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ABSTRACT 
The data cache organization of a computer can 

significantly affect overall data access latencies when a 
program is executed. The cache performance depends on 
the locality characteristics of the data being processed in 
a program as well as the underlying architecture.  A 
typical executing program has a data access profile that 
exhibits both temporal and spatial locality characteristics. 
Since most processors contain single data caches at a 
given level and since the single data cache cannot be 
optimized for purely spatial nor purely temporal locality 
data accesses, cache space pollution and inefficient usage 
of cache resources can occur.  In the worst case, these 
phenomena can actually introduce additional data access 
latency through repeated line fills. Here an analysis and 
modeling scheme is presented that describes the runtime 
data access behavior of several benchmark programs in a 
typical, unified data cache. The motivation for the 
development of this model is to produce information that 
may aid in the design of a split data cache with one side 
optimized for temporal locality accesses and the other for 
spatial locality accesses. 

 
 

1. Introduction 
 

Cache memory usage is mandatory in state-of-the-art 
computers in order to reduce the overall data access 
latency resulting from slower main memory in comparison 
with the increasing speed of the processing element 
[1,2,3]. Cache memory hides data access latency by 
exploiting the locality characteristics of the running 
programs. A good knowledge of memory access behavior 
can lead to efficient cache memory subsystem designs. 
Memory access behavior is characterized by the principle 
of locality. Locality analysis of different types of programs 
during runtime can aid in defining an optimized cache 
subsystem organization. Locality modeling and analysis is 
necessary in research projects that investigate cache 
subsystem design. The locality behavior of a program can 
be of two types, spatial or temporal. Most current research 
projects [4,5,6] are investigating the spatial reuse of data 

of executing programs and strive to find a means to exploit 
this spatial reuse of data. 

The purpose of the results discussed here is to analyze 
and model the actual runtime data access behavior in a 
typical cache. The analysis of the results motivates us to 
investigate alternative cache organizations that are able to 
intelligently use available resources. Instead of using a 
unified data cache, a cache organization that is split with 
each side optimized for a particular type of locality (i.e. 
spatial and temporal) has been proposed. 

In the current literature, several investigations have 
proposed different schemes for instruction and data cache 
organization to reduce overall memory access latency.  
These include lockup-free caches [7,8], cache-conscious 
load scheduling [9], hardware and software pre-fetching 
[10,11] and multithreading [12]. The mechanism proposed 
in [9] identifies non-cacheable data by means of profiling. 
The scheme proposed in [10] is based on a run-time 
managed history table of the most recent load/store 
instructions. In [13] a pre-fetch engine is used which relies 
on a software or hardware optimized Deterministic 
Prediction Approach (DPA) in order to pre-fetch data that 
is estimated to be referenced in the future. Combined 
compile-time and run-time caching policies as proposed in 
[14] use memory access detection and automatic data 
caching based on compiler provided analysis of run-time 
memory access requirements. 

A selective caching policy proposed in [14] leads to an 
organization that is similar to a conventional cache in 
which all memory instructions have an additional bit that 
is set (or reset) by the compiler. When a cache miss 
occurs, this bit controls whether a new block is retrieved 
from the L2 cache and placed in L1 or if the requested 
data is retrieved from the L2 cache directly and not written 
into the L1 cache. 

A cache organization with both temporal and spatial 
subsystems has been proposed in [16,17,18] which uses a 
very simple heuristic based on the data type which can be 
changed by dynamic or pre-runtime profiling. Selective 
caching is a feature of current microprocessors such as that 
being used in the PowerPC. The HP PA-7200 [17] uses a 
software-managed data caching policy. Every memory 
instruction used by the HP PA-7200 includes a “hint bit” 



indicating that spatial locality is used to predict if the data 
referenced by that instruction shows only spatial locality 
characteristics and not temporal locality. The HP PA-7200 
consists of two cache modules; the on-chip, fully 
associative, assist cache and a large direct-mapped off-
chip cache. The assist cache holds data related to all 
memory references for which hint bits are explicitly set 
indicating spatial locality, whereas the off-chip main cache 
holds all data in which the hint bit is not set indicating the 
lack of spatial locality. 

Current computer architectures typically use a fixed 
cache line size. Typically these cache lines can store a 
multiple number of memory words in a single cache line. 
This policy provides the advantage of prefetching a spatial 
memory zone on a miss. If the consecutive memory 
reference made by the processor is within the spatial space 
of the cache line, then the overall miss rate is reduced. The 
major drawback of using this policy is that data which 
exhibits temporal locality is stored with a set of data close 
to it in address space, but that may not exhibit any locality.  
Thus, the available cache space and bandwidth may be 
polluted by system when a large amount of non-usable 
data is resident in the cache.  About 60 percent of 
available cache space can be polluted in some extreme 
cases due to this phenomenon [19]. 

To avoid cache pollution and latency, some intelligent 
spatial prefetching schemes have been proposed [6,19]. In 
[6] a Spatial FootPrints (SFP) table is maintained by using 
specialized hardware. Depending on the content of the 
SFP table, the predictor mechanism fetches a smaller or 
larger number of blocks when misses occur in the cache. 
Also, in [19] a somewhat similar strategy based on a 
Spatial Locality Detection Table (SLDT) is used to 
prefetch multiblocks or less in order to reduce memory 
access latency during runtime.  

In this work, we present a model and the analysis of 
results from the model for determining the locality 
behavior exhibited by several benchmark programs 
executing in a load/store based uniprocessor with a typical 
unified data cache. The motivation for this analysis is to 
determine the data locality behavior of different programs, 
and to use the results to design an efficient cache 
organization that will not suffer from the inability to 
exploit varying data locality behaviors over a variety of 
executing programs.  

The subsequent sections of this paper are organized as 
follows.  Section 2 presents an overview of locality and 
the need for runtime locality analysis and modeling of 
executing programs.  In section 3 we present the model 
that is used for the locality analysis. Next, we present and 
discuss experimental results of the cache access behavior 
by different SPEC integer and floating point programs. 
Finally, in section 5, we provide conclusions based on the 
experimental data. 

 

2. Principle of Locality 
 

To hide memory access latency due to fast processors 
with relatively slower main memory, a cache subsystem is 
used to attempt to store data which will be accessed in the 
future by the processor. This is accomplished by loading 
additional data other than that being requested by the 
processor during a cache line fill. A typical way of doing 
this is to retrieve additional data from the neighboring 
address space of the requested data. The purpose of 
writing neighboring data into the cache is to exploit the 
principle of spatial locality.  Spatial locality exists due to 
the empirical observation that “data tends to be accessed 
that is close (in address space) to previously accessed 
data”.  Figure 1 shows an example of this type of locality 
where data block B is requested by the processor and the 
resulting cache miss causes a line fill to occur that loads 
blocks A through D.  Thus, any consecutive memory 
blocks requested by the CPU within this spatial region will 
result in a cache hit and the access time of these data is 
equal to the (faster) cache access time.  

 
Figure 1: Cache Line Fill Illustrating the 

“Spatial Access” 
 
Whenever the data access pattern is largely spatial in 

nature, the inclusion of large cache lines that contain more 
neighboring data can reduce the overall memory access 
latencies drastically. For strictly spatial data access 
patterns the reduction in memory access latency depends 
mainly on the cache line size.  

Another type of locality is “temporal” locality or 
locality in time. This type of locality is characterized by 
certain locations in memory being accessed repeatedly in 
time. For example, this occurs when a CPU requests data 
blocks in the order B, G, M, B, G, M repeatedly during the 
execution of a program. The illustration shown in Figure 2 
depicts this type of access pattern.  In this case, the cache 
line fills are bringing additional memory blocks in each 
cache line that are not needed by the processor. 
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2.1 Motivation for Locality Analysis 
 

In past work on data cache optimization, mainly 
numeric (scientific) programs have been considered for 
analysis of the data locality pattern. Since most numeric 
codes contain a large amount of nested loops, a significant 
amount of research has been attributed to the incorporation 
of more spatial reuse through different compiler 
optimization techniques such as unimodular 
transformations, loop fusion and distribution and tiling 
[20]. Some assertions of the spatial reuse of data have 
been made without doing any intra-loop reuse analysis [4]. 
Some computer architectures, such as the HP-7200 [17] do 
not use any detailed program locality information and 
depends only on spatial reuse of data. 

To fully take advantage of the spatial locality present in 
a program’s data access patterns and to also benefit from 
the temporal locality that is also present, a data cache may 
be organized with multiword line sizes. In Figure 1 it is 
seen that for the spatial access pattern B, C, D and A the 
access penalty is one cache miss since the next three 
consecutive accesses result in a cache hit. Thus, the 
effective miss rate is 25 percent and cache space 
utilization is 100 percent for this case. From Figure 2, if 
the access pattern is like B, G, M, B, G, M then the 
effective miss rate is increased to 50 percent and cache 
space utilization is reduced to 25 percent. This clearly 
indicates that the relatively large line size for taking 
advantage of spatial locality results in the pollution of the 
cache asset and also increases the memory access 
bandwidth.  About 40% cache capacity wastage has been 
reported to be common [19]. 

 
 

Figure 2: Cache Line Fill Illustrating the 
“Temporal Access” 

 
The depicted scenario indicates that the same cache 

organization will not perform equally well in all cases. To 
get an optimized performance, the cache organization 
needs to be tuned to benefit from both spatial and temporal 
data access behavior in executing programs. The tradeoff 

arises because increasing cache line size to exploit more 
spatial locality causes more cache pollution and wasted 
bandwidth when temporal accesses are requested.  
Alternatively, decreasing line size and adding more lines 
to a cache can result in inefficient usage when the accesses 
are largely spatial in nature since cache miss rates will 
increase.  Furthermore, as is demonstrated later in this 
paper, the data access behavior varies largely from 
program to program. Data access behavior can be purely 
spatial, purely temporal or (more typically) a combination 
of both types of locality. It is possible to optimize a cache 
organization to provide optimum performance for a 
particular program. But, it is a very difficult task (if not 
impossible) to provide optimum performance for all types 
of program data access behavior. A reasonable choice in 
this case is to design a cache subsystem that will perform 
well on average. Analysis and modeling of the program 
data access behavior over a number of different programs 
can provide estimates of average-case behavior. This 
motivates us to carefully study and analyze the data access 
behavior of the programs that cover a wide range of 
applications. We use the SPEC benchmark suite as a 
representative sample of different types of application 
programs.  

 

3.0 Locality Analysis Method 
 

The data locality behavior of different application 
programs is analyzed during runtime in order to observe 
the characteristics of interest. In the results we present 
here, parameters of interest are generated through the 
accumulation of statistics based on data access patterns in 
a general cache as a program executes. In this approach, a 
specific cache architecture is considered and runtime data 
access profiles of different SPEC benchmark programs are 
stored. Initially, we modeled different cache sizes with 
varying line sizes. Among these, a four-way set 
associative 32 KB cache with 128 byte (32-bit words) line 
size was considered as the baseline organization to analyze 
and model cache data locality in terms of miss rates and a 
window width to capture both spatial and temporal 
locality. This target cache architecture was simulated 
using the C language and complied using the Unix cc 
compiler.  Input to the program consists of memory traces 
gathered during the execution of the SPEC benchmarks. 

The memory traces of the SPEC benchmarks used in 
this investigation are those available from the anonymous 
ftp site of the New Mexico State University Trace 
Database [21].  The traces contain the addresses of the 
memory references and also a field indicating whether it is 
instruction address or data read/write address. Since we 
are only interested with data caching, a filter program 
written in C to extract only the data load/store related 
addresses is used. The cache simulator then uses the data 
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load/store related traces as input and generates the analysis 
results after simulating the cache.  

For locality profiling purposes, the simulator keeps 
track of the number of accesses in each line of the cache as 
well as the average time difference of each word being 
accessed in a line over successive hits, or the “temporal 
stride”.  Although the term “stride” is generally used to 
refer to the absolute distance between different memory 
addresses, here we are using it in a temporal sense to refer 
the relative time difference in terms of the processor clock 
cycles. Also, the analysis tool records the number of hits 
for each word in a line. Analyzing the runtime behavior of 
the SPEC benchmark programs’ memory traces allows the 
data access locality characteristics of these programs to be 
noted.  

For the locality analysis, we use the line hit-rate and 
strides of the words in the lines as well as word hit 
frequency.  Usually, for spatial locality, the strides of the 
words in a line should be similar or should have a fixed 
difference with an equal or close number of hits. For 
temporal locality behavior, the number of access to a line 
should become very high and we may also expect that the 
strides of the words and word-hit frequencies will vary a 
lot. Figures 3 and 4 show the typical nature of the strides 
for temporal and spatial locality behavior in a cache line 
for two benchmark programs used in this test bench.  
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Figure 3. Temporal access pattern in a cache line 

 
Figure 4. Spatial access pattern in a cache line 

 
We used the following equation for the estimation of 

hit rate (in %) for spatial or temporal locality: 

Where: 
EHit = Estimated percent of Hits due to Spatial or 

Temporal Locality 
WHCi  = ith Word Hit Count due to Spatial or Temporal 

Locality 
NSpatial/Temporal = Number of Word Hits due to Spatial or 

Temporal Locality 
TWHC = Total Number of Word Hit Count in the cache 
 
To facilitate this estimation process, our model uses 

counters for each line of each set in the cache and for all 
corresponding words in the lines. Two-dimensional 
unsigned integer array variables are used to store the count 
values.  The mapping process of a 4-way set associative 
cache is used to get the array indexes of these counter 
variables in a manner similar to hashing where the hash 
function is actually the cache mapping function. These 
counters are used to maintain the hit counts for each word 
in each line of the sets. For each respective word in the 
cache, the average time between successive hits is also 
maintained in another variable in terms of memory access 
cycles that we refer to as stride (in this case, temporal 
stride) in the plots.  Figure 5 illustrates this basic strategy 
of counting the hits for a single 4-way set that contains 4 
words per line.  

As input, the analysis program uses memory traces 
obtained through the simulated execution of the SPEC 
benchmarks assuming a load/store CPU with the cache 
structure described above. After processing the hit rate and 
average stride of all words in the cache, the portion of the 
cache hits due to spatial and due to temporal accesses is 
determined. This determination is based on the ‘hit count’ 
and ‘average stride’ values for each word in the cache and 
is compared with the other words’ hit count and stride 
values. For spatial accesses, the hit count and stride should 
be similar in value for each word in relation to the other 
words in a specific line of the cache.  This observation 
forms the basis of how spatial locality is detected.  The 
spatial accesses are isolated by simple relative 
comparisons of both the word and total line hit count 
values.  For temporal accesses, the words with large 
differences in stride and hit count as compared with other 
words in the line are considered and their cumulative 
counts are also recorded for each line. Following the same 
process for all of the lines in the cache, a combined set of 
statistics based on spatial, temporal and unused word 
counts are obtained to calculate the percentage of cache 
hits due to spatial versus temporal locality. Figure 6 shows 
a flow diagram illustrating the major steps of the analysis 
method. 
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Figure 5. Line and word hit count strategy in a set 
 

4.0 Data Locality Analysis Results 
 

Data locality behavior of several SPEC integer and 
floating point programs is shown in Table 1. From the 
data locality behavior of the benchmark programs, it is 
apparent that the data access patterns do not show purely 
spatial or temporal locality in any case. The ratio of 
spatial versus temporal locality varies from program to 
program. These results indicate that the spice2g6, gcc 
and doduc benchmarks have a bias toward more 
temporal locality. Table 1 also indicates that most of the 
benchmark programs have some significant amount of 
temporal locality. The average spatial locality is 68 
percent and average temporal locality is 32 percent for 
the SPEC benchmark programs that were used in this 
study. The spatial and temporal locality distributions of 
the SPEC benchmarks are shown in Figures 7 and 8.  

Figure 9 shows the pollution of cache space due to 
spatial fetching of data in the cache lines. The results 
suggest that, on average, 23% of the available cache 

space is polluted by the spatial pre-fetching of data. In an 
extreme case the pollution was 62% (wave5). 

Careful analysis of the results suggests that the 
address space of the memory references could be pre-
dominantly spatial, pre-dominantly temporal or a 
combination of each. This is illustrated in Figure 11 
where set A represents accesses that exhibit spatial 
locality and set B indicates those with temporal locality.  
The results indicate that programs typically contain a 
subset of accesses that have characteristics of both sets A 
and B.  The intersection of these two classes of memory 
access types is represented by the set, C, in Figure 11.  
As an example, consider a program that consists of 
several consecutive loops, each of which accesses an 
array of data sequentially.  Clearly, the accesses within a 
single loop are spatial in nature, however examining the 
access pattern of a single array element is temporal in 
nature due to the existence of multiple loops, and hence, 
multiple accesses of the same element.
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Figure 6. Diagram illustrating the cache data analysis 
 

Table 1: Locality behavior of SPEC benchmark programs 
 

Benchmark Spatial 
Reuse 

(%) 

Average 
Spatial 
Reuse 

(%) 

Temporal 
Reuse 

(%) 

Average 
Temporal 

Reuse 
(%) 

Cache 
Space 

Pollution 
(%) 

Average 
Space 

Pollution 
(%) 

espresso 0.54  0.46  0.34  

spice2g6 0.38  0.62  0.25  
doduc 0.45  0.55  0.01  

li 0.54  0.46  0.07  

eqntott 0.67  0.33  0.18  
compress 0.63  0.37  0.01  

mdljdp2 0.64  0.36  0.28  

wave5 0.63 0.68 0.37 0.32 0.62 0.23 
tomcatv 0.99  0.01  0.14  

ora 0.90  0.10  0.61  

alvinn 0.79  0.21  0.15  

ear 0.81  0.19  0.10  
sc 0.55  0.45  0.40  

mdljsp2 0.49  0.51  0.31  

swm256 0.96  0.04  0.10  
gcc 0.44  0.56  0.10  

su2cor 0.87  0.13  0.01  

nasa7 0.99  0.01  0.38  
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Figure 7. Spatial reuse patterns with SPEC92 

benchmarks 
 
 

 
Figure 8. Temporal reuse patterns with 

SPEC92 benchmarks 
 
 

 
Figure 9. Cache space pollution using SPEC92 

benchmarks 

 
Figure 10. Reuse pattern of portion of cache 

space by the benchmark espresso 
 

5.0 Conclusion 
 

Based on the locality analysis made above, we 
conclude that data access behavior of different programs 
needs to be supported.  Thus, both spatial and temporal 
locality data should be cached.  Therefore, a split data 
cache is justified to facilitate both types of locality.  A 
unified data cache can perform poorly in some cases by 
wasting valuable cache capacity.  The data that should be 
cached in a spatial cache are those whose reuse frequency 
is good enough to allow for future cache hits.  Since, 
spatial reuse is dominant in most of the cases, a relatively 
larger spatial cache with bigger line sizes should be used 
as compared to the temporal cache in the split data cache. 

 

Figure 11. Diagram of Overlapping Spatial and 
Temporal Locality Characteristics 

 
REFERENCES 

[1] Patterson, D., Anderson, T., Cardwell, N., 
Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R., 
and Yelick, K. “A Case for Intelligent RAM: IRAM”, 
IEEE Micro, vol.17, (no. 2), March-April 1997, 
pp.34-44. 

Temporal Data Locality Distribution of the SPEC 

Benchmarks

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Benchmark

Temporal Locality 

(%)

Cache space pollution index of the SPEC 

Benchmarks

0.00
0.10

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Benchmark

Space 

Pollution (%)

 

SPATIAL 
ADDRESS SPACE 

TEMPORAL 
ADDRESS SPACE 

Spatial Data Locality distribution of the SPEC

Benchmarks

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

esp
res
so

spi
ce
2g
6

do
du
c

li eq
nto
tt

co
mp
res
s

md
ljd
p2

wa
ve
5

to
mc
atv

ora alv
inn

ear sc md
ljs
p2

sw
m2
56

gc
c

su
2c
or

nas
a7

Benchmark

Spatial Locality

(%)

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

S 1

S 12

S 23
0

1 0000

20 000

3000 0

40000

5 0000

600 00

700 00

8000 0

W
ord

 N
um

ber
 in

 C
ac

he 
Lin

e

C ach e  L in e  N u m b e r

R eu se

C o u n t  

R e u s e  p a tte rn  o f  th e  c a c h e  l in e s  fo r  th e  B e n c h m a rk  E s pre s s o



[2] Chen, T. F. “Reducing memory penalty by a 
programmable prefetch engine for on-chip caches”, 
Microprocessors and Microsystems, 21, 1997, pp. 
121-130. 
 
[3] Handy, J. The Cache Memory Book, 2nd 
Edition, Academic Press, New York, 1998, pp. 188-
198. 
 
[4] McKinley, K. S., Temam, O. “A Quantitative 
Analysis of Loop Nest Locality”, Proceedings of the 
7th International Conference on Architectural Support 
for Programming Languages and Operating Systems, 
Boston, MA, October, 1996. 
 
[5] Sanchez, J. and Gonzalez, A. “Fast, Accurate and 
Flexible Data Locality Analysis”, Proceedings of 
Parallel Architectures and Compilation Techniques, 
October 13-17, Paris, 1998. 
 
[6] Johnson, T. L., Merten, M. C., and Hwu, W. 
“Run-time Spatial Locality Detection and 
Optimization”, Proceedings of the 30th Annual 
International Symposium on Microarchitecture, pp. 
57-64, Research Triangle Park. 
 
[7] Hennessy, J. L., and Patterson, D. Computer 
Architecture: A Quantitative Approach, 2nd 
Edition, Morgan Kaufmann Publishers, Inc., San 
Francisco, California, 1996, pp. 390-426. 
 
[8] Flynn, M. J. Computer Architecture – 
Pipelined and Parallel Processor Design, Narosa 
Publishing House, London, 1996, pp. 396-417. 
 
[9] Abraham, S. G., Sugumar, R. A., Rau, B. R., and 
Gupta R. “Predictability of Load/Store Instruction 
Latencies”, Proceedings of the 26th International 
Symposium on Microarchitecture, December, 1993, 
pp. 139-152. 
 
[10] Callahan, D., Kennedy, K., and Porterfield, A. 
“Software prefetching”, Proceedings of the Fourth 
Symposium on Architectural Support for 
Programming Languages and Operating Systems, 
April, 1991, pp. 40-52. 
 
[11] Chen, T. F., and Baer, J. L. “A Performance 
Study of Software and Hardware Data Prefetching 
Schemes”, Proceedings of the 21st Annual 
International Symposium on Computer Architecture, 
April, 1994, pp. 69-73. 
 
[12] Burger, D., Goodman, J. R., and Kagi, A. 
“Memory Bandwidth Limitations of Future 

Microprocessors”, Proceedings of the International 
Symposium on Computer Architecture,  5/96, USA. 
 
[13] Avila A. Reference Prediction Based on 
Memory Access Patterns for Scientific Codes, 
Ph.D. Dissertation, University of Arkansas, 
Fayetteville, December 1998, pp. 15-19. 
 
[14] Dwarkadas, S., Lu, H., Cox, A. L., Rajamony, R., 
and Zwaenepoel, W. “Combining Compile-Time and 
Run-Time Support for Efficient Software Distributed 
Shared Memory”, Technical Report, Dept. of 
Computer Science, Univ. of Rochester and Dept. of 
Electrical & Computer Engineering, Rice University. 
 
[15] Sanchez, F. J., Gonzales, A., and Valero, M. 
“Static Locality Analysis for Cache Management”, 
Proceedings of  Parallel Architectures and 
Compilation Techniques, 1997. 
 
[16] Milutinovic, V., Milutinovic, D., Ciric, V., 
Starcevic, D., Radenkovic, B., and Ivkovic, M. “Some 
Solutions for Critical Problems in the Theory and 
Practice of Distributed Shared Memory: Ideas and 
Implications”, IEEE Proceedings, 1997. 
 
[17] Chan, K. K., Hay, C. C., Keller, J. R., Kurpanek, 
G. P., Schumacher, F. X., and Sheng J. “Design of the 
HP PA 7200 CPU”, Hewlett-Packard Journal, 
February 1996. 
 
[18] Gonzalez, A., Valero, M., and Aliagas, C. “A 
data cache with Multiple Caching Strategies Tuned to 
Different Types of Locality”, Proceedings of ICS, pp. 
338-347, 1995.  
 
[19] Kumar, S, Wilkerson, C. “Exploiting Spatial 
Locality in Data Caches using Spatial Footprints”, 
IEEE, pp. 357-368, 1998. 
 
[20] Muchnick, S. Advanced Compiler Design and 
Implementation, Morgan Kaufman Publishers, San 
Francisco, CA, pp. 687-697, 1997. 
 
[21] “New Mexico State University Trace Database”, 
Parallel Architecture Research Laboratory, (Online), 
Available: ftp://tracebase.nmsu.edu/pub/README., 
Accessed: January 15th, 2000. 


