
Principle Investigator/Project Director: Mitchell A. Thornton

Institution: Southern Methodist University

Award Number: CCR-0243365

Program: CISE

Project Title: Evolutionary Algorithms for Symbolic FSM Equivalence Checking

Research Results in Equivalence Checking

Mitchell A. Thornton, Associate Professor

Aditya Mukherjee, Research Assistant Professor

Department of Computer Science and Engineering

Southern Methodist University, Dallas, TX 75275

ABSTRACT: Formal methods for the verification of Integrated Circuits (ICs) are a

collection of techniques used to ensure the correctness of a design before fabrication.

Formal methods have been investigated recently and continue to be an area of active

research in the Computer Aided Design (CAD) for Electronic Design Automation (EDA)

community. While many important results and CAD tools have resulted, the verification

problem continues to be difficult due to the high complexity of the underlying algorithms

and the circuits that they are intended to validate for correctness. One of the more

successful approaches for formal verification is Equivalence Checking (EC), both for

combinational and synchronous sequential circuits. In general EC is a method that

requires two different models of a circuit that are used as input, typically at different

levels of abstraction, and determines the functional equivalence (or non-equivalence) at

some level. In this research, we are investigating methods to increase the effectiveness of

EC. Specifically, we are experimenting with new data structures that are tuned

specifically for use in EC algorithms.

1. INTRODUCTION

Design verification is increasingly becoming a bottleneck in time-to-market for

Application Specific Integrated Circuits (ASIC) and System On a Chip (SOC) design

ventures. The 2001 International Technology Roadmap for Semiconductors (ITRS)

design technology document [1] identifies some of the key challenges in design

verification. It points out that, unlike technologies such as synthesis, verification is still

an art and relies heavily on manual tasks.

One of the more successful verification techniques in use today is Equivalence Checking

(EC). In general, EC techniques compare two models of a circuit and determine the

equivalence of some property; typically, the property of functional equivalence.

Functional equivalence is the property that for all given input stimuli in some set, both

models produce the same output responses. Two important approaches for the

implementation of functional equivalence checkers are to reason about the models using

SAT (satisfiability) solving algorithms or to transform each model into some canonical

form and then check for the existence of an isomorphic relationship between them.

Recently, researchers have developed hybrid methods that encompass both of these

approaches [2]. In the research described here, we discuss results achieved from the

investigation of methods to increase the effectiveness of EC. Specifically, we discuss new

and efficient data structures that are tuned specifically for use in EC algorithms.

2. DISCUSSION OF THE INVESTIGATION

Among the established techniques for showing the equivalence between two candidate

circuits are: the use of Binary Decision Diagrams (BDDs) [3], the use of Automatic Test

Pattern Generation (ATPG) techniques, SAT-solvers, and, implication. Each of these

approaches has advantages and disadvantages for different classes of circuits. We are

investigating the use of these techniques for different classes of circuits and the

integration of these techniques in order to study the problem of determining better data

structures for these approaches. In particular, we are investigating the use of these

methods in the spectral domain to determine if aspects of these approaches may be more

efficiently computed based on spectral arguments.

One way to perform EC is to represent two models of a circuit in a canonic form and then

check the canonic forms for equivalence. For this approach to be successful, the

following constraints must be satisfied:

 Conversion of the circuit model(s) into a canonic form must be efficient

 The canonic form must be compact and not require an excessive amount of

memory

 The test determining if two canonic forms are the same must be very fast

 If the two models are not equivalent, a means for identifying at least one test

vector that shows model differentiation must be present and be efficient

As an example, BDDs [3] may be used as canonic forms that are compact in size for

many functions of interest, relatively fast to construct, easy to compare due to the

implementation of a “unique table” data structure [4], and allow for a test vector to be

computed in the case of non-equivalence. Problems can occur in this straightforward

approach when the size of the BDD becomes too large. This has motivated considerable

interest in dynamic variable reordering methods [4, 5] and other techniques for reducing

the size of a BDD as it is constructed.

There are some circuits, most notably arithmetic circuits, which can result in

exponentially large BDD representations regardless of the variable ordering. This fact

has prompted researchers to search for other more compact decision diagram-like

structures. One of these is the “Binary Moment Diagram” (BMD) [6]. This structure was

shown to be linear in size for integer multiplier circuits that are exponential in size when

represented as BDDs. Other decision diagram structures have been proposed leading to

further reductions in size for arithmetic circuits such as *BMDs and K*BMDs [7] and

decision diagrams adapted for floating point (*PHDDs) [8]. This proliferation of different

types of decision diagrams has lead to a virtual “alphabet-soup” of differing decision

diagrams and can be very confusing.

Recently, it was shown that these varying types of decision diagrams can be classified

very conveniently as graphical representations of discrete spectra of the function of

interest [9]. In fact, the BMD proposed by Bryant in 1995 to efficiently represent

multipliers [7] is nothing more than a graphical representation of the arithmetic spectrum.

The arithmetic spectrum has been known since at least [10] but has not seen much use (as

have any spectral methods) since efficient means of computing them were not known

until recently [11]. Likewise, the so-called “Functional Decision Diagrams” (FDDs) [12]

are the same as a decision diagram representation of the Reed-Muller spectrum. Many

other decision diagrams are merely hybrid spectral transformations (i.e. spectral

transforms whose transformation matrices are products of other transforms), or, are

negated and edge-valued versions. The fact that the discrete spectral representations of

functions can be computed efficiently and represented as canonic decision diagram forms

allows for investigation of new classes of DDs for circuit canonic representation

particularly spectral decision diagrams that are hybrid transforms.

3. EXPERIMENTAL RESULTS

A set of experimental results are presented in this section to demonstrate the potential

viability of the equivalence checking research outlined above. This set of experimental

results demonstrates that large combinational logic functions can be represented in the

spectral domain efficiently. Several benchmark circuits (in netlist form) are parsed into a

BDD structure and transformed to the spectral domain using the algorithms in [9].

Circuits were chosen that are not trivial cases and that had embedded arithmetic

functions. Table 3.0-1 contains these results.

In Table 3.0-1 the column labeled BDD contains the number of vertices in the initial

BDD. The columns labeled Walsh and Haar contain the number of nodes in the decision

diagrams representing the Walsh and Haar spectra of each of these functions, and T-read,

T-Walsh, and T-Haar contain the amount of time (in CPU seconds) to read the netlist into

a BDD, transform a BDD into a Walsh decision diagram, and, transform a BDD into a

Haar decision diagram. These results were obtained on a 500 MHz PC with 64 MB

RAM running Windows 98. The implementation used the CUDD software package [13]

with ADDs being used to represent the SDDs. It is interesting to note that in several

cases it took longer to synthesize the BDD from the netlist (i.e. to parse the netlist and

build the initial BDD representation) than to transform it into the spectral domain. These

are preliminary results only and could be improved upon by incorporating negated edges

on the spectral decision diagrams. This proposed improvement would allow for further

sharing of vertices and would reduce the decision diagram sizes further.

Table 3.0-1: Results Showing the Viability of Spectral Representation
Circuit In/Out BDD Walsh Haar T-Read T-Walsh T-Haar

alu4 14/8 804 8005 2827 0.16 0.17 0.01
pdc 16/40 695 10581 2992 0.66 0.05 0.01
soar 83/94 482 3778 2321 0.44 0.06 0.01

apex3 54/50 851 34879 15109 0.60 0.46 0.16
des 256/245 3038 27892 16664 2.15 0.38 0.16
dalu 75/16 1037 26692 11399 1.10 0.55 0.28
pair 173/137 3747 memout 42385 4.23 - 0.33
rot 135/107 5922 memout 116370 1.53 - 0.99

c3540 50/22 23851 memout 316666 23.84 - 5.82
c5315 178/123 2197 77554 58037 1.81 3.40 1.15
c7552 207/108 9485 memout 62684 10.94 - 1.95

4. CONCLUSIONS

In summary of the experimental results section, the following point is made. Many past

decision diagram structures (BMDs, *BMDs, FDDs, KBMDs, K*BMDs, *PHDDs) that

have been developed for arithmetic circuits have been shown to be nothing more than

spectral representations of the functions [9]. Because we can represent spectral decision

diagrams efficiently, we believe there are many additional structures possible for

specialized arithmetic circuits including hybrid combinations of various transforms.

Therefore, there is more research needed for finding canonic forms that are useful for

circuit verification.

Acknowledgements

The authors are pleased to acknowledge the financial support for this research by the

National Science Foundation (CCR-0243365). We also thank Dr. Alan Mishchenko for

his invaluable help with the results in Table 3.0-1.

5. REFERENCES

[1] 2001 International Technology Roadmap for Semiconductors, Design Technology
Document, http://public.itrs.net/Files/2002Update/2001ITRS/Design.pdf.
[2] A. Kuehlmann, M. Ganai and V. Paruthi, Circuit-based Boolean Reasoning,
Proceedings of the IEEE/ACM Design Automation Conference, pp. 232-237, 2001.
[3] R. E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE
Trans. on Comp., 35(8):677-691, 1986.
[4] K.S. Brace, R.L. Rudell, and R.E. Bryant, Efficient Implementation of a BDD
Package, Proceedings of the IEEE/ACM Design Automation Conference, pp. 40-45,
1990.
[5] R. Rudell, Dynamic Variable Ordering for Ordered Binary Decision Diagrams,
Proceedings of the IEEE/ACM International Conference on CAD, pp. 42-47, 1993.
[6] R.E. Bryant and Y.-A. Chen, Verification of Arithmetic Functions with Binary
Moment Diagrams, Proceedings of the IEEE/ACM Design Automation Conference, pp.
535-541, 1995.
[7] R. Drechsler, Pseudo-Kronecker Expressions for Symmetric Functions, Proceedings
of the IEEE VLSI Design Conference, pp. 511-513, 1997.
[8] Y.-A. Chen and R.E. Bryant, *PHDD: An Efficient Graph Representation for Floating
Point Circuit Verification, Proceedings of the IEEE/ACM International Conference on
CAD, pp. 2-7, 1997.
[9] M.A. Thornton, R. Drechlser and D.M. Miller, Spectral Techniques in VLSI CAD,
Kluwer Academic Publishers, Boston, MA, ISBN 0-7923-7433-9, July 2001.
[10] S.K. Kumar and M.A. Breuer, Probabilistic Aspects of Boolean Switching Functions
via a New Transform, Journal of the ACM, 28(3):503-520, 1981.
[11] M.A. Thornton and R. Drechsler, Spectral Decision Diagrams Using Graph
Transformations, Proceedings of the IEEE/ACM Conference on Design, Automation and
Test in Europe, pp. 713-717, 2001.
[12] U. Kebschull and W. Rosenstiel, Efficient Graph-Based Computation and
Manipulation of Functional Decision Diagrams, Proceedings of the IEEE/ACM European
Conference on Design Automation, pp. 278-282, 1993.
[13] F. Somenzi, CUDD: CU Decision Diagram Package, Release 2.1, University of
Colorado, Boulder, CO.

