

Abstract--State space traversal algorithms for Finite State
Machine (FSM) models of synchronous sequential circuitry are
used extensively in various formal verification approaches such
as Equivalence Checking (EC) and model checking. Symbolic
Binary Decision Diagram (BDD) based approaches have allowed
many FSM models to be verified due to the compact
representations they provide. However, there still remain
circuits for which the traversal cannot be carried out due to the
size of the Transition Relation (TR) BDD becoming too large.
Pruning algorithms designed to reduce the size of a BDD while
maintaining as much functionality as possible are examined for
here. These techniques are based upon evolutionary algorithms
that have bee shown to significantly reduce the size of BDDs
while retaining a large amount of functionality.

Index Terms—FSM Equivalence Checking, Evolutionary
Algorithms, Binary Decision Diagrams, Verification

I. INTRODUCTION

HE desire to achieve true “static sign-off” in the design
process has motivated the incorporation of formal

verification methods in modern design flows. Typically, tools
such as Equivalence Checkers (EC) [1] and model checkers
are employed [2,3]. Many design flows use model checkers to
verify certain characteristics of the High Level Language
(HLL) specification or the Hardware Description Language
(HDL) golden model. Next, Finite State Machine (FSM) EC
may be used to verify that all subsequent design abstractions
are functionally equivalent.

Overview descriptions of basic symbolic FSM EC are
available in [1,3,4,5,6] as well as many other sources. The
main idea for forward, breadth-first state traversal methods is
to form a product FSM using the two abstractions that are
being verified. The electronic model of the product machine
consists of a composite FSM where all similar named inputs
and the clock are electrically common. All like named
outputs are used as input signals to a common equivalence
gate (XNOR). Next, each component FSM is initialized to
the same state and the product machine execution is
simulated until the entire state space of the product machine
has been traversed. Although many synchronous circuits

This work was supported in part by the U.S. National Science Foundation

(NSF) under Grants No. CCR-0000891 and INT-0096008 and; by the German
Deutscher Akademischer Austauschdienst (DAAD) under Grant No.
315/PPP/gü-ab.

have been successfully verified using this technique, the
straightforward implementation of the EC algorithm may
often not converge in a reasonable amount of time or it may
require too much memory

One approach to this problem is to utilize an approximate
EC that over- or under-estimates the set of states traversed by
a FSM. Several approaches for performing approximate EC
have been proposed [7,8,9,10,11,12]. Approximate EC
results can be used in several different ways. If true formal
verification is desired, a bounding EC can be used to quickly
rule out states that need not be checked by disregarding those
that the over-approximation method did not find in the state
space. Additionally, those states that the under-
approximation method did traverse need not be examined
further since it is known that this set of states definitely is in
the state space. For those states not ruled out, an alternative
technique can be employed such as a directed depth-first
reachability analysis or further checking of properties or even
theorem proving. Another important use of approximate ECs
is the generation of valid counterexamples when two
abstractions of a circuit have been found to differ in
functionality.

The overall objective of the work described in this paper is
the development of an FSM EC tool that utilizes the concepts
of Evolutionary Algorithms (EAs). EAs have been applied to
several methods in VLSI CAD [13]. Examples include
methods for finding Binary Decision Diagram (BDD)
variable orderings [14,15] and FPGA mapping and synthesis
techniques [16,17]. The goal here is to produce an EC tool
that can more accurately approximate the reachability of a
FSM as compared to other approximate approaches in a
reasonable amount of computation time. If a finite probability
of design error is acceptable, the EA employed for finding the
approximated Transition Relation (TR) can be used to trade
runtime for a decrease in the error probability until some
threshold is reached.

Other approximation approaches typically fall into two
categories; either partitioning the design into a set of smaller
interconnected state machines and performing exact symbolic
analysis on each, or, exploring a subset of the state space
when some threshold or computational resource limit has
been reached.

The method described here differs in that an EA approach
is used to compute the over-approximation of the reachable
state set. The over-approximation results since the reduced

Evolutionary Algorithm Approach for Symbolic
FSM Traversals*

 Mitchell A. Thornton Rolf Drechsler
 Mississippi State University Siemens AG
 Mississippi State, MS Munich, Germany
 mitch@ece.msstate.edu drechsle@informatik.uni-freiburg.de

T

TR BDD is constructed such that it is constrained to be
smaller (in terms of vertices) but represents the true TR as
closely as possible with an error being that all true TR logic-
0s are forced to be logic-1 values. The other over-
approximation techniques described previously did not utilize
EAs.

To describe the technique in more detail, the following
paragraphs will give a brief introduction to the basic concepts
of symbolic FSM EC and EAs. Next, the application of an
EA to TR BDD pruning will be described and experimental
results of incorporating this technique in FSM equivalence
checking will be provided.

II. SYMBOLIC FSM EQUIVALENCE CHECKING

Overview descriptions of symbolic FSM equivalence
checking are available in [1,3,18,19] as well as many other
sources. The basic idea for forward, breadth-first state
traversal methods is to form a product FSM using the two
abstractions that are being verified. The electronic model of
the product machine consists of a composite FSM where all
similar named inputs and the clock are electrically common.
All like named outputs are used as input signals to a common
equivalence gate (XNOR). Next, each component FSM is
initialized to the same state and the product machine
execution is simulated until the entire state space of the
product machine has been traversed.

Symbolically, a Transition Relation (TR) is formed that
consists of a function representing all possible transitions of a
component FSM. This can be considered to be a single
output Boolean function that has all possible present-state and
next-state vector pairs as possible inputs. For those pairs
where a transition is possible, the TR evaluates to logic-1.
For those pairs that are not possible, a logic-0 is produced.
Also, a function representing the initial state is formed that
evaluates to logic-1 for the product term(s) representing an
initial state set. These two functions are commonly
represented as ordered Binary Decision Diagrams (BDDs).
The explicit formation of the TR is commonly referred to as
the monolithic TR since its’ size can be quite large.

The next portion of the algorithm is the iterative image
computation. The BDD initially representing the reset state is
updated during each iterative step to represent all the states
that have been reached in the symbolic execution of the
product machine. Additionally, another BDD is formed that
represents all the states reached in the last iteration of the
algorithm. Tautology checking must be performed at each
iteration to ensure the component FSMs are indeed producing
the exact same outputs. The image computation involves
forming the conjunction of the BDD representing the states
reached in the last iteration (or symbolic execution of the
product machine) with the TR followed by an existential
quantification (smoothing operation) of the resultant BDD
over the present state variables. The image BDD then is used
as the currently reached state BDD in the subsequent iteration

with all the next variables relabeled as the corresponding
present state variables. Also, the BDD that accumulates all
the currently reached states is updated as the disjunction of
itself with the currently reached states just computed.

This iterative, Image Computation step continues until a
non-tautology is found indicating non-equivalence, or, until
the BDD representing all the previously reached states does
not change anymore, indicating the entire state space has
been traversed. Upon this convergence, the BDD
representing the reached states actually represents the entire
state space of the two component FSMs.

Problems can arise in the formation of the transition
relation BDD, the intermediate size of the BDD representing
the “reached” states and the peak intermediate BDD size that
can result during the image computation. In addition, the
number of iterations can also be exponential in size. In the
worst case, a component FSM with m state variables and n
inputs can result in 2m reachable states and 2n iterations.
Clearly, this algorithm is complex both in terms of storage
and runtime resources. This fact has motivated many
researchers to enhance the basic algorithm described above.
Several of these enhancements are described in detail in the
reference works included in the bibliography. The
complexity of this technique also motivates the investigation
of approximation techniques that can be used to provide
estimates, or, can be used with another criteria (such as a
guided search strategy) to perform exact equivalence
checking.

One major problem with the method described above arises
during the explicit computation of the TR BDD. The so-
called “monolithic” TR BDD is formed as the conjunction of
all the next-state BDDs followed by smoothing out the input
variable dependence. The fact that the TR BDD can grow to
an unacceptable size has lead to methods where the TR is
represented implicitly by maintaining an array of the next-
state BDDs or through clustering some of the next-state
BDDs, but not all of them. Also methods such as early
quantification in building monolithic or clustered TR BDDs
are very helpful [18]. Early quantification requires the
identification of disjoint sets of input variables in the support
of next state functions before computing their conjunction.
Once the disjoint sets of input variables are found, those not
in the common support set may be quantified out before the
conjunction of next-state BDDs is performed.

Also, it is apparent that the exact TR relation is not
required in intermediate image computations. Rather, some
function that has the same behavior as the exact TR may be
used during a single iteration. As long as a function
preserves the same behavior in mapping a subset of reached
states to the corresponding set of resulting next-states, the
substitution is acceptable. This requires the formation of a
new reduced TR at each image computation but can lead to
algorithms that can successfully traverse the state space of
FSMs where the use of the monolithic TR is prohibitive. One

way to exploit this property is to use the notion of the
generalized co-factor [18,19]. The basic premise of the
technique is that the inclusion of any of states already reached
in iterations before the current one may be included in the
currently reached state BDD. Then, using this BDD, the
reduced TR may be arrived at by ensuring that it has the same
behavior for this subset of states as the monolithic BDD has.

III. EVOLUTIONARY ALGORITHMS

An Evolutionary Algorithm (EA) is a common term for
algorithms that utilize adaptive behavior modeled after
principles of nature. This class of algorithms contains
genetic algorithms, evolutionary strategies and evolutionary
and genetic programming. Although definitions of
evolutionary algorithms differ, the more common properties
of EAs are that a collection of potential solutions to the
problem at hand are maintained referred to as the population
of a current generation. Operations are applied to the current
population to produce a new generation that will hopefully
contain members that are a “better” solution to the problem in
some sense. This process continues until some threshold or
stopping criterion is met. Once the stopping criteria occurs,
the “best” solution from the current population is used.

The new population is produced through the application of
operators on selected members of the current generation.
Typically, the members of the current generation to whom the
operators are applied are chosen based on their quality of
solution to the problem. In this way, it is more likely that
desirable characteristics are inherited by the offspring
solutions. Some concepts in the development of EAs are the
criteria for choosing parents in a current generation, the
halting criteria, the measure of the quality of the solution an
individual provides (i.e. evaluation of the fitness function)
and the operators that are used to generate offspring.

Typical operators are developed from the genetic notions of
mutation, recombination (or crossover) and inversion. As an
example of a mutation operator, a random number generator
may be employed to randomly change some inherited
characteristic. Crossover operations involve combining
characteristics from two or more parents and placing them in
the resulting offspring. Inversion involves rearranging the
inherited traits of parents, but this only makes sense if there is
some characteristic of interest that is related to the order of
inherited traits.

A. BDD Pruning Using EAs

Recently, an EA approach was developed for Multiplexer
circuit based synthesis utilizing a BDD representation that is
of particular interest in the context of this proposal. In [17], a
technique was described where a BDD representation of a
function to be mapped to a multiplexer-based Field
Programmable Gate Array (FPGA) was pruned until it would
fit entirely within a target device. The pruning was
accomplished through the use of an EA that sought to reduce
the size of the BDD (in terms of vertices) while maintaining
as little error as possible. While some circuit error is
introduced, the tradeoff between BDD size reduction versus

function error was quite impressive in some cases. As an
example it was shown that, for most cases, benchmark
functions in the ISCAS85 set had less than 1% error (in terms
of incorrect minterm values) when 20% of the vertices were
removed. Increasing the BDD size reduction to 50% resulted
in errors of less than 10% in all cases tested.

The methods in [17] involved the use of two mutation
operators and one crossover operator. The first mutation
operator, MUT1, randomly chose an internal variable in the
BDD and replaced it by a constant. The other mutation
operator, MUT2, was an enhancement of MUT1 in that each
internal vertex was considered to be the root node of a
subfunction. The number of minterms covered by the
subfunctions is extremely easy to compute thus, this value is
computed for each internal vertex. The vertex that has the
most extreme minterm count, whether it is closer to 0% or
100% is chosen and replaced with the constant-0 or constant-
1 vertex respectively. The crossover operator combines two
functions f and g. This is accomplished by recursively
traversing both BDDs and searching for identical subtrees,
when such subtrees are found, a node pointing to them is
returned for inclusion in the child BDD.

B. Approach for EAs in FSM Equivalence Checking

The technique implemented in this work uses EAs for TR
BDD pruning. The goal is to reduce the storage requirements
of the TR BDD while degrading the representation error of
the original function as little as possible. If such pruning is
applied to the TR, constraining all errors to be of the type
0→1 results in an over-approximation scheme while errors of
type 1→0 cause under-approximation to occur (the notation
0→1 refers to the case where the actual TR would result in a
logic-0 while the approximated one yields a logic-1).

An initial population was formed through the application of
MUT1 operator during the construction of the TR. In
subsequent iterations, a modification of the MUT2 operator
was used where only cases of 0→1 errors were allowed. New
generations are obtained by using the same crossover
operation as described in [17].

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of EA methods as applied to
approximate FSM EC, experiments were conducted where,
during the construction of a monolithic TR BDD, pruning
was invoked. It should be noted that the purpose of these
experiments is to provide results concerning the behavior of
the TR BDDs after application of the EA. A production CAD
tool would necessarily implement these methods in
conjunction with reduced TR computations using co-factors
and other well-known techniques.

In this scenario, a naïve approach was taken in
constructing the monolithic TR where each next-state BDD
was sequentially ANDed together in no particular order and
the pruning algorithm was invoked. At each instance of
pruning, the transition relation was reduced to a maximum of
95% of its original size (for many cases the reduction was

greater than 95%) resulting in an over-approximation scheme
for reachability analysis.

The approximate EA results are compared to exact results
in Table 1. The column labeled CIRCUITS contains the
names of some ISCAS89 benchmark circuits, the three
columns labeled SIZE, ITER. and STATES under the
EXACT heading indicate the original size of the monolithic
transition relation BDD (in number of vertices), the number
of image computation iterations to convergence and the total
number of states in the state space, respectively.
Corresponding information is provided for the approximation
case headed by label EA.

TABLE I

EXPERIMENTAL RESULTS WITH EA PRUNED MONOLITHIC TRANSITION

RELATION BDD

CIRCUIT
NAME

SIZE
EXACT
ITER.

STATES SIZE
EA

ITER.
STATES

s27 3 3 6 3 3 6
s208.1 1 256 256 1 128 256
s298 59 19 218 59 19 218
s344 590 7 2625 768 7 2625
s382 123 151 8865 232 142 22649
s386 11 8 13 11 8 13
s400 94 151 8865 206 32 10845

s420.1 1 65536 65536 1 7168 65536
s444 126 151 8865 1 7168 65536
s510 7 47 47 7 47 47
s526 159 151 8868 138 90 224456
s526n 159 151 8868 142 151 21232
s641 79 7 1544 118 7 6501
s713 82 7 1544 191 7 15226
s820 9 11 25 9 11 25
s832 9 11 25 9 11 25
s953 634 11 504 649 8 299336

s1488 10 22 48 10 22 48
s1494 10 22 48 10 16 48

The significance of these results is that in many cases the
approximated results are identical to the exact results. In
several instances this occurred with fewer image
computations such as the case for the benchmark s420.1.
These results indicate that EA approximations can be used
successfully and provide motivation for finding alternative
genetic operators that can yield better approximate results.

V. CONCLUSIONS

The experimental results yield exact agreements in some
cases with others that differ significantly. Since no attention
was given to the order in which the TR was constructed, more
information could be used enhance the approximations.
Future efforts will include the optimization of the pruning
BDD EA operators and the investigation of using EAs to
produce a reduced transition relation BDD by picking the best
sub-BDDs to AND together. Since a TR can be replaced (in a
single iteration) by a generalized co-factor, if the generalized
co-factor is smaller it becomes the reduced transition relation.
Furthermore, the reduced transition relation can be produced
as the conjunction of the co-factored sub-relations. Thus, the
problem becomes one of determining a good co-factor. We

plan to incorporate EA methods for this selection in addition
to TR pruning.

ACKNOWLEDGMENT

The authors would like to thank Wolfgang Günther for
providing a modified version of the software used in [17].

REFERENCES
[1] S.-Y. Huang and K.-T. Chen, Formal Equivalence Checking and Design

Debugging, Kluwer Academic Publishers, Boston/Dordrecht/London,
1998.

[2] K. L. McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem, Kluwer Academic Publishers, Boston/Dordrecht/
London, 1993.

[3] E. M. Clarke, O. Grumberg and D. A. Peled, Model Checking, MIT Press,
Cambridge, Massachusetts, 1999.

[4] H. Touati, H. Savoj and B. Lin, “Implicit enumeration of finite state
machines using BDD’s”, in Proceedings of the International Conference on
Computer Aided Design, November 1990, pp. 130-133.

[5] O. Coudert and J. C. Madre, “A unified framework for the formal
verification of sequential circuits,” in Proceedings of the International
Conference on Computer Aided Design, November 1993, pp. 126-129.

[6] G. Cabodi, P. Camurati and S. Quer, “Improved reachability analysis of
large finite state machines,” in Proceedings of the International Conference
on Computer Aided Design, November 1996, pp. 354-360.

[7] G. D. Hachtel, E. Macii, A. Pardo and F. Somenzi, “Symbolic algorithms
to calculate steady-state probabilities of a finite state machine,” in
Proceedings of the European Design Automation Conference, February
1994, pp. 214-218.

[8] A. Xie and P. Beerel, “Implicit enumeration of strongly connected
components,” in Proceedings of the International Conference on Computer
Aided Design, November 1999, pp. 37-40.

[9] S. G. Govindaraju, D. L. Dill, A. J. Hu and M. A. Horowitz,
“Approximate reachability with BDDs using overlapping projections,” in
Proceedings of the Design Automation Conference, June 1998, pp. 451-
456.

[10] I.-H. Moon, J. Kukula, T. Shiple and F. Somenzi, “Least fixpoint
approximations for reachability analysis,” in Proceedings of the
International Conference on Computer Aided Design, November 1999, pp.
41- 44.

[11] A. Aziz, J. Kukula and T. Shiple, “Hybrid verification using saturated
simulation,” in Proceedings of the Design Automation Conference, June
1998, pp. 615-618.

[12] A. Kuehlmann, K. L. McMillan and R. K. Brayton, “Probabilistic State
Space Search,” in Proceedings of the International Conference on
Computer Aided Design, November 1999, pp. 574-579.

[13] R. Drechsler, Evolutionary Algorithms in VLSI CAD, Kluwer Academic
Publishers, Boston/Dordrecht/London, 1998.

[14] R. Drechsler, B. Becker and N. Göckel, “A genetic algorithm for variable
ordering of OBDDs,” in Notes of the International Workshop on Logic
Synthesis, May 1995, pp. 5.55-5.64.

[15] M. A. Thornton, J. P. Williams, R. Drechsler, N. Drechsler and D.
Wessels, “SBDD variable reordering based on probabilistic and
evolutionary algorithms,” in Proceedings of the Pacific Rim Conference on
Communications, Computers and Signal Processing, August 1999, pp.
381-387.

[16] V. Kommu and I. Pomeranz, “GAFAP: genetic algorithm for FPGA
technology mapping,” in Proceedings of the European Design Automation
Conference, September 1993, pp. 300-305.

[17] R. Drechsler and W. Günther, “Evolutionary synthesis of multiplexer
circuits under hardware constraints,” in Proceedings of the Genetic and
Evolutionary Computing Conference, July 2000, pp. 513-518.

[18] H. Touati, H. Savoj and B. Lin, “Implicit enumeration of finite state
machines using BDD’s,” in Proceedings of the International Conference on
Computer Aided Design, November 1990, pp. 130-133.

[19] O. Coudert and J. C. Madre, “A unified framework for the formal
verification of sequential circuits,” in Proceedings of the International
Conference on Computer Aided Design, November 1993, pp. 126-129.

