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This paper describes new metrics for size minimization of the data struc-
ture referred to as quantum multiple-valued decision diagrams (QMDD).
QMDD are used to represent the matrices describing reversible and quan-
tum gates and circuits. We explore metrics related to the frequency of edges
with non-zero weight for the entire QMDD data structure and their his-
tograms with respect to each variable. We observe some unique regularity
particular to the methodology of the QMDD. We develop new heuristics for
QMDD dynamic variable ordering (DVO) that are guided by the proposed
metrics. An exhaustive sifting procedure was implemented for benchmark
circuits with up to ten variables to obtain the optimal minimization, demon-
strating the effectiveness of the proposed minimization techniques based
on data structure metrics.

Keywords: Quantum multiple-valued decision diagrams, quantum logic, reversible
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1 INTRODUCTION

The quantum multiple-valued decision diagram (QMDD) was proposed for the
efficient specification and simulation of reversible and quantum circuits [1, 2].
The QMDD data structure has been successfully used for reversible and quan-
tum circuit simulations, equivalence checking, and other applications [3]. In
this paper we develop and investigate the use of data structure metrics for the
analysis and minimization of QMDD.

Unlike the binary decision diagram (BDD) which allows only two possi-
ble transition edges from each vertex, and which is used in the QuIDDPro
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package [4], a multiple-valued QMDD has r2 transition edges from each
vertex (where r is the radix). Since the transformation matrices represent-
ing quantum circuits are often sparse, many QMDD edges point directly to
the terminal node with zero weight. This creates an interesting and complex
inter-connectivity among the QMDD vertices that allows QMDD to represent
relatively complex circuits with a small number of vertices.

The data structure metrics presented here are used to better understand the
inter-connectivity characteristics of QMDD. The metrics include the ratio of
non-zero weight edges to the number of vertices for the entire QMDD, as
well as a histogram (or distribution) of the ratio of the number of non-zero
weight edges leaving each variable to the number of vertices measured for each
variable. We introduce a set of heuristics based on the values of these metrics
to guide dynamic variable ordering (DVO) that results in an improvement in
minimization for many benchmark circuits.

In our previous work, we have developed a dynamic variable ordering
(DVO) sifting algorithm that utilizes an efficient adjacent variable interchange
operation [5]. Our sifting algorithm, adapted for QMDD from Rudell’s binary
ROBDD sifting approach [6], achieved significant size reductions on some
benchmarks of reversible/quantum circuits of n-variables while considering
only O(n2) of the n! possible variable orderings.

In this work we offer additional heuristic algorithms for QMDD minimiza-
tion. The new heuristics achieve improved minimization for some benchmarks
over our previous sifting algorithm. Since such DVO minimization efforts con-
sume processing time, it is beneficial to be able to predict in advance whether
a certain QMDD structure can be minimized [7]. We describe the heuristics,
based on our new data structure metrics, that provide effective prediction in
this regard for most of the benchmarks we tested.

The paper is organized as follows. In Section 2 we briefly discuss reversible
logic, the QMDD structure, and our previous work on QMDD minimization.
The proposed QMDD data structure metrics are described in Section 3. In
Section 4 we discuss the application of the proposed new metrics in QMDD
minimization heuristics, and in Section 5 we discuss our preliminary exper-
imental results. Conclusions and suggestions for further research appear in
Section 6.

2 PRELIMINARIES

2.1 Reversible logic and quantum circuits
In this section, we briefly introduce the basic concepts of reversible and
quantum circuits. More extensive background is available in [3].

Definition 1. A gate/circuit is logically reversible if it maps each input pattern
to a unique output pattern. For classical reversible logic, the mapping is a
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FIGURE 1
n-variable Toffoli Gate.

permutation matrix. For quantum circuits, the gate/circuit operation can be
described by a unitary transformation matrix.

Bennet [8] showed that reversible gates can theoretically result in binary
circuits that are completely free from energy loss. The concept of reversibility
has been extended to MVL circuits [9]. Binary quantum logic gates and cir-
cuits are inherently both logically and physically reversible [3]. Non-binary
quantum logic circuits are logically reversible.

A variety of basic reversible gates have been proposed in the past few
decades. The general n-variable Toffoli gate is shown in Fig. 1. It has n − 1
control lines (designated by the filled circles) and one target line (designated
by the open circle). For each gate, the value on the target line is negated if,
and only if, all the n−1 control lines are set at ‘1’. The n-variable Toffoli gate
is denoted as TOF(x0, x1, . . . , xi−1, xi+1, . . . , xn−1; xi), where the target line
xi is separated by a semicolon from the control lines.

Definition 2. An n-variable reversible gate cascade is composed of adjacent
reversible gates that operate on the same n variables represented by horizontal
lines across the circuit. Each gate may be connected to one or more of the lines
and must be extended via the tensor product to affect all n lines.

Cascading of two reversible gates is equivalent to the multiplication of the
two permutation matrices representing the corresponding gates. We demon-
strate the computation of the transformation matrix on the cascade of four
gates shown in Fig. 2.

Each gate is part of a stage of the cascade which must include the gate
and all the unconnected lines running through it. For example, gate G3, is a
reversible NOT gate with a 2 × 2 transformation matrix. However, in view
of the four variables that the circuit depends upon, it must modeled by a
16 × 16 transformation matrix. We thus extend the reversible NOT operation
on variable x2 into a 16 × 16 transformation matrix using the tensor product
with the 2 × 2 identity matrix I2

G4 = I2 ⊗ I2 ⊗ NOT ⊗ I2 (1)
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FIGURE 2
A Cascade of 4 Gates with 4 Variables.

FIGURE 3
3-variable benchmark C3_17.nct.

The overall transformation matrix C of this cascade is obtained by mul-
tiplying the transformation matrices of the 4 gates in reverse order [10, 11].
Thus,

C = G4 × G3 × G2 × G1 (2)

Figure 3 shows a 3-line and 6-gate binary reversible circuit “c3_17.nct”
from D. Maslov’s benchmarks [12]. The figure also shows the specification
and the transformation matrix for the benchmark.

In general, an r-valued reversible circuit with n lines (that is, a circuit
with n inputs and n outputs) requires a transformation matrix of dimension
[rn × rn], where r is the radix. The exponential growth of the dimensions of
the transformation matrix poses a major challenge in the design and simulation
of reversible logic and quantum circuits.

2.2 Quantum multiple-valued decision diagrams
The QMDD structure was proposed to simulate and specify reversible and
quantum logic circuits in a compact form [1]. A matrix of dimension rn × rn
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can be partitioned as:

M =




M0 M1 · · · Mr−1
Mr Mr+1 · · · M2r−1
...

...
. . .

...

Mr2−r Mr2−r+1 · · · Mr2−1


 (3)

where each Mi element is a submatrix of dimension rn−1 × rn−1. A QMDD
applies this partitioning analogous to how a reduced ordered binary decision
diagram (ROBDD) [13] recursively applies Shannon decompositions. In a
similar manner to ROBDDs, a QMDD adheres to a fixed variable ordering
and common substructures (submatrices) are shared. A QMDD has a single
terminal vertex with value 1, and each edge in the QMDD, including the
edge pointing to the start vertex, has an associated complex-valued weight.
Also similar to ROBDDs, the QMDD representation is very useful due to its
property of canonicity.

A formal definition for QMDD is provided in Definition 3.

Definition 3. A quantum multiple-valued decision diagram (QMDD) is a
directed acyclic graph characterized by the following properties:

• There is a single terminal vertex with associated value 1. The terminal
vertex has no outgoing edges.

• There are some number of non-terminal vertices each labeled by an
r2-valued selection variable. Each non-terminal vertex has r2 outgoing
edges designated e0, e1, . . . , er2−1.

• One vertex is designated the start vertex and has a single incoming edge
that has no source vertex.

• Every edge in the QMDD, including the one leading to the start vertex,
is annotated with a complex-valued multiplicative weight value. All
with weight of 0 point to the terminal vertex.

• The selection variables are ordered (assume with no loss of gener-
ality the ordering x0 ≺ x1 ≺ · · · ≺ xn−1) and the QMDD satisfies the
following two rules:
– Each selection variable appears at most once on all possible paths

from the start vertex to the terminal vertex.

– An edge from a non-terminal vertex labeled xi points to a non-
terminal vertex labeled xj , j < i or to the terminal vertex. Hence the
vertex with label x0 is closest to the terminal vertex and xn−1 labels
the start vertex.
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• No non-terminal vertex is redundant. Lack of redundancy means that
no non-terminal vertices exist in a QMDD such that all r2 outgoing
edges have identical weight values and all point to the same vertex.

• Each non-terminal vertex is normalized such that the maximum
magnitude of the complex wiegt value is less than or equal to unity.

• All non-terminal vertices are unique. Uniqueness means that no two
non-terminal vertices labeled by the same variable xi can have the same
set of outgoing edges (destinations and weights).

Theorem 1. An rn × rn complex-valued matrix M representing a reversible
or quantum circuit has a unique (up to variable reordering or relabeling)
QMDD representation.

Proof. A proof by induction based on the iterative construction of a QMDD
and the normalization of edge weights that is performed during that construc-
tion is detailed in [2]. �

In order to preserve canonicity, QMDDs undergo a normalization proce-
dure whereby the largest valued magnitude of the complex weight value is
unity. Normalization is performed by observing the largest valued magnitude
edge weight and dividing all edge weights by this value. Because complex
numbers can exist with identical magnitude values, a tie is broken by choos-
ing the complex value with a polar angle closest to zero when two values with
identical magnitudes occur. This normalization rule correctly normalizes all
circuits described by permutation transfer matrices and many complex-valued
matrices representing quantum circuits also.

There are some quantum circuits for which the normalization rule does not
preserve adjacent variable interchange. As an example, the five-qubit quatum
Fourier transform circuit in Fig. 4 does not allow for local adjacent variable
swapping. For cases such as these the variable sifting procedure must be
adapted to a more general case. In Fig. 4, the gate labeled “H” is a Hadamard
gate, the gates labeled “Pn” are phase gates, and those indicated by “X” are
generalized swap gates.

H×4

×3

×2

×1

×0

P2 P3 P4

H P2 P3

H P2

H

H

P2

X

X

X

X

P3

P4

P5

FIGURE 4
5-line Quantum Fourier Transform Circuit.
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FIGURE 5
The QMDD for benchmark c3_17.nct.

We show in Fig. 5 the QMDD structure of the binary benchmark
“c3_17.nct” given in Fig. 3. The full details on the construction and prop-
erties of the QMDD are described in [1, 2]. Nine non-terminal vertices are
required in addition to the terminal vertex. To make the figure more readable,
segmented edges marked with 0 are used to denote edges with zero weight
that point to the terminal node.

We note that for binary (r = 2) reversible/quantum gates or circuits, the
required matrices can be represented using BDDs as is implemented in the
QuIDDPro tool [4] which employs the very efficient CUDD package [14].
The QMDD approach is quite different even in the binary case since each
nonterminal vertex has four outgoing edges rather than two. This makes each
vertex more complex but fewer (about half) vertices are required. In addition,
the diagrams typically have half the depth of a BDD-based representation.
QMDD are also applicable to multiple-valued situations.

One can verify that this QMDD represents the transformation matrix of
Fig. 1, by traversing each path from the start vertex to the terminal vertex
and multiplying the weights of the edges. While binary reversible circuits
like “c3_17.nct” have only 1 and 0 weights, quantum circuits have complex
numbers as edge weights.

2.3 Related work on QMDD variable sifting
In our previous work we demonstrated that local adjacent variable inter-
change can be efficiently implemented within the QMDD package [5]. We
then showed that a minimizing algorithm similar to Rudell’s binary ROBDD
sifting algorithm [6] is well-suited to reduce the number of nodes in a QMDD
representation. Our sifting algorithm employs a greedy selection rule that
iteratively picks the variable with the largest number of associated vertices
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for sifting. In the event of a tie, the variable closest to the terminal node is
selected.

Our QMDD sifting algorithm produced minimization levels that varied
significantly from example to example. On some benchmarks (e.g. “rd84d1”
and “cycle17_3r”) we achieved spectacular size reductions (82% and 92.64%
respectively). A low improvement on other benchmarks can be the result
of having started from what is already a good ordering, or due to the pos-
sibility that the function’s QMDD representation is insensitive to variable
ordering. Since the sifting heuristic visits only a small fraction (n2/n!) of
all possible variable orderings, we are motivated in this paper to explore
additional minimization heuristics influenced by the data structure metrics of
the QMDD.

3 QMDD DATA STRUCTURE METRICS

The unique table used by the QMDD software continuously maintains and
tracks a value called Active[i] that is the number of active vertices for each
variable i, 0 ≤ i < n, where n is the total number of variables. This is an
important QMDD data structure metric that we have used extensively in our
previous work. We define a new QMDD data structure metric as follows:

Definition 4. Let α be the ratio of the total number of edges with non-zero
weight to the total number of vertices in the entire QMDD. Similarly, let α[i]
be the ratio of the number of edges with non-zero weight that emerge from
all the vertices of variable i to the number of vertices of the same variable. It
follows that,

α =
∑n−1

0 Active[i] × α[i]∑n−1
0 Active[i] (4)

Since each nonterminal QMDD vertex has r2 edges, 1 ≤ α ≤ r2 and
1 ≤ α[i] ≤ r2, where r is the QMDD radix. For example, computing α[1]
for the QMDD of Fig. 2, we have a total of four vertices and eight non-zero
weight edges, thus α[1] = 8/4 = 2.00. We observe that while vertex N1
has two edges with non-zero weight, they both connect N1 to N5, essentially
connecting the vertex to only one unique vertex. We therefore distinguish
between the number of edges with non-zero weight and the number of unique
connections that reach different vertices as follows:

Definition 5. Let β be the ratio of the total number of unique connections
with non-zero weight to the total number of vertices in the entire QMDD.
Similarly, let β[i] be the ratio of the number of unique connections with non-
zero weight edges that emerge from all the vertices of variable i to the number
of vertices of the same variable. As above, 1 ≤ β ≤ r2 and 1 ≤ β[i] ≤ r2.
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It follows that

β =
∑n−1

0 Active[i] × β[i]∑n−1
0 Active[i] (5)

For variable 1 in Fig. 2, we have a total of four vertices and seven unique
connections with non-zero weight, thus β[1] = 7/4 = 1.75. The relation
between α and β is given by the following lemma.

Lemma 1. Let α, β, α[i], and β[i] be the data structure metrics of a QMDD
with n variables as defined above. Hence, (i) 1 ≤ β[i] ≤ α[i] ≤ r2 for all
i, 0 ≤ i < n, and (ii) 1 ≤ β ≤ α ≤ r2.

Proof. Each vertex of variable i must have at least one edge with non-zero
weight, since a QMDD vertex with all edges having zero weights is redundant.
This edge creates a unique connection to a nonterminal vertex, thus 1 ≤ β[i]
must be true. We observe that the number of unique connections for the vertices
of variable i cannot exceed the number of edges with non-zero weight by
Definition 3. Thus β[i] ≤ α[i] must be true.

Let Active[i] denote the number of active vertices for variable i, and E

the total number of the QMDD’s edges with non-zero weight, and C the total
number of unique connections. Then

E =
n−1∑

0

Active[i] × α[i]

and

C =
n−1∑

0

Active[i] × β[i]

Since we have proven that β[i] ≤ α[i], it follows that C ≤ E and

β = C∑n−1
0 Active[i] ≤ E∑n−1

0 Active[i] = α.

Clearly, α[i] ≤ r2, with the equality occurring when all edges have non-
zero weights. The proof for (ii) follows similar arguments. �

Listing the metrics for QMDD metrics in tabular form provides a histogram-
like display of the structure of the QMDD which we will, for convenience,
refer to as a histogram. Table 1 shows the histogram for the QMDD in Fig. 2.

The bottom line of the histogram provides the overall α, β and number of
vertices for the entire QMDD. Note that the sum of Active[i] does not include
the terminal node. The histogram lists the variables according to the current
variable order of the QMDD. In Table 1, variable 2 labels the start node and
variable 0 is the closest variable to the terminal node. As a result, variable
n − 1, the start node, always has Active[n − 1] = 1.
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Variable Active[i] α[i] β[i]
2 1 4.00 4.00
1 4 2.00 1.75
0 4 1.00 1.00

Overall 9 1.78 1.67

TABLE 1
Histogram for “3_17.nct”

Var Act[i] α[i] β[i]
11 1 4.00 4.00
10 4 4.00 4.00

9 16 4.00 4.00
8 64 4.00 4.00
7 256 3.91 3.91
6 990 2.84 2.84
5 2258 1.37 1.37
4 1174 1.17 1.17
3 304 1.16 1.16
2 76 1.16 1.16
1 19 1.21 1.21
0 4 1.00 1.00

Overall 5167 1.76 1.76

TABLE 2
Histograms for “hwb12”

BDD researchers have observed that the numbers of vertices for each
variable (arranged by the variable order) in general exhibit a pear-shaped
pattern [15]. We have observed that while most QMDD exhibit similar pear
shaped histograms, many histograms exhibit quite a flat pattern, where most
variables have roughly the same Active[i] values. This allows us to classify
QMDD histograms as “FLAT” or “PEAR”, as demonstrated in the two his-
tograms of Table 2. The left histogram of “hwb12” exhibits the typical PEAR
like pattern commonly observed in classical BDDs. The right histogram of
benchmark “cycle10_2*” is of type FLAT as variable 7 to 2 have similar num-
bers of vertices. We later show that different minimization heuristics apply
based on this classification.

The α[i] and β[i] histograms provide additional insight that is explored
in the following Section. It should be noted that the QMDD unique table
provides efficient means to compute the Active[i] as well as the α[i] and β[i]
histograms without much processing overhead.
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var act[i] α[i] β[i]
11 1 2.00 2.00
10 2 4.00 3.00

9 6 1.67 1.67
8 10 2.00 1.60
7 16 1.44 1.19
6 16 1.44 1.19
5 16 2.00 1.56
4 18 1.50 1.17
3 18 2.00 1.00
2 15 1.20 1.00
1 9 1.33 1.00
0 3 1.33 1.00

Overall 131 1.65 1.24

TABLE 3
Histograms for “cycle10_2*”

4 IMPROVING QMDD MINIMIZATION WITH THE DATA
STRUCTURE METRICS

The inability of our sifting algorithm (as well as any other similar heuristic
algorithm) to achieve consistent positive results with all the benchmarks, is of
course, due to the fact that it examines only O(n2) ordering possibilities out
of n! possible orderings. To achieve improved minimization, common binary
BDD packages offer a rich choice of reordering heuristics. These heuris-
tics can be grouped into sifting algorithms (that include also group sifting
and symmetric sifting), random algorithms, window algorithms, and other
special algorithms (including simulated annealing and genetic evolutionary
algorithms) [7].

While all of these heuristics can be extended for QMDD, we concen-
trate here on heuristics primarily based on sifting and random approaches.
Our experimentation with the group sifting approach that exploits the affinity
among variables achieved limited success. One reason is that benchmarks with
sufficiently large numbers of variables are currently not available. Further-
more, it seems that since reversible circuits are maximally connected [3, 16],
they tend to display a strong group behavior as a whole, making attempts to
identify subgroups more difficult or redundant.

Our random algorithm performs a set of random variable position changes
without regard to structure size between repeated applications of the sifting
algorithm. This process breaks apart the initial grouping of variables allowing
the sifting algorithm to find a better ordering. A set of heuristics inferred
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Algorithm 1: QMDD Metrics Based Minimization

(i) Apply the QMDDsift for initial reordering.
(ii) Use heuristics to predict if a better variable ordering is likely. If

prediction is negative – stop the procedure.
(iii) Perform a random set (or a specially designed fixed set) of variable

rearrangements without regard to structure size.
(iv) Apply the QMDDsift for smoothing.
(v) Repeat steps (ii) to (iv). Stop the process if this step is repeated more

than k times.

from the data structure metrics is then used to determine when the process
should stop.

We present a sample set of the data structure metrics heuristics that have
been investigated. Like all heuristics, they obtain different levels of success
as described in the following section, hence the k limit in step (iv).

Sample Heuristics:
Heuristic 1: For PEAR type benchmarks, if the sifting algorithm provides
moderate or no improvement and if the pattern of the histogram of α[i] and
β[i]histogram is not changed by the sifting, then no significant improvement
is likely to be achieved.

Heuristic 2: For FLAT type benchmarks, no significant improvement is
likely if the first half of the variables exhibit α[i] ≈ 2.00.

Heuristic 3: Appearance of α[i] or β[i] equal to 2 in the first two variables
(of the variable ordering) of a PEAR type benchmark suggests benefit for
further reduction attempts, as the QMDD may become FLAT.

Heuristic 4: Benchmarks with α[i] that is not monotonically decreasing
(along variable order from the start vertex) resist minimization.

Heuristic 5: If reordering of a FLAT Benchmark changes its histogram
shape to PEAR, the total number of vertices will usually increase.

5 EXPERIMENTAL RESULTS

We summarize our results for a set of benchmark circuits in Tables 4 and 5. The
PEAR type circuit benchmarks are shown in Table 4 and the FLAT benchmarks
appear in Table 5. The second column indicates the histogram type (PEAR
or FLAT) as described in Section 3. Columns 6 and 7 depict the minimiza-
tion results and minimization time obtained with the general sifting algorithm
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described in [5]. Columns 8–10 shows the results obtained using metric-based
minimization. Column 8 shows the overall minimization result, Column 9
shows the number of iterations guided by the metrics and Column 10 shows the
approximate process time (the routine are not yet optimized for accurate timing
measurements). We set the maximum iteration number k of Algorithm 1 to 10,
and we use early exit threshold value of 5 iterations if the heuristics indicate
that further minimization is unlikely. Column 11 indicates the improvement
(if any) of the new algorithm over the general sifting algorithm.

For purposes of evaluating the heuristics, we exhaustively compute all n!
permutations of the variable ordering for benchmarks with up to 10 variables
to choose an optimal variable ordering. The overall minimization appears in
column 12 and the time in column 13. Since all our FLAT type benchmark
circuits have more than 10 inputs, exhaustive results do not appear in Table 5.

We observe significant improvements with the benchmarks “9symd2”,
“cycle10_2”, “ham7”, “ham15m” and “rd73d2”. We recorded the QMDD
histogram during the entire minimization process. An interesting observation
for most benchmarks is that the initial QMDD buildup process produces a
monotonically decreasing α[i] histogram. On the other hand, the β[i] his-
togram may exhibit fluctuations, although the values are generally decreasing
in view of Lemma 1. The only observed violation of the monotonic decrease
of α[i] appears with benchmark “mod5adders”. Since this benchmark seems
to resist minimization, we use this finding in Heuristics 4.

The “hidden weighted bit” benchmarks (“hwb7”, “hwb8”, “hwb9”,
“hwb10”, “hwb11”, and “hwb12”) worked very well with Heuristic 1. In its
reversed application, it showed particularly good improvements for “rd73d2”,
“ham15r”, “ham15”.

Heuristic 2 yields acceptable results but we note that there are few FLAT
type benchmark circuits available to allow for more extensive verification. A
similar situation occurs with Heuristic 3.

We also note that setting the parameter k to 10 iterations and the exit point
to 5 iterations essentially fixes the time of the proposed algorithm to about
10 or 5 times the sifting algorithm runtime. Reported times in these results
are approximate as our routines are not yet optimized. Further improvements
of the heuristics accuracies can allow early exit in Algorithm without any
iterations (or fewer than 5 iterations), thus reducing the time overhead of the
proposed approach.

To further demonstrate Heuristic 5, we subjected the benchmark
“cycle10_2” to several random variable reorderings, and captured histograms
denoted as random0, random1 and random2. We compared the Active[i] val-
ues of these histograms with the minimized histograms obtained by our sifting
algorithm and the new algorithm described in this paper. We show our results
in Fig. 6, where we also include the original ordering histogram. Each series in
the graph illustrates the Active[i] (number of vertices) for each variable. The
variable number is assigned from the start node (1) to the last variable (12) as
traversed along the QMDD variable order.
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random2

random1

random0

original

sifting

new

FIGURE 6
Shape changes from FLAT to PEAR for benchmark Cycle10_2.nct

The total number of vertices for random2, random1, and random0 are 132,
126 and 131 respectively. From Table 3, the total number for the original
variable order is 67, and for the minimized sifting and new algorithm it is
40 and 25 respectively. We can see that the shape changes from FLAT to
PEAR for random2 and random1. Clearly, these variable orders cause the
QMDD to use a much higher number of vertices than in our minimized variable
orders. Therefore, a minimized flat benchmark must remain flat during further
minimizations.

6 CONCLUSIONS

This paper proposes new data structure metrics that provide insight on the
inter-connectivity within a QMDD. Heuristics based on these metrics have
been developed and used to guide an iterative minimization algorithm. Our
preliminary minimization results show some significant improvement versus
our sifting algorithm, although no improvement was achieved for some bench-
marks. For benchmark circuits of 10 variables or less, our results match or
came very close to the optimal results.

The potential of the data structure metrics based heuristics had been demon-
strated in this paper. We recognize that the heuristics that perform well with
our current benchmarks may err with future benchmarks.
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