
Logic Synthesis Based on the Structure of an Ordered DD*

M. A. Thornton, D. M. Wessels
Department of Computer Science and Computer Engineering, University of Arkansas

313 Engineering Hall, Fayetteville, Arkansas, USA 72701-1201

Telephone: 501-575-5159 - Fax: 501-575-5339 - email: mitch@engr.uark.edu

Introduction: Digital logic synthesis is an integral step in modern integrated circuit design.

Coupled with the popular usage of synthesis techniques is the use of BDDs, which are data

structures that represent Boolean functions [1]. These directed acyclic graphs (DAGs) have

generated great interest due to their ability to represent many Boolean functions in a very

compact manner and the existence of associated algorithms for their manipulation.

Although BDDs have traditionally been viewed as purely behavioral entities, it is well

known that they can represent “trees of multiplexers” due to the correspondence between their

structure and the Shannon decomposition. With this point of view, a minimized BDD can

represent a correspondingly small structural representation of a circuit in the form of a network

of multiplexers.

The motivation for developing a BDD based synthesis tool based on the structure of

the DAG, is given by the fact that many good variable ordering heuristics have been developed

recently. By using BDD minimizing methods as the underlying mechanism for area

optimization, this synthesis optimization is effectively translated into the BDD variable

reordering problem. Such mappings have other desirable characteristics as well, such as the

ability to produce high-speed, dual-rail configurations and to generate low-power PTL based

circuits [2][3].

BDD Mapping Technique: The technique described here operates on BDD edges rather

than vertices as in the well-known “tree-of-multiplexers” approach and can provide good results

with respect to synthesis optimizations such as area minimization. This technique exploits the

fact that, for a given satisfying variable assignment, the beginning of a directed edge implies

that the edge is part of a specified path taken in a traversal of the graph if the variable denoted

by the connected vertex is at the appropriate Boolean value. Therefore, the beginning of a

directed edge may be mapped to a simple pass transistor or an AND gate. Likewise, the

endpoint of the edge indicates that the successor variable is to be tested for the activated edge.

Since a successor variable vertex may be connected to many predecessor edges, and that

variable is tested if any of the edges are activated, all endpoints may be logically ORed together.

These observations form the basis of the edge mapping technique that is stated algorithmically

below:

* This work was supported by the National Science Foundation under grant MIP-9633085

1) For each edge insert a 2-input AND gate driven by the corresponding node literal with

polarity determined by the value of the BDD edge activation.

2) For each non-rooted vertex, insert an m-input OR gate driven by the outputs of the

preceding AND gates representing edges that point to the current node.

3) Simplify by removing all gates with a single input and map to the desired type of gates

or PTL style.

We note that this method results in a circuit with output lines that structurally

correspond to the terminal vertices of the BDD. This is in contrast to the technique that maps

BDDs into multiplexer trees which results in a circuit with output lines corresponding to BDD

initial vertices. The technique described here maps the BDD (various variants of the data

structure such as OBDD, SBDD and FBDD are applicable) into an intermediate multilevel

AND/OR structure initially. Since AND/OR structures may not be desirable, the technique is

easily extended to map into an equivalent NAND/NAND or NOR/NOR or PTL type network

through subsequent transformations. Figure 1 illustrates the edge mapping technique and shows

an OBDD with the corresponding intermediate AND/OR circuit. Figure 2 shows the resulting

AND/OR, NAND/NAND and NOR/NOR simplified circuits.

The edge mapping method ensures that each net in the resulting circuit is at a logic-1

only when the corresponding edge in the BDD is traversed for a given input assignment. This

leads to the desirable property of allowing output probability factors to be assigned to each net

in the intermediate AND/OR circuit since statistical independence is preserved. The statistical

independence property arises from the fact that at no point can signals dependent on the same-

polarity input variable converge within the mapped circuit.

In addition to the ability to produce gate level netlists, the technique also provides for

the ability to produce PTL type netlists exclusively or a hybrid combination of Pass-Transistor

Logic (PTL) and static gate type circuits. Due to the dual-rail nature of the circuit produced by

the edge mapping method, other styles of PTL such as complementary PTL (CTL), double PTL

(DPL), energy economized PTL (EEPL), swing restored PTL (SRPL) and push-pull PTL (PPL)

[5] are possible in the resulting circuit.

Circuit Optimizations: As in the development of all synthesis systems, the incorporation of

target netlist optimizations is of paramount importance. This approach for the generation of a

synthesized circuit has some unique characteristics that allow for optimizations with respect to

power dissipation, area and delay.

Power: Inherent in gate-level power constrained synthesis is the need to estimate power

dissipation prior to the generation of the circuit to be implemented. In terms of CMOS

technology, it is well known that power dissipation is directly proportional to the sum of all

internal net switching probabilities denoted as pswtch. In the edge mapping approach described

above, we note that the output probability, pout, is easily computed through a simple traversal of

the BDD or the intermediate AND/OR netlist that is generated [4]. A rough estimate of power

dissipation may accomplished by computing pswtch in terms of pout as pswtch =2[pout - p2
out].

Although this approximation assumes that each input is statistically independent and equally

likely to be a “0” or “1” and hence ignores the much more difficult problem of estimating

dependencies due to temporal and spatial correlations.

The other method that may be employed for power optimization is to target PTL based

netlists which are well-known for low power dissipation. However, problems with internal

signal degradation must be considered. This is typically accomplished through the judicious

insertion of buffers throughout the resulting netlist.

Area: Minimization of the BDD size directly results in a reduction of transistors in the netlist.

This observation effectively translates the area optimization problem into the BDD variable

reordering one. It is also noted that the BDD edge mapping technique described above results

in a dual-rail circuit. In terms of a gate-level implementation (and some PTL styles), this means

that the “cone” utilizing the smallest number of components from either the inverted or non-

inverted output may be used alone resulting in a single-rail circuit requiring fewer transistors.

Delay: In terms of delay minimization, we exploit the fact that the BDD representing the

function to be synthesized structurally represents the target netlist. Thus, by annotating the

BDD directly with “slack parameters” equivalent to those used by other synthesis tools,

additional information is available for guiding variable reordering of the BDD before mapping

to the target netlist.

Multi-Valued Logic: The technique described above may be easily generalized to handle

the case of multi-valued logic. While binary decision diagrams have been the primary focus of

decision diagram research, there has also been interest in multi-valued decision diagrams [6][7].

In producing a circuit composed of multi-valued logic gates, it is assumed the following

basic gate types are available:

• MIN gates - the gate output is minimum of its input vales
• MAX gates - the gate output is maximum of its input values

It is also assumed that the characteristic functions are available for each of the primary

inputs, i.e. the set of Jj(xi) values such that Jj(xi)=k-1 if xi=j, and Jj(xi)=0 otherwise.

The edges of an ordered multi-valued decision diagram are mapped to small sets of logic

gates, producing a k-output circuit. If the function being computed is f(X), then the k outputs of

the resulting circuit correspond to the characteristic functions of f, i.e. J0(f(X)), … Jk-1(f(X)). The

circuit outputs thus form a 1-of-k code, where the ith output of the circuit is logically true if and

only if the decision diagram would evaluate to logic value i.

The resulting circuit provides output in a 1-of-k form for a diagram operating on k-valued

logic, and the circuit size is linear in the size of the original decision diagram, allowing the

mapping technique to take full advantage of any advances in the area of decision diagram

minimization. We then consider implementing the multi-valued decision diagram as a binary

logic circuit.

Conclusion: A technique has been presented for mapping binary and multi-valued decision

diagrams to combinational digital logic, composed of either multiple-valued logic gates (using

MIN, MAX), or binary logic (using AND/OR gates) has been presented. The approach differs

from the well-known technique of mapping graph vertices into multiplexers by concentrating on

mapping graph edges instead. The resulting circuit may be realized as either a dual-rail or

single-rail circuit and the target circuit can be in the form of a logic gate network, a PTL style

circuit, or a hybrid combination of the two.

References

[1] Bryant, R. E., Graph-Based Algorithms for Boolean Function Manipulation, IEEE

Transactions on Computers, vol. c-35, no. 8, pp. 677-691, August 1986.

[2] Yano, K., Sasaki, Y., Rikino, K. and Seki, K., Top-Down Pass-Transistor Logic

Design, IEEE Journal of Solid-State Circuits, vol. 31, no. 6, June 1996, pp. 792-803.

[3] Bertacco, V., Minato, S., Verplaetse, P., Benini, L. and De Michelli, G., Decision

Diagrams and Pass Transistor Logic Synthesis, Technical Report: CSL-TR-97-748, Stanford

University, December 1997.

[4] Thornton, M. and Nair, V., Efficient Calculation of Spectral Coefficients and their

Application to Combinational Logic Synthesis, IEEE Trans. on CAD/ICAS, vol. 14, no. 11,

November 1995, pp.1328-1341.

 [5] Zimmerman, R. and Fichtner, W., Low Power Logic Styles: CMOS Versus Pass-

Transistor Logic, IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1079-1090, July

1997.

[6] Miller, M. and Drechsler, R., Implementing a Multiple-Valued Decision Diagram

Package, Proceedings of the International Symposium on Multiple-Valued Logic, 1998.

[7] Sasao, T. and Butler, J., A Method to Represent Multiple Output Switching Functions

by Using Multiple-Valued Decision Diagrams, Proceedings of the International Symposium on

Multiple-Valued Logic, 1996.

x 1

x2

x 3

0
1

0

0 1

1

1 0

0.5

0.5

0.25

0.25

0.375
0.375

0.625 0.375

x 1 x 1

x 2 x 2

x 3 x 3

ff

0.5 0.5

0.5

0.25

0.75

0.375

0.625 0.375

0.5

0.5 0.5

0.50.5
0.25

Figure 1: OBDD Mapped into Intermediate AND/OR Structure

x3

x 2x 2 x1x1 x 1

x 3

ff

x 3

x2x 2 x1x 1 x 1

x 3

ff

x 3

x 2

x 3

f f

x1x 2x 1

Figure 2: Simplified AND/OR, NAND/NAND and NOR/NOR Representations

