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Abstract-- The Walsh spectrum for a Boolean function has 
found many uses in VLSI CAD. A graph-based approach to 
calculating this spectrum using Cayley graphs is extended here 
to include alternate encoding, direct computation of the 
spectrum for the inverse of a function and a "fast" method of 
calculation for the adjacency matrix of a graph. 

Index Terms--Boolean Function, Cayley Graph, Walsh 
Spectrum 

I. INTRODUCTION 

SPECTRAL methods have been used in logic design for 
synthesis [16, 9, 12, 7, 10], testing [4, 13, 8, 14] and 

function classification [9, 6]. However spectral methods have 
seen little practical application until recently due to the 
computational cost for calculating the spectrum. Graph-based 
methods utilizing decision diagram (DD) [2] structures have 
been developed which decrease the cost for calculating the 
spectrum [15, l l, 5]. 

An alternative graph-based method using Cayley graphs to 
compute the spectrum for a function was presented in [l]. 
This technique is of theoretical interest because it 
demonstrates the equivalence of the spectra of Cayley graphs 
and the Walsh spectra for Boolean functions. 

In this paper, several extensions to the graph-based method 
in [1] are shown. In particular, alternative encodings and 
analysis of other possible field relations are explored. A group 
yielding a Cayley graph representing the spectrum for the 
inverse of a function is presented and a "fast" method for 
producing the adjacency matrix for the Cayley graphs of both 
groups is described. 

The organization of the paper is as follows. Section II 
presents the necessary background information of the matrix
based method for the calculation of the Walsh spectrum 
described in [9] and the graph-based method described in [l]. 
In Section III, the extensions are presented and illustrated by 
examples. Concluding observations are presented in Section 
IV. 

II. BACKGROUND 

A. Calculation of the Walsh Spectrum 

A function can be transformed from the Boolean domain 
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into a number of alternative spectral domains. The traditional 
technique for the calculation of the Walsh spectrum for a 
Boolean function is presented in l9]. The use of this 
technique for an example function, f =-:;:-1-:;:-3 + x" x 3 + 
x 1-:;:-2 x 3 is shown in Figure I. 
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Figure I. Calculation of the Walsh Spectrum for the Example Function 

B. R-encuding and S-encoding 

The example function as shown in Figure I above is 
represented by R-encoding in which logic I is coded by a I 
and logic O is coded by a 0. An alternative representation 
known as S-encoding can also be defined in which logic l is 
coded by a -1 and logic O is coded by a + l [9]. The S-encoded 
spectrum for a function can be obtained directly by encoding 
both the transformation matrix and the output vector for the 
function utilizing S-encoding or the R-encoded coefficients 
can be converted to S-encoded coefficients by the following 
equations. 

s,1 == 2" - 2 ro 

s; = -2 r; Vi c { 1. 2, ... , 11} 

C. Cayley Group 

An alternative approach for the computation of the Walsh 
spectrum for a Boolean function based on algebraic groups 
and graph theory is described in [I]. The Cayley graph (or 
Cayley color graph) is a structure that is used to relate an 
algebraic group to graph theory [17. 3]. This technique for 
the computation of the Walsh spectrum for a function, f, 
relies upon representing the Boolean function based upon a 
specific definition of a group. 

Recall that a group, (M, * ), consists of a set, M, and a 
binary operator on M, *, such that closure, associativity and 
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identity hold and that inverses exist. That is, for all m;, mi E 

M, the element m1 * mi is a uniquely defined element of M 
(closure). That m1 * (mi * mk) = (m; * mi)* mk holds for all 
m;, mj, mk eM (associativity). That there exists an identity 
element, e e M, such that, e * m; = m; and m; * e = m; for all 
m; e M (identity). Finally that there exists an inverse element 
m;·1 e M such that m; * m/ = e and m/ * m; = e for each 
m; e M (inverses exist). 

The Cayley group, (M, 9 ), used in the technique described 
in [I] characterizes the Boolean function, f: B11 ➔ B. (M, 9) 
is a group in which M consists of all possible minterms in B11, 
that is, all points in the • space defined by /11 and 9 is the 
binary operator for the group. This group has an identity 
element corresponding to an n-length bit string of all zeros 
and additionally for each element m; E M, m/ = m;. 

D. Cayley graph 

The Cayley graph corresponding to this group representing 
the Boolean function, f, has a vertex set, V, in which each v1 

e V uniquely corresponds to an element of the set m; E M. 
The edge set, E, is given by the equation below. 

E= {(m;mj) e /1' X If' lf(m; Ee m)= l} 

The adjacency matrix, A, for this Cayley graph is a matrix 
of size 211 x 211 with a;i = 1 if f (m; EB mi) = 1 and with aij = 0 
otherwise. A is a symmetric matrix because m; 9 mi = mi EB 
m;. The adjacency matrix for the example function is shown 
in Figure 2 and the corresponding Cayley graph described by 
A is shown in Figure 3. 

I 0 I 0 0 I 1 0 

0 1 0 1 1 0 0 1 

I 0 1 0 1 0 0 1 

0 1 0 1 0 1 1 0 
A= 

0 1 1 0 1 0 1 0 

1 0 0 1 0 1 0 1 

1 0 0 l l 0 1 0 

0 1 1 0 0 1 0 I 

Figure 2. Adjacency Matrix for the Example Function Utilizing R-encoding 

The spectrum of a graph is defined as the set of eigenvalues 
for the adjacency matrix representing it in [3]. The theorems 
and proofs given in [1] demonstrate that the spectrum of the 
Cayley graph representing the group as defined in [l], which 
in tum represents some Boolean function, f, is identical to the 
Walsh spectrum utilizing R-encoding for the Boolean 
function. 

Figure 3. Cayley Graph for the Example Function Utilizing R-encoding 

The characteristic polynomial C( 1 ) for the adjacency 
matrix given in Figure 2 is shown below. 

Solving C ( 2) = 0 yields the eigenvalues, 1 ; "i/ i = 
( 1,2, ... ,8} = { 4, 2, 0, -2, 0, 2, 0, 2}. These eigenvalues are the 
Walsh spectral coefficients for fas verified in Figure I. 

Ill. EXTENSIONS 

A. S-encoding 

The first extension to the technique presented in [l] was to 
verify that in a manner analogous to that used for the matrix
based calculation of the Walsh spectrum as discussed in [9], 
S-encoding of each element, m1 e M, results in a graph 
whose eigenvalues directly yields the S-encoded coefficients 
for the Boolean function, f The adjacency matrix, B, 
resulting for the example function when utilizing S-encoding 
is shown in Figure 4 and the corresponding Cayley graph 
described by B, is shown in Figure 5. Solving for the 
characteristic polynomial for this graph yields the S-encoded 
Walsh coefficients 1; "i/ i = I, 2, ... , 8 = {O, -4, 0, 4, 0, -4, 
0, -4}. Note that the topology of the graph in Figure 5 is 
unchanged from that of Figure 3, only the encoding of the 
vertices is different. 
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Figure 4. Adjacency Matrix for the Example Function Utilizing S-encoding 

Figure 5. Cayley Graph for the Example Function Utilizing S-encoding 

B. Other possible operators 

Next all the remaining fifteen Boolean functions of two 
variables were considered as possible alternative operators to 
EB in the· formation of other Cayley groups. Only the two 

. non-unate functions, EXOR (EB) and equivalence (EXNOR, 
= ) were found to satisfy the definition of a group using the 
mapping operation in [l]. 

C. Equivalence 

The Cayley group defined using equivalence as the Boolean 
operator, (M, = ), proved to have properties similar to the 
correspondence between the two operators, $ and = . This 
group has an identity element corresponding to an n-length 
bit string of all ones and for each element m; E M, m/ = m;. 
The adjacency matrix, C, for the example function using this 
definition for the Cayley group is shown in Figure 6 and the 
corresponding Cayley graph is shown in Figure 7. 
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0 l 1 0 0 1 0 1 

1 0 0 1 1 0 1 0 
1 0 0 1 0 1 0 1 

0 l l 0 1 0 1 0 
C= 

0 1 0 l 0 1 1 0 

l 0 1 0 1 0 0 l 
0 1 0 1 1 0 0 1 

1 0 1 0 0 1 1 0 

Figure 6. Adjacency Matrix for the Inverse of the Example Function 

Figure 7. Cayley Graph for the Inverse of the Example Function 

As is shown by Figure 7, the topology of this graph, for the 
same example function is quite different from the one 
produced by the Cayley group, (M, EB), as shown in Figure 3. 

• Of particular interest is the presence of self-loops in Figure 3 
and their absence in Figure 7. This is determined by the 
value of mo ffi mo. For the example function, f. and the 
Cayley group, (M, EB), 

(mo EB mo) = (000 EB 000) = 000 

which is a minterm for the example function, f, While for the 
Cayley group, (M, = ), 

(mo = m0) = (000 = 000) -= 111 

which is not a minterm for the example function. It is the 
value of this calculation that determines the presence or 
absence of self-loops in the corresponding Cayley graph for 
the function. If the result is a minterm of the function, self
loops will appear at all vertices in the graph; if the result is 
not a minterm of the function, self-loops will not appear in 
the corresponding Cayley graph. 



Solving the characteristic polynomial for the new Cayley 
group, (M, = ), produces the Walsh spectrum for the inverse 
of the example function directly, 2 i V i = ( 1,2, ... ,8} = { 4, -
2, 0, 2, 0, -2, 0, -2}. 

As in the previous discussion on S-encoding, if the 
example function, f, is S-encoded using the Cayley group, (M, 

= ), the S-encoded Walsh coefficients for the inverse of the 
example function can also be obtained directly using (M, ;;; ). 

D. Direct Calculation of the Adjacency Matrix 

During the computations required to obtain the adjacency 
matrix for a function using the definition of a Cayley group, a 
method was discovered which greatly minimizes the 
computational cost of producing the adjacency matrix for a 
function under consideration. In a method similar to the "fast 
transform butterfly diagrams" described in [15) it becomes 
possible to obtain all the other n1, ••• , nn rows of the adjacency 
matrix from the no row by a series of transpositions as shown 
in Figure 8. Additionally, because the first row of the 
adjacency matrix for the Cayley group, (M, e ), consists of 

the equation, e * m;:::: m; Vi c { 1, 2, ... , n}, the first row 
of the adjacency matrix can be obtained directly from a 
transposition of the output vector for the function. 
Conversely, for the Cayley group, (M, = ), the equation, e * 
m; = mi Vi c { 1, 2, ... , n}, occurs in the nn row of the 
adjacency matrix and thus the transformation can proceed in 
a si~lar manner from right to left. 

flixfix£xfi fi to :6 £ 
:6 £ io fi 

nX12 fiX1o 

t4xf;x:f6 xfi 
:6 t4 f, :fil 

ft;xfi £ixfi 
fi :ti; fs £i 

Figure 8. Transformation Diagram 

IV. CONCLUSION 

A new Cayley group whose graph represents the spectrum 
for the inverse of a function is presented. Additionally it is 
shown that both the group, (M, e ), and the group, (M, ;;; ), 
can be used to directly calculate S-encoded coefficients by S
encoding of each element, m1 E M. Finally a "fast" method 
for calculating the adjacency matrix by transposition is 
presented. 

REFERENCES 

[l] A. Bernasconi and B. Codenotti. "Spectral analysis of Boolean functions as 
a graph eigenvalue problem." IEEE Trans. 011 Comp., 48:345-351, I 999. 

[2] R. E. Bryant, "Graph-based algorithms for Boolean function 
manipulation," IEEE Trans. on Comp .. 35(8):677-691, 1986. 

[3] D. M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Academic 
Press, I 979. 

[4) T. Damarla, "Generalized transforms for multiple valued circuits and their 
fault detection," IEEE Trans. 011 Comp., 41(9):ll0l-1109, 1992. 

[5] R. Drechsler and B. Becker. Bi11ary Decision Diagrams - Theory and 
Implementation. Kluwer Academic Publishers, 1998. 

(6) C. R. Edwards, "The application of the Rademacher-Walsh transform to 
Boolean function classification and threshold logic synthesis," IEEE Trans. 
on Comp., 24: 48-62, 1975. 

(7) C. R. Edwards, "The design of easily tested circuits using mapping and 
spectral techniques," Radio and Electronic Engineer, 7:321-342, 1977. 

(8) T. C. Hsiao and S. C. Seth, "An analysis of the use of Rademacher-Walsh 
spectrum in compact testing," IEEE Trans. 011 Comp., 33:931-937, 1984. 

[9) S. L. Hurst, D. M. Miller, and J.C. Muzio, Spectral Tech1Ziques ilZ Digital 
Logic. Academic Press Publishers, 1985. 

[!OJ M. Krupovsky, Finite Orthogonal Series in the Design of Digital 
Devices. Wiley and JUP, 1976. 

[11) D. M. Miller, "Graph algorithms for the manipulation ofBoolean functions 
and their spectra," in Co11gressus Nwneramiwn, pp 177-199, Winnipeg 
Canada, 1987. 

[12] D. M. Miller, "A spectral method for Boolean function matching," in 
European Design·& Test Co,if.. pg 602, 1996. 

[13) D. M. Miller and J.C. Muzio. "Specttal fault signatures for single stuck-at 
faults in combinational networks," IEEE Trans. on Comp., 33:765-768, 
1984. 

[14) A. K. Susskind, "Testing by verifying Walsh coefficients," IEEE Trans. on 
Comp., 32:198-201, 1983. 

[15] M.A. Thornton and R. Drechsler, "Spectral decision diagrams using graph 
transformations", in Design. Automation and Test i11 Europe, pp. 713-
717, 2001. 

[ 16) M. A. Thornton and V. S. S. Nair, "Efficient calculation of spectral 
coefficients and their application," IEEE Trans. 011 CAD, 14(11):1328-
1341, 1995. 

[ 17) A. T. White, Graphs, Groups and Surfaces. North-Holland Publishing 
Company, 1973. 

113 


