technique is augmented by reducing the amount
of storage required and the number of times the com-
putation is performed. This paper provides a method-
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ology for detecting and realizing the class of logic
functions that compute the parity of a set of liter-
als. This class of functions 1s usually difficult to de-
tect efficiently when common graphical or symbolic
approaches to logic analysis and design are applied.

The spectrum of a Boolean function is defined as
a vector of integer values obtained through the linear
mapping of a specific transformation matrix. Com-
mon transformation matrices include the Reed-Muller
transformation matrix [2], or the Walsh family of ma-
trices such as the Rademacher-Walsh or Hadamard
[3]. As developed in [4], each row of the transforma-
tion matrix may be considered to be the output vector
of a logic function, and thus the transformation matri-
ces may be viewed as being composed of a collection of
logic functions, called ”constituent functions”. Using
this viewpoint, a general transformation matrix may
be constructed with any arbitrary set of constituent
functions. In this paper, we use n 4+ 2 Walsh coeffi-
cients to detect whether a given n-variable function
may be realized as a parity circuit and n 4+ 1 general
spectral coefficients to determine the characteristics
necessary for the actual realization.

The particular set of coefficients used to detect the
parity function are the 0! and 1°! ordered Walsh co-
efficients and a single i'" ordered Walsh coefficient,
where ¢ may range from 2 to n. The 0'* and 1*! or-
dered Walsh coefficients are usually referred to as the
Chow parameters in recognition of the work in [5] al-
though the original definition differs slightly from that
originally defined by Chow. The realization portion of
this process uses n+1 spectral coefficients correspond-
ing to constituent functions that are not used in any
of the common transformation matrices.

This problem has great practical importance when
spectral coefficients are used to synthesize a logic cir-



cuit. The advent of methods to compute spectral co-
efficients with a complexity generally much less than
O(2™) has provided the motivation for the investiga-
tion into the use of the coefficients for logic synthesis.
However, regardless of the efficiency of the computa-
tion of the coefficients, if all 2”7 are required, the syn-
thesis algorithm will not prove to be practical. Since
the Chow parameters correspond to the simplest set
of constituent functions, it 1s interesting to try to ex-
ploit the information they provide to solve digital logic
problems. We are currently working on a synthesis
methodology that uses a reduced set of spectral coeffi-
cients including the Chow parameters. The particular
technique that is the subject of this paper arose from
this investigation and is a solution to a ’sub-problem’
encountered in the development of the synthesis tech-
nique. Specifically, when the Chow parameters are all
zero-valued, particular difficulties arise since algebraic
sign information is not present and some variables
could be redundant. In this paper we show that all
parity functions have zero-valued Chow parameters,
however the converse of this statement is not neces-
sarily true. In order to detect whether a logic function
is a parity function or not, we compute an ** ordered
Walsh coefficient that is determined by the properties
of the additional n + 1 non-Walsh coefficients. If the
detection criteria indicates the presence of a parity
function, we then realize it since the additional n + 1
non-Walsh coefficients can be used to determine the
redundant inputs and the output polarity of the the
circuit.

Many logic circuit optimizers require a structural
input and provide an output that is also in a netlist
form. Recently, some efficient spectral computation
methods have been proposed that use BDDs as input
[1] [6] [7] [8]. However, if the circuit is in the form
of a netlist initially, it may be more work to obtain
a suitable variable ordering and then build a BDD
representation than it would be to compute the spec-
tral coefficients directly from the netlist. In addition,
some logic functions require an exponential number
of BDD vertices versus a much smaller netlist. For
these classes of circuits, the use of an efficient spectral
computation technique using a structural input such
as that described in [9] is clearly advantageous.

The remainder of this paper is organized as follows.
Section 2 contains a brief discussion of the notation
and definitions used in this development. Section 3
contains the mathematical results used for the detec-
tion and realization of parity functions using the small
set of spectral coefficients. In Section 4, these results
are summarized in an algorithmic form suitable for
implementation as a computer program and an illus-

trative example is provided. Finally, Section 5 pro-
vides the conclusions of this work and indicates some
related areas of future research.

2 Notation and Definitions

The formulation of the efficient method for comput-
ing spectral coefficients requires alternative definitions
and notation than is typically used when discussing
Boolean function spectra [1]. In order to present these
results in a manner compatible with the efficient cal-
culation technique, the same notation is used in the
remainder of this paper.

e n1s the number of variables in a Boolean function.

e Small case variables such as zg, #1, etc. denote
Boolean variables that have logic values of 71”7 or

” 077

e The operator symbol, ”7+”7, will refer to the
Boolean OR function or the addition of real num-
bers depending upon the context of the equation
in which 1t is used.

” 0

e The operator symbol, will refer to the
Boolean AND operation. The absence of an op-
erator between two adjacent values in a Boolean

equation implies the presence of the ”-” operator.

e The operator symbol, 7@®”, will refer to the
Boolean XOR operation.

e The spectral coefficient of a function, f, with re-
spect to a constituent function, f., is denoted as

Sf[fc]'

e N, is an integer value that indicates the num-
ber of times two functions yield the same output
value for all possible input combinations. Like-
wise, Ny 18 the number of times the outputs
differ thus N, + Ny, = 27

e A Boolean function is said to be degenerate if its
output is independent of one or more of its inputs.

e A particular Boolean function input is said to be
redundant if 1ts value does not affect the output.

e A Boolean function that may be formed as the
XOR of some or all of its single literals is referred
to as a parity function in the remainder of this pa-
per. In mathematical terms, the parity function
has the form:

f(@) = a121 D asia @ -+ D any (1)



where

a; € {Oal} (2)

and #; denotes x; may or may not be inverted.

There are varying definitions of the spectrum of a
Boolean function. The different spectra are classified
based upon the transformation matrices used to com-
pute them. As discussed in [4], the transformation ma-
trices may be viewed as a collection of ”constituent”
functions whose output vectors are used as row vec-
tors in the transformation matrix. Most of the com-
monly used transformation matrices always include
constituent functions that correspond to the constant
function (either f.o = 0, or, feo = 1) and functions
that are equal to each primary input (f,; = x; for
i = 1...n). This set of spectral coefficients form the
Chow parameters [5]. As an example, the following
transformation matrix could be used to compute the
Chow parameters of a three-input function:

1fr1 111111
z|0 0001111
z2(0 001 1 0011
zz3|0 1 01 0101

Notice that the constituent functions corresponding
to each row vector of the transformation matrix are
shown to the left of the matrix. As an example of
the calculation of the Chow parameters, consider the
circuit whose logic diagram is shown in Figure 1.
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Figure 1: Logic Circuit Example for Chow Parameter
Computation
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The computation in Equation 3 is representative
of the original definition of the Chow parameters as

given in [5]. In this form, the Chow parameters yield
information regarding the total number of minterms
present in the circuit’s logic equation (given by the
coefficient corresponding to f.o = 1), and, the number
of minterms in which each primary input, x;, appears
in an uncomplemented form (given by each respective
fci = xz)

The family of Walsh transformation matrices are
more general than the matrix used in Equation 3 in
that they contain only the real values of 1 and -1.
The logic 717 values are replaced with -1 and the logic
707 values are replaced with +1 in the formation of
these matrices. This allows the -1 products in the
evaluation of the inner products to accumulate thus
providing more information about the function being
transformed. This form causes the spectral coefficients
to lie in the range [—2" 2"] and it has the desirable
feature that the coefficient corresponding to a partic-
ular x; is always zero-valued if that z; is a redundant
input. However, the fact that a particular coefficient
is computed to be 0 does not necessarily imply that
the corresponding z; is redundant. This property is
formally proven in the work given in [10]. The fact
that degenerate functions will always have at least one
zero-valued Chow parameter is used in the method we
develop here, thus, in the remainder of this paper we
assume the Chow parameters are computed using this
form. As an example, the Chow parameters computed
in Equation 3 would become:

1

1
+r 1 1 1 1 1 1 1 1 2
+r 1 1 1 -1 -1 -1 -1 -1 | 2
t1 1 -1 -1 1 1 -1 -1 I R
1 -1 1 -1 1 -1 1 -1 1 2

-1

__1_

(4)

It is useful to see that the original form of the
Chow parameters can be used to compute the form in
Equation 4 directly. Note that the 0'-ordered spec-
tral coefficient in Equation 3 corresponds to the con-
stituent function, f.o = 1, while the same spectral co-
efficient in Equation 4 corresponds to f.g = 0. In order
to define algebraic relationships between the form of
the Chow parameters in Equations 3 and 4 we will
denote them as {C¢[f.0], Ctlfer], Celfeal, .- Cplfenl}
and {S¢[feol, S¢[fe1), Stlfeal, - .. S¢[fen]} respectively.

The relationships are given as:

Sf [ch] =2" - 20}‘ [ch] (5)



Stlfeil = 4C[fei] = 2C¢ [ feo] (6)

3 Mathematical Basis for the Tech-
nique

This section provides a discussion and a derivation
of the results used to develop the parity function de-
tection and realization technique. First, we show that
a necessary condition for a function to be considered a
candidate for realization as a parity circuit is that all
of its Chow parameters must be zero-valued. Next, we
state the obvious fact that the spectral coefficient of
the candidate function with respect to a constituent
function describing the parity circuit must have the
value of 2. Finally, we show how the additional n+ 1
non-Walsh coefficients can be used to determine which
parity circuit is a probable candidate to use for real-
izing the logic function.

It has been shown that the Chow parameters can
provide information regarding input and output in-
versions and variable permutations for an NPN-
equivalent class of functions [11]. Unfortunately, this
information cannot be exploited for the class of parity
functions because all of the Chow parameters are zero
valued for this group. However, the fact that all of the
Chow parameters are necessarily zero valued can be
used to determine if a given logic function is suitable
for realization as a parity function. In order to for-
mulate a detection technique for parity functions, we
prove that for any possible parity function the Chow
parameters must be zero valued.

The first rather obvious result concerns the identi-
fication of inverted literals. Lemma 1 can be used to
show that all parity functions may be represented by
two unique forms regardless of the polarity of the lit-
erals. This Lemma may be used to disregard the task
of determining individual polarities of literals, and in-
stead, translates the problem to the determination of
whether or not the output of the parity circuit should
be inverted.

Lemma 1 All non-degenerate parity functions are
equivalent to the following even or odd parity func-
tions regardless of the polarity of the input literals.

i=21®220 - D, (7)

or,

fo=21®2:28 D, (8)

Proof: The non-degenerate parity functions simply
compute the even (or odd) parity of the inputs. If a

single input is inverted, the corresponding overall par-
ity bit is inverted since x @F = 1. Hence, the function
represented by f; initially may now be represented by
fa (and vice versa). If an even number of inputs are
inverted, the original function remains the same since
T1PT2DT3D - BT PCmp1 - Dan =210 2D
3D Bxm BDTmy1 B D g
for m even. Conversely,
Ty & T2 DT3D - DT Dy B Dy =
1 Px2Ba3D - DOy DXimy1 D Dy
for m odd. ad
The following results prove that a necessary con-
dition for a given logic function to be realized as a
parity circuit is that all Chow parameters must be
zero-valued.

Lemma 2 A parity function always has a "0”-valued
0t -order Chow parameter.

Proof: Consider a non-degenerate, non-inverted par-
ity function. The output of this function is the even
parity bit of all inputs. The 0'-order Chow parame-
ter may be defined as the difference of the number of
function outputs at logic 70” and those at logic 71”.
Thus, for this spectral coefficient to equal 0, half of
all possible input terms should have even parity with
the remaining half having odd parity. Therefore, the
lemma is proved upon the condition that for all possi-
ble binary strings of n bits; half have an even number
of 1s and half have an odd number of 1s.

The number of binary strings containing an even
number of bits may be computed as:

e (3)(3) 0 ()

Likewise, the number of possible binary strings of

length n with odd parity is:
) )

Note that,

n n
NeyentNodd = ( 0 )+< 1

n
n
Neyen + Nodd = E i

=0
From the Binomial Theorem:

(1 )+(5 )

(13)

(1-1)"=0= ( 0

n
n

)



Or equivalently,

(5)+(5) (o)
(1) (5 )+ (aplan ) 0

Using the definitions of n.y .y, and n,q4 in Equations
9 and 10 and substituting into Equation 14, we see
that

Neven = Nodd (15)

Solving for neyen and ny,qq simultaneously using
Equations 15 and 11 yields the result:

Neven = Nodd = 2n—1 (16)

Therefore, the 0'-ordered Chow parameter is:
SO = Neyen — Nodd = 2n—1 - 2n—1 =0 (17)

The non-degenerate, inverted parity function case
also holds for this lemmasince the only change is that
the n.y., minterms produce a logic 71”7 output and
the nyqq terms produce a logic ”0” output. In the
most general case, a degenerate parity function, the
lemma also holds. Consider a parity function of m
variables with 1 redundant input. If all 2" minterms
are tabulated and the redundant input is removed,
the list becomes the concatenation of 2 lists of all pos-
sible minterms of length m — 1. Thus, substituting
m — 1 for neyen and nygq in Equation 17 will result in
a 0-valued, 0'"-ordered Chow parameter. Further, by
induction, the same argument may be applied for de-
generate functions with more than 1 redundant input.
O

The following lemma shows that all of the 1*! or-
dered Walsh coefficients must have a value of zero for
a parity function.

Lemma 3 All Chow parameters of a parity function
are zero-valued.

Proof: Consider the i'* Chow parameter correspond-
ing to the spectral coefficient formed by using the con-
stituent function, f.; = x;. If the #; input and the first
input, z1, are interchanged and the resulting minterms
are (and corresponding function outputs) are rewrit-
ten in ascending order, the first 27! minterms cor-
respond to z; = 0 and the remaining 2"~! minterms
correspond to x; = 1.

Using the results of Lemma 1, it is apparent that
each subset produces an equal number of ”1” and ”0”
outputs. Thus, the number of output values matching

the «; input is 272 in each subset. The total number
of outputs that match z; (denoted by Np,) is:

Ny =272 4202 = 20! (18)

It is shown in [4] that any spectral coefficient may
be computed as:

Silfe(2)] = 2N, — 2" (19)

Substituting Equation 18 into Equation 19 yields:

Splfe(x))=2(2""1) - 2" =0 (20)

O
The previous lemmas have proven that a necessary
condition 1s that a parity function will always have
0-valued Chow parameters. However, the presence of
a set of 0-valued Chow parameters is not sufficient
to guarantee that the corresponding function may be
realized as a parity function. As an example consider
the function given in Equation 21.

fle) =21 @ 23 @ vouy (21)

Clearly, Equation 21 cannot be represented by a
parity function as defined in this paper, but it does
have all zero-valued Chow parameters. The following
derivations show how a set of non-Walsh spectral co-
efficients may be used to determine a candidate parity
function that may possibly realize the original logic
function. Once the parity function is determined, it
is used as a constituent function for the calculation
of one additional spectral coefficient. If this spectral
coefficient has a value of ||27||, the function is real-
ized. If the value of the additional coefficient 1s not
[|27]], the candidate logic function is not in the class
of parity functions. It should be noted that all higher
ordered Walsh coefficients utilize constituent functions
that are parity functions. Therefore this method in-
dicates which of the higher ordered Walsh coefficients
should be computed to determine if a parity circuit
can be used for the realization.

The application of traditional Walsh type spectral
computations require the computation of 2" coeffi-
cients in to find the suitable parity function. How-
ever, by determining two additional facts about the
logic function under consideration, we can determine
which Walsh spectral coefficient is needed before re-
sorting to computing the entire spectrum. The two
additional facts are needed to uniquely identify the
exact form of the function are:

e Determination of which (if any) inputs are redun-
dant



e Determination of whether or not the output of the
parity function should be inverted. This determi-
nation indicates whether an odd or even parity
function will be used.

The following lemmas show that the two criteria
given in the preceding may determined by examining
the properties of n+ 1 non-Walsh spectral coefficients.

Lemma 4 The set of n + 1 spectral coefficients com-
puted using the following constituent functions:

fcnO =T1L2...Tn
fcnl =T1%2...%,
fcn2 = 21T ...%,

fcnn =&1%2...%,

with respect to a parity function, always have a
magnitude of [|2]].

Proof: From Lemma 3, the 27 minterms may always
be rewritten to form two disjoint subsets with only the
z; input differing in value. Since the parity function
output is a parity value, the output will always result
in different values when the two minterms that differ
only in x; are used as input.

The output vector of the f.,; functions given in the
lemma always contain 2" —1 logic 70” values and a sin-
gle logic 71”7 value since the f.,; functions are a single
minterm. In terms of the number of matching values
in the output vector of the parity function and the out-
put vector of the constituent function, two cases arise.
In the first case, the singular output logic value of ”1”
of the constituent function matches a logic 71”7 value
on the output vector of the parity function. It follows
that the 27! logic ”70” output values of the parity
function match 27~! logic ”0” values in the output
vector of the constituent function. The total number
of matching values becomes:

Np =271 41 (22)

Substituting this result into Equation 19, the cor-
responding spectral coefficient is computed as:

Selfe(x)]=22"" 4+ 1)—-2"=2 (23)

In the other case, the single logic ”1” output value
of the constituent function mismatches with a logic
”0” output of the parity function and the remaining
27~ _1 logic ”0” outputs of the parity function match
with logic 707 output values of the constituent func-
tion. Thus, the total number of matches in this case
becomes:

Np =271 -1 (24)

Substituting this result into Equation 19, the cor-
responding spectral coefficient is computed as:

Silfe(@)] =2(2"' =) -2"=-2  (25)

O

Lemma 5 If a parity function has a redundant input,
x;, then

Seleres. . 2. .xp] = Splerize. . T 2] (26)
Proof: Consider a parity function with a single
redundant input, x;. The output of the function
is the same for the two inputs corresponding to
X1Tg...T;... %y and xiwy...T;...x,. Since by def-
inition a parity function with a non-redundant x; in-
put would compute differing parity values for these
two constituent functions, if S¢lzi@s...2;...2,] =

Stlerzs .. Fi ... 2y), the 2; input must be redundant.
Od

The ramifications of Lemmas 4 and 5 are that
redundant inputs may be determined by examining
two of the additional spectral coefficients and noting
whether or not they are identical, and, that the val-
ues of the additional coefficients may be determined
by simply evaluating the function output for n + 1
minterms. Specifically, the n 4+ 1 minterms are those
given by the additional constituent functions. Since
it is proven that they will produce spectral values of
[|2]], it is only necessary to determine the arithmetic
sign. The arithmetic sign 1s negative if the function
is evaluated to be a logic 707, and it is positive if the
function is evaluated to be a logic ”1” for a particular
constituent function.

Using these results, the output polarity and the re-
dundant inputs can be identified. Therefore, a unique
candidate parity function is specified. Since the pres-
ence of zero valued Chow parameters is only a nec-
essary condition for allowing a logic function to be
represented as a parity circuit, it must be determined
if the candidate parity function does indeed represent
the initial logic function. This determination is easily
carried out by computing an additional spectral coef-
ficient using the candidate parity function as a con-
stituent function. The well documented properties of
spectral coefficients dictate that this coefficient must
have a value of 2" if the parity function does indeed
realize the logic function.



4 Implementation

The results of the previous section show that any
parity function may be represented by two distinct
forms function and that any redundant inputs are eas-
ily determined as well as whether the resulting parity
should be even or odd. This information is determined
by computing 2n 4+ 3 spectral coefficients. In algorith-
mic form the steps required to analyze a particular
function are:

Parity Function Detection
and Realization Method
STEP 1 Determine function is a candidate by
observing that all Chow parameters are
zero valued.
Compute the additional n + 1 spectral
coefficients. The additional coefficients
may be computed using a spectrum cal-
culation technique, or, by simply eval-
uating the function for n + 1 different
inputs.
Determine the total number of redundant
inputs (if any) and count the number of
non-redundant inputs, Nyg. This is
accomplished by determining the number
of spectral coefficients for the
constituent functions:
fcnl =T122...%n
fcn2 =21T2...%n

STEP 2

STEP 3

fcnn =2122...Tn
that have the same value as the spectral
coefficient obtained by using the
constituent function:

fcnO = T1L2...Tn
Then, Nyg 1s the difference of this
number and n, the total number of
parity function inputs.
If Nvg is even and Sp[zizs...2,] = 2,
the output of the candidate parity function
should be inverted, otherwise it is not.
Likewise, if Nyg is odd and S[zizs. .. 2p]
= —2, the output of the parity function
should be inverted, otherwise it is not.
Compute the Walsh coefficient correspon-
ding to the constituent function specified
by the candidate parity function. If the
value is ||2"||, the function may be
realized as a parity function.
For the final step, all redundant inputs
identified in STEP 3 are either left

STEP 4

STEP 5

STEP 6

unused in the resulting function, or
their corresponding inputs can be set to
logic 70”.

As an example consider the function whose struc-
tural representation is given in Figure 2. Application
of the spectral coefficient calculation algorithm given
in [9] results in the set of 6 Chow parameters. Upon
examination, it is noted that all of the Chow param-
eters are zero-valued. By Lemma 1 it is seen that
this function may be represented by a parity function.
Once this observation has been made, the additional
n—+ 1 coefficients are determined by observing the out-
put of the logic function when inputs correspond to the
minterms defined by the n 4+ 1 additional constituent
functions. Table 1 contains the Chow parameters and
the additional spectral coefficients. The output of the
function is shown for the additional spectral values to
illustrate how the values may be obtained by simply
evaluating the circuit output. Since the spectral val-
ues will have a magnitude of [|2||, the resulting func-
tion outputs dictate the arithmetic sign. The con-
stituent functions are denoted by f.(z), the output
of the function being transformed is denoted by f(z),
and, the corresponding spectral coefficients are labeled

as St (f.).

x2 x3 x4 x.

[ D—

SO

)

Figure 2: Example Logic Circuit for Parity Function
Analysis

After the additional coefficients have been ob-
tained, the number of non-redundant inputs, Nyg,
is computed. Since there are b inputs present in the
example circuit and 3 of the additional coefficients
match the coefficient given by the constituent func-
tion, @1 xsx324x5, the total number of nonredundant
inputs is computed to be Nyg =5 -3 = 2.



Table 1: Spectral Coefficients for the Example Circuit
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Next, 1t is noted that the value of Ny g 1s even and
that S(zy22232425) = 2, thus step 4 of the method
given in the preceding indicates that the output of
the function should be inverted. Now the circuit is
completely identified to be equivalent to the odd par-
ity function given in Equation 27 and the analysis is
complete.

f =x3DTs (27)

This section has shown that the analysis and classi-
fication of parity functions may be easily accomplished
by computing 2n + 3 spectral coefficients. The initial
n+1 coefficients are the Chow parameters. When the
Chow parameters are all O-valued and the i Walsh
coefficient has a value of 27, a parity function is indi-
cated. The additional n 4+ 1 spectral coefficients are
computed to determine the candidate parity function.
In addition, they indicate which inputs are redundant
and whether the output of parity function should be
inverted. Further, the additional n+1 coefficients may
be easily determined by evaluating the function to be
classified for n + 1 minterms.

5 Conclusion

This paper has presented a methodology for the de-
tection and realization of parity functions by using a
small subset of spectral coefficients. In the past, such
methodologies were overlooked due to the high compu-
tational cost of computing spectral coefficients. Due
to recent advances in the computation of the spectrum

of a Boolean function, approaches such as these pro-
vide a viable means for using spectral quantities in
digital systems engineering tasks. This result i1s use-
ful since this particular class of logic functions is quite
difficult to handle using traditional spectral transfor-
mation matrices or other methods such as graphically
or symbolically based techniques.

We have shown that by computing 2n 4+ 3 spectral
coefficients, degenerate parity functions may be real-
ized in one of two distinct forms. Further, the n + 1
non-Walsh type spectral coefficients utilize very sim-
ple constituent functions and therefore their compu-
tation 1s reduced to simply evaluating the output of
the function for n 4+ 1 inputs.

Finally, the technique presented in this paper 1is
very general in that it may be used with a variety
of input representations. All that is required is some
means to compute the coefficients thus, any type of
suitable input may be used, either a structural or a
functional representation is sufficient.
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