
Static Variable Ordering in ZBDDs for Path Delay Fault Coverage

Calculation∗

Fatih Kocan, Mehmet Gunes, Mitchell A. Thornton

Southern Methodist University, Dallas, Texas, U.S.A.

Abstract

Zero-suppressed Binary Decision Diagrams (ZBDDs) are
data structures that represent sets efficiently and they
have recently been suggested for use in nonenumera-
tive path delay fault (PDF) coverage calculations. Many
heuristics have been proposed to order variables (rep-
resenting primary inputs) in ZBDDs to avoid size ex-
plosion; however, in ZBDD-based PDF coverage calcula-
tions, the variables represent the nets in a circuit, not the
circuit primary inputs. This fact motivates us to inves-
tigate new ordering strategies since the number of nets
in a circuit is relatively large as compared to the number
of primary inputs. Several new static ordering heuristics
are proposed based on structural properties of the circuit
undergoing PDF coverage calculations and are evaluated.
The experimental results show that the new heuristics we
propose greatly reduce the size of the ZBDDs.

Topic 3. Programmable Logic, VLSI,CAD, and Layout

1 Introduction

Delay testing of VLSI circuits involves a test of the ability
of the combinational or combinational part of sequential
circuits to propagate signals within a specified amount
of time. Usually, if a test fails and there are no DC
faults such as stuck-at, then we look for transition, gate,
segment, and path delay faults in a circuit [1]. The PDF
model represents a delay along a path from a primary
input or the output of a flip-flop to a primary output or
the input of a flip-flop, and is considered to be the most
accurate of these fault models. The number of possible
PDFs, twice the number of paths in a circuit, is far higher
than the possible number of transition delay or stuck-
at faults in a circuit. Therefore, test vector generation
and fault coverage calculation for PDFs are very time-
consuming tasks in comparison to those of stuck-at or
other delay fault models.

Exact and approximate enumerative and nonemumer-
ative PDF coverage calculation algorithms are proposed
in the literature [6]. In [2], an exact nonenumerative al-
gorithm with a path-status graph (PSG) data structure

∗This work was supported in part by Texas Advanced Technol-
ogy Program (ATP) grant 003613-0029-2003

is presented. The PSG holds the detection statuses of
the PDFs in a circuit and, in the worst case, requires ex-
ponential space. Recently, in [6], ZBDDs [4] are used to
calculate exact PDF coverage nonenumeratively. Each
PDF is modeled as a subset of all nets in a circuit, and
all detected PDFs are stored in the ZBDD compactly.
Since the toal possible number of PDFs in a circuit is
exponential in size, the size of the ZBDD in the worst
case may be exponential. Therefore, it is necessary to
find a good ordering of variables in ZBDDs to keep the
size under control, which will in turn reduce processing
time.
In this paper, we describe several new static variable

ordering heuristics and measure their impact on the size
of ZBDDs. The heuristics are based on structural prop-
erties of the circuit undergoing PDF coverage computa-
tions since the resulting ZBDD is used to store signal
paths rather than function behavior. Using ZBDDs for
PDF coverage computations results in the structure of
the circuit being represented instead of the functional be-
havior that is normally represented by ZBDDs in other
applications. Past static variable ordering techniques
were intended to be applied to ZBDDs that represent
function behavior rather than circuit structure and thus
may not be as well-suited for minimizing ZBDD size for
PDF coverage calculations. We implement our new static
variable ordering methods and analyze their behavior in
terms of the maximum number of peak nodes created
and final ZBDD structure size.
The paper is organized as follows. In Section 2, the

ZBDD-based PDF coverage calculations are briefly de-
scribed. In Section 3, new ordering heuristics are pre-
sented. In Section 4, experimental results are given for a
limited number of PDFs and all possible PDFs per cir-
cuit are given for each ordering heuristic. Finally, we
conclude our paper in Section 5.

2 Preliminaries

PDFs are detected by applying a set of pairs of test pat-
terns to the circuit: the first pattern in a pair initializes
the circuit while the second one propagates the fault.
PDFs can be detected robustly, non-robustly, or func-
tionally; however, the type of detection is an issue in
simulation and test generation, not in coverage calcu-

1



Physical Paths

1 · 10 · 22 3 · 11 · 16 · 22 6 · 11 · 16 · 23
2 · 16 · 22 3 · 11 · 16 · 23 6 · 11 · 19 · 23
2 · 16 · 23 3 · 11 · 19 · 23 7 · 19 · 23
3 · 10 · 22 6 · 11 · 16 · 22

Table 1: Physical Paths

lation. In coverage calculation, we apply test vectors
one-by-one and find the ratio of detected PDFs to to-
tal number of PDFs. The coverage calculation must be
repeated for every type of detection, if needed.

Table 1 lists all physical paths in c17 in Figure 1. There
are two PDFs on each physical path: 1) Slow-to-fall and
2) Slow-to-rise. These faults are modeled from the corre-
sponding physical path by subscripting the first variable
of the path with f or r. For example, 1f · 10 · 22 and
1r · 10 · 22 are the two faults on path 1 · 10 · 22.

1

6

22

23

16

19

11

10

2

7

3

Level 0 Level 1 Level 2 Level 3

Figure 1: Circuit c17

The two vectors v1 =< s0, s1, p1, s1, s0 > and v2 =<
s0, p1, p1, s0, s0 > detect the highlighted paths in Figures
2(a) and (b), respectively. Here, si means the value of
the line in the first pattern and in the second pattern is
i; pi means the value of the line in the second pattern is
i and in the first pattern is the opposite. v1 covers two
PDFs: 3r · 11 · 16 · 22, and 3r · 11 · 16 · 23. Similarly, v2

covers 2r · 16 · 22 and 2r · 16 · 23. Therefore, the PDF
coverage of these two vectors is 4/22.

In set-based nonenumerative coverage calculation,
each PDF is modeled as a subset of the nets in the cir-
cuit and the PDFs detected by vectors are stored in the
set nonenumeratively. At the end of the calculation, the
number of stored subsets in the set would give the total
number of covered PDFs.

ZBDDs represent sets efficiently [4] and were success-
fully applied to nonenumerative PDF coverage calcula-
tion in [6]. For example, Figure 3 depicts three ZBDDs:
the leftmost holds the PDFs detected by v1, the middle
one holds the PDFs detected by v2, and the rightmost,
which is the union of two ZBDDs, holds the PDFs de-
tected by both vectors compactly (that is sharing sub-
paths 16 · 22 and 16 · 23).

s0

s1

s11

2
3

6

7

10

11

22

23

16

19

p1

p0

p1

p0

p0

s0
s1

s1

(a) PDFs Detected by v1

s0
s1

s1
s0

1

2
3

6

7

10

11

16

19

22

23

s0
s1

p1
p1 p1

p0

p0

(b) PDFs Detected by v2

Figure 2: PDFs Detected by v1 and v2

3

11

16

22

23

1 0

r

(a) ZBBD for v1

0 1

16

22

23

2r

(b) ZBDD
for v2

3

11

16

22

23

1 0

r

2r

(c) Union of two
ZBDDs

Figure 3: ZBDDv1
∪ ZBDDv2

= ZBDDv1,v2

3 Variable Ordering Heuristics

In many applications of ZBDDs, determining a good ini-
tial variable order is important. Ordering techniques try
to deduce a priori information from some other represen-
tation to get a good variable ordering. It is recommended
that (1) the variables with bigger influence on the func-
tion, in our case nets, should be placed high in the order
and (2) the variables with similar influences, in our case
topological closeness, should be grouped together. Us-
ing this approach, we propose variable ordering methods
using circuit topology and path-count statistics.

The forward- and backward-path counts are illustrated
in Figure 4. In forward path counting, the PIs are set
to 1, and the path counts at each node are computed
from their input path counts. Likewise, the backward
path count algorithm sets the POs to 1 and copies the
path count at a node to its inputs; a stem’s path count is
computed by summing the path counts at its branches.
A frequency of a node is obtained by multiplying forward
and backward path count values on it.

2



1

2
3

6

7

22

23

16

19

11

10

5*1

6*1

3*2

3*1

2*1

1*2

2*3

1*1

1*1

1*4

1*3

Figure 4: Maximum Frequencies of Variables in c17

The following heuristics are proposed to order vari-
ables in ZBDDs for PDF coverage calculation:

• Variable Frequency (H1): Frequency of a vari-
able is defined to be the total number of paths
passing through this variable (Figure 4). This
heuristic orders variables according to their max-
imum frequencies and puts the highest frequency
variable at the root of ZBDD. When there are
variables with equal frequencies, priority is given
to the variable at the lower level. In case the
variables are at the same level, one of them is
picked arbitrarily. For c17, one valid ordering is <
G11, G16, G23, G22, G3, G6, G19, G2, G10, G1, G7 >.

• Level-and-topology (H2) This heuristic orders vari-
ables according to their levels starting from the pri-
mary inputs (see Figure 1). Given a well-drawn cir-
cuit [3], variables at the same level are ordered based
on circuit topology. For every alternating level,
variables are ordered from left-to-right and right-
to-left within level. For c17, one valid ordering is <
G7, G6, G3, G2, G1, G10, G11, G19, G16, G22, G23 >.

• Level-and-frequency (H3): Similar to H2 with
the exception that the variables at the same
level are ordered according to their frequen-
cies and for equal frequencies the priority is
given to the variable which topologically comes
first. For c17, one valid ordering is <
G3, G6, G2, G1, G7, G11, G10, G16, G19, G23, G22 >.

• Backward-Variable Frequency (H4): In this heuris-
tic, backward path count algorithm is run on the
circuit and the variables are ordered in increasing
order according to their path counts. Level and
topology information is used to break ties among the
equal path counts. For c17, one valid ordering is <
G3, G6, G11, G2, G16, G1, G7, G10, G19, G23, G22 >.

• Forward-Variable Frequency (H5): Similar to H4

with the exception that forward path counts are
used in place of backwards and also the variables
are ordered from lowest to highest; the lowest one
is at the root. Heuristics H4 and H5 are derived
from the ordering heuristic in BDDs [5]. Our heuris-
tic uses paths counts as weights, which are different

TotalPaths Paths Variables Vectors SimTime

c880 17284 1957 503 17768 1.14
c1355 8346432 1119 628 14143 1.30
c1908 1458114 4303 946 15120 2.22
c2670 1359920 9662 1769 25983 13.77
c3540 57353342 9662 1769 25983 13.77
c5315 2682610 8637 2663 20345 23.45

c6288 1.978×1020 1576 2480 37881 43.09
c7552 1452988 9024 3926 25378 43.70

Table 2: Benchmark Parameters

from their weights. For c17, one valid ordering is <
G1, G2, G3, G6, G7, G10, G11, G19, G16, G22, G23 >.

4 Experimental Results

In this work we performed two sets of experiments on
a P4 - 2.4 GHz, 1GB RAM, WindowsXP system for
the aforementioned heuristics. In our work, we used the
CUDD Package Release 2.3.1 [7] that supports the ZBDD
data structure. In the first experiment, called Limited-
PDF, a test set of 10K vectors that detect at least one
path is randomly generated. Then the paths that are de-
tected by test vectors are added to the ZBDD structure
one by one. In the second experiment, called All-PDF,
all PDFs are stored in the ZBDD. This gives a theoreti-
cal upper bound on the size of ZBDD when all PDFs are
stored in it.

Table 2 presents the number of all paths in the bench-
mark circuits, the detected paths by a test set, the total
number of variables in the ZBDD, the number of random
vectors generated to obtain 10K useful vectors, and the
simulation time. The simulation time is the time spent
to verify the randomly generated vectors.

Table 3 tabulates the performances of the proposed
heuristics in terms of final, peak node counts and build
times for the Limited-PDF case. We observe that H1
is the worst in final node counts and at least 1.48 times
larger than H2 − H5 for all benchmarks. H2 − H5 are
very close to each other in their final node counts. In
terms of peak node counts, H5 gives the consistent size
for all benchmarks. Ignoring the first two small bench-
marks, H5 gives the smallest peak node counts for all
benchmarks. H5 is at least 1.11 times smaller than
H1 − H4 for all benchmarks. However, H5 results in
the slowest build time.

Table 4 tabulates the performances of the proposed
heuristics in terms of final, peak node counts and build
times for the All-PDF case. We observe that H2 and
H3 are very close in their final node counts. In terms of
peak node counts, H5 is at least 6.7 times smaller than
H1 − H4 for all benchmarks. In this experiment, H5
results in the slowest build time, like the Limited-PDF
case.

The authors of [6] reported the final node count of
the ZBDD when all PDFs were stored in it. Their re-
ported results and its comparison with our ALL-PDF’s

3



Name H1 H2 H3 H4 H5

c880 5755/41902/2.2 2328/74606/1.9 2281/58254/1.7 2180/58254/1.9 2182/30660/2.1
c1355 8908/39858/2.2 4498/94024/1.5 4489/90958/1.5 4489/90958/1.6 4413/35770/2.8
c1908 14400/71540/7.2 7793/98112/5.0 7521/96068/4.9 7475/96098/5.7 8676/49056/6.4
c2670 6591/60298/11.7 3942/205422/8.3 4099/159432/8.2 3946/158410/11.8 4451/38836/12.8
c3540 49789/134904/19.0 15319/156366/10.0 15275/158410/10.1 15113/157388/14.0 15031/62342/19.9
c5315 24026/123662/38.0 12289/300468/20.4 12753/143080/18.4 12185/140014/29.6 13049/74606/40.4
c6288 7709/68474/30.2 3963/45990/14.2 3954/52122/14.5 3961/52122/18.2 3798/34748/38.4
c7552 27940/126728/64.3 14015/352590/30.3 14181/202356/28.6 13905/200312/44.6 15576/67452/80.3

Table 3: Limited-PDF: (Final Nodes/Peak Nodes/Build Time (sec)) in ZBDD Manager

Name H1 H2 H3 H4 H5

c880 16491/136948/0.9 680/50078/0.1 716/51100/0.1 687/50078/0.3 722/6132/1.0
c1355 99518/2343446/8.6 937/256522/0.5 937/258566/0.5 937/257544/0.6 956/8176/1.6
c1908 84124/757302/4.5 1177/265720/0.4 1245/270830/0.5 1189/261632/1.3 1853/10220/3.4
c2670 25845/158410/7.4 1873/165564/0.5 2801/169652/0.9 1870/162498/4.6 2296/16352/8.8
c3540 2767923/8359960/38.2 2255/620354/1.6 2326/579474/2.0 2291/627508/5.5 3203/20440/12.3
c5315 51928/307622/21.8 3691/255500/0.8 4105/300468/1.6 3749/245280/13.1 4642/36792/26.1
c6288 memout 4143/2464042/12.2 4310/2529450/12.4 4142/2466086/16.0 4425/29638/25.2
c7552 122595/736862/42.3 5030/597870/1.5 5461/528374/3.2 5016/499758/19.2 6867/48034/57.0

Table 4: All-PDF: (Final Nodes/Peak Nodes/Build Time (sec)) in ZBDD Manager

Name #PDFs #Nodes Time #Nodes Time
Ratio Ratio

c880 17,284 9,708 1.32 14.28 13.2
c1355 8,346,432 122,107 8.91 130.32 17.82
c1908 1,458,112 79,878 8.48 67.87 21.2
c2670 1,359,756 53,529 6.10 28.58 12.2
c3540 56,531,748 155,649 39.44 69.02 24.65
c5315 2,682,610 109,815 8.28 29.75 10.35

c6288 1,978×1020 1,917,260 234.56 462.77 19.23
c7552 1,452,986 131,017 22.70 26.05 15.13

Table 5: Final nodes in ZBDD (excerpted from [6])

H2 are tabulated in 5. Note that H2 outperforms their
static ordering heuristic significantly both in final node
counts and build times in all benchmarks. Especially, for
the problematic circuit c6288, our H2 yields 463 times
smaller final node counts than their static heuristic.

5 Conclusion

ZBDDs represent sets efficiently and they have recently
been used in nonenumerative path delay fault (PDF)
coverage calculations. Each PDF is modeled as a sub-
set of all nets in a circuit, and all detected PDFs are
stored in a ZBDD compactly. Many heuristics have been
proposed to order variables of ZBDDs to avoid size explo-
sion when those structures are used to represent circuit
functionality. However, in ZBDD-based PDF coverage
calculations, the variables represent the nets in a cir-
cuit and are thus structural representations of the circuit.
This motivates us to search for new ordering techniques
that may take advantage of structural properties. We
devised several new ordering heuristics. We found that
the new H2, H3, H4 and H5 heuristics perform well. H1
clearly under-performed as compared to the other tech-
niques. We also compared our results with published
results. With the problematic benchmark circuit c6288
we found that our H2 heuristic resulted in a ZBDD that

was 463 times smaller.

References

[1] Bushnell, M. L., and Agrawal, V. D. Essen-
tials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits. Kluwer Academic Pub-
lishers, 2000.

[2] Gharaybeh, M. A., Bushnell, M. L., and

Agrawal, V. D. The path-status graph with ap-
plication to delay fault simulation. IEEE Trans.
on CAD of Integrated Circuits and Systems 17, 4
(September 1998), 324–332.

[3] Jain, J., Adams, W., and Fujita, M. Sampling
schemes for computing obbd variable orderings. In
Proc. of IEEE/ACM Int’l Conf. on CAD (1998),
pp. 631–637.

[4] Minato, S. Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems. In Proc. of
ACM/IEEE Design Automation Conference (1993),
pp. 272–277.

[5] Minato, S., Ishiura, N., and Yajima, S. Shared
binary decision diagram with attributed edges for ef-
ficient boolean function manipulation. In Proc. of
ACM/IEEE Design Automation Conference (1990),
pp. 52–57.

[6] Padmanaban, S., Michael, M. K., and

Tragoudas, S. Exact path delay fault coverage
with fundamental ZBDD operations. IEEE Trans. on
CAD of Integrated Circuits and Systems 22, 3 (March
2003), 305–316.

[7] Somenzi, F. CUDD: CU decision diagram package.
In Deparment of Eletrical and Computer Engineer-
ing, Univ. of Colorado, Boulder (2003).

4


