
 
 

  

Abstract--State space traversal algorithms for Finite State 
Machine (FSM) models of synchronous sequential circuitry are 
used extensively in various formal verification approaches such 
as Equivalence Checking (EC) and model checking.  Symbolic 
Binary Decision Diagram (BDD) based approaches have allowed 
many FSM models to be verified due to the compact 
representations they provide.  However, there still remain 
circuits for which the traversal cannot be carried out due to the 
size of the Transition Relation (TR) BDD becoming too large.  
Pruning algorithms designed to reduce the size of a BDD while 
maintaining as much functionality as possible are examined for 
here.  These techniques are based upon evolutionary algorithms 
that have bee shown to significantly reduce the size of BDDs 
while retaining a large amount of functionality.  
 

Index Terms—FSM Equivalence Checking, Evolutionary 
Algorithms, Binary Decision Diagrams, Verification  

I. INTRODUCTION 

HE desire to achieve true “static sign-off” in the design 
process has motivated the incorporation of formal 

verification methods in modern design flows.  Typically, tools 
such as Equivalence Checkers (EC) [1] and model checkers 
are employed [2,3].  Many design flows use model checkers to 
verify certain characteristics of the High Level Language 
(HLL) specification or the Hardware Description Language 
(HDL) golden model.  Next, Finite State Machine (FSM) EC 
may be used to verify that all subsequent design abstractions 
are functionally equivalent.  

Overview descriptions of basic symbolic FSM EC are 
available in [1,3,4,5,6] as well as many other sources.  The 
main idea for forward, breadth-first state traversal methods is 
to form a product FSM using the two abstractions that are 
being verified.  The electronic model of the product machine 
consists of a composite FSM where all similar named inputs 
and the clock are electrically common.  All like named 
outputs are used as input signals to a common equivalence 
gate (XNOR).  Next, each component FSM is initialized to 
the same state and the product machine execution is 
simulated until the entire state space of the product machine 
has been traversed.   Although many synchronous circuits 

 
This work was supported in part by the U.S. National Science Foundation 

(NSF) under Grants No. CCR-0000891 and INT-0096008 and; by the German 
Deutscher Akademischer Austauschdienst (DAAD) under Grant No. 
315/PPP/gü-ab.  

  
 

have been successfully verified using this technique, the 
straightforward implementation of the EC algorithm may 
often not converge in a reasonable amount of time or it may 
require too much memory 

One approach to this problem is to utilize an approximate 
EC that over- or under-estimates the set of states traversed by 
a FSM.  Several approaches for performing approximate EC 
have been proposed [7,8,9,10,11,12].  Approximate EC 
results can be used in several different ways.  If true formal 
verification is desired, a bounding EC can be used to quickly 
rule out states that need not be checked by disregarding those 
that the over-approximation method did not find in the state 
space.  Additionally, those states that the under-
approximation method did traverse need not be examined 
further since it is known that this set of states definitely is in 
the state space.  For those states not ruled out, an alternative 
technique can be employed such as a directed depth-first 
reachability analysis or further checking of properties or even 
theorem proving.  Another important use of approximate ECs 
is the generation of valid counterexamples when two 
abstractions of a circuit have been found to differ in 
functionality. 

The overall objective of the work described in this paper is 
the development of an FSM EC tool that utilizes the concepts 
of Evolutionary Algorithms (EAs).  EAs have been applied to 
several methods in VLSI CAD [13].  Examples include 
methods for finding Binary Decision Diagram (BDD) 
variable orderings [14,15] and FPGA mapping and synthesis 
techniques [16,17].  The goal here is to produce an EC tool 
that can more accurately approximate the reachability of a 
FSM as compared to other approximate approaches in a 
reasonable amount of computation time. If a finite probability 
of design error is acceptable, the EA employed for finding the 
approximated Transition Relation (TR) can be used to trade 
runtime for a decrease in the error probability until some 
threshold is reached. 

Other approximation approaches typically fall into two 
categories; either partitioning the design into a set of smaller 
interconnected state machines and performing exact symbolic 
analysis on each, or, exploring a subset of the state space 
when some threshold or computational resource limit has 
been reached. 

The method described here differs in that an EA approach 
is used to compute the over-approximation of the reachable 
state set. The over-approximation results since the reduced 
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TR BDD is constructed such that it is constrained to be 
smaller (in terms of vertices) but represents the true TR as 
closely as possible with an error being that all true TR logic-
0s are forced to be logic-1 values.  The other over-
approximation techniques described previously did not utilize 
EAs. 

To describe the technique in more detail, the following 
paragraphs will give a brief introduction to the basic concepts 
of symbolic FSM EC and EAs.  Next, the application of an 
EA to TR BDD pruning will be described and experimental 
results of incorporating this technique in FSM equivalence 
checking will be provided.  

II. SYMBOLIC FSM EQUIVALENCE CHECKING 

Overview descriptions of symbolic FSM equivalence 
checking are available in [1,3,18,19] as well as many other 
sources.  The basic idea for forward, breadth-first state 
traversal methods is to form a product FSM using the two 
abstractions that are being verified.  The electronic model of 
the product machine consists of a composite FSM where all 
similar named inputs and the clock are electrically common.  
All like named outputs are used as input signals to a common 
equivalence gate (XNOR).  Next, each component FSM is 
initialized to the same state and the product machine 
execution is simulated until the entire state space of the 
product machine has been traversed.   

Symbolically, a Transition Relation (TR) is formed that 
consists of a function representing all possible transitions of a 
component FSM.  This can be considered to be a single 
output Boolean function that has all possible present-state and 
next-state vector pairs as possible inputs.  For those pairs 
where a transition is possible, the TR evaluates to logic-1.  
For those pairs that are not possible, a logic-0 is produced.  
Also, a function representing the initial state is formed that 
evaluates to logic-1 for the product term(s) representing an 
initial state set.  These two functions are commonly 
represented as ordered Binary Decision Diagrams (BDDs).  
The explicit formation of the TR is commonly referred to as 
the monolithic TR since its’ size can be quite large. 

The next portion of the algorithm is the iterative image 
computation. The BDD initially representing the reset state is 
updated during each iterative step to represent all the states 
that have been reached in the symbolic execution of the 
product machine.  Additionally, another BDD is formed that 
represents all the states reached in the last iteration of the 
algorithm.  Tautology checking must be performed at each 
iteration to ensure the component FSMs are indeed producing 
the exact same outputs.  The image computation involves 
forming the conjunction of the BDD representing the states 
reached in the last iteration (or symbolic execution of the 
product machine) with the TR followed by an existential 
quantification (smoothing operation) of the resultant BDD 
over the present state variables.  The image BDD then is used 
as the currently reached state BDD in the subsequent iteration 

with all the next variables relabeled as the corresponding 
present state variables.  Also, the BDD that accumulates all 
the currently reached states is updated as the disjunction of 
itself with the currently reached states just computed. 

This iterative, Image Computation step continues until a 
non-tautology is found indicating non-equivalence, or, until 
the BDD representing all the previously reached states does 
not change anymore, indicating the entire state space has 
been traversed.  Upon this convergence, the BDD 
representing the reached states actually represents the entire 
state space of the two component FSMs. 

Problems can arise in the formation of the transition 
relation BDD, the intermediate size of the BDD representing 
the “reached” states and the peak intermediate BDD size that 
can result during the image computation.  In addition, the 
number of iterations can also be exponential in size.  In the 
worst case, a component FSM with m state variables and n 
inputs can result in 2m reachable states and 2n iterations.  
Clearly, this algorithm is complex both in terms of storage 
and runtime resources.  This fact has motivated many 
researchers to enhance the basic algorithm described above.  
Several of these enhancements are described in detail in the 
reference works included in the bibliography.  The 
complexity of this technique also motivates the investigation 
of approximation techniques that can be used to provide 
estimates, or, can be used with another criteria (such as a 
guided search strategy) to perform exact equivalence 
checking.  

One major problem with the method described above arises 
during the explicit computation of the TR BDD.  The so-
called “monolithic” TR BDD is formed as the conjunction of 
all the next-state BDDs followed by smoothing out the input 
variable dependence.  The fact that the TR BDD can grow to 
an unacceptable size has lead to methods where the TR is 
represented implicitly by maintaining an array of the next-
state BDDs or through clustering some of the next-state 
BDDs, but not all of them.  Also methods such as early 
quantification in building monolithic or clustered TR BDDs 
are very helpful [18].  Early quantification requires the 
identification of disjoint sets of input variables in the support 
of next state functions before computing their conjunction.  
Once the disjoint sets of input variables are found, those not 
in the common support set may be quantified out before the 
conjunction of next-state BDDs is performed. 

Also, it is apparent that the exact TR relation is not 
required in intermediate image computations.  Rather, some 
function that has the same behavior as the exact TR may be 
used during a single iteration.  As long as a function 
preserves the same behavior in mapping a subset of reached 
states to the corresponding set of resulting next-states, the 
substitution is acceptable.  This requires the formation of a 
new reduced TR at each image computation but can lead to 
algorithms that can successfully traverse the state space of 
FSMs where the use of the monolithic TR is prohibitive.  One 



 
 

way to exploit this property is to use the notion of the 
generalized co-factor [18,19].  The basic premise of the 
technique is that the inclusion of any of states already reached 
in iterations before the current one may be included in the 
currently reached state BDD.  Then, using this BDD, the 
reduced TR may be arrived at by ensuring that it has the same 
behavior for this subset of states as the monolithic BDD has.   

III. EVOLUTIONARY ALGORITHMS 

An Evolutionary Algorithm (EA) is a common term for 
algorithms that utilize adaptive behavior modeled after 
principles of nature.  This class of algorithms contains 
genetic algorithms, evolutionary strategies and evolutionary 
and genetic programming.  Although definitions of 
evolutionary algorithms differ, the more common properties 
of EAs are that a collection of potential solutions to the 
problem at hand are maintained referred to as the population 
of a current generation.  Operations are applied to the current 
population to produce a new generation that will hopefully 
contain members that are a “better” solution to the problem in 
some sense.  This process continues until some threshold or 
stopping criterion is met.  Once the stopping criteria occurs, 
the “best” solution from the current population is used. 

The new population is produced through the application of 
operators on selected members of the current generation.  
Typically, the members of the current generation to whom the 
operators are applied are chosen based on their quality of 
solution to the problem.  In this way, it is more likely that 
desirable characteristics are inherited by the offspring 
solutions.  Some concepts in the development of EAs are the 
criteria for choosing parents in a current generation, the 
halting criteria, the measure of the quality of the solution an 
individual provides (i.e. evaluation of the fitness function) 
and the operators that are used to generate offspring. 

Typical operators are developed from the genetic notions of 
mutation, recombination (or crossover) and inversion.  As an 
example of a mutation operator, a random number generator 
may be employed to randomly change some inherited 
characteristic.  Crossover operations involve combining 
characteristics from two or more parents and placing them in 
the resulting offspring.  Inversion involves rearranging the 
inherited traits of parents, but this only makes sense if there is 
some characteristic of interest that is related to the order of 
inherited traits. 

A. BDD Pruning Using EAs 

Recently, an EA approach was developed for Multiplexer 
circuit based synthesis utilizing a BDD representation that is 
of particular interest in the context of this proposal.  In [17], a 
technique was described where a BDD representation of a 
function to be mapped to a multiplexer-based Field 
Programmable Gate Array (FPGA) was pruned until it would 
fit entirely within a target device.  The pruning was 
accomplished through the use of an EA that sought to reduce 
the size of the BDD (in terms of vertices) while maintaining 
as little error as possible.  While some circuit error is 
introduced, the tradeoff between BDD size reduction versus 

function error was quite impressive in some cases.  As an 
example it was shown that, for most cases, benchmark 
functions in the ISCAS85 set had less than 1% error (in terms 
of incorrect minterm values) when 20% of the vertices were 
removed.  Increasing the BDD size reduction to 50% resulted 
in errors of less than 10% in all cases tested. 

The methods in [17] involved the use of two mutation 
operators and one crossover operator.  The first mutation 
operator, MUT1, randomly chose an internal variable in the 
BDD and replaced it by a constant.  The other mutation 
operator, MUT2, was an enhancement of MUT1 in that each 
internal vertex was considered to be the root node of a 
subfunction.  The number of minterms covered by the 
subfunctions is extremely easy to compute thus, this value is 
computed for each internal vertex.  The vertex that has the 
most extreme minterm count, whether it is closer to 0% or 
100% is chosen and replaced with the constant-0 or constant-
1 vertex respectively.  The crossover operator combines two 
functions f and g.  This is accomplished by recursively 
traversing both BDDs and searching for identical subtrees, 
when such subtrees are found, a node pointing to them is 
returned for inclusion in the child BDD. 

B. Approach for EAs in FSM Equivalence Checking 

The technique implemented in this work uses EAs for TR 
BDD pruning.  The goal is to reduce the storage requirements 
of the TR BDD while degrading the representation error of 
the original function as little as possible.  If such pruning is 
applied to the TR, constraining all errors to be of the type 
0→1 results in an over-approximation scheme while errors of 
type 1→0 cause under-approximation to occur (the notation 
0→1 refers to the case where the actual TR would result in a 
logic-0 while the approximated one yields a logic-1). 

An initial population was formed through the application of 
MUT1 operator during the construction of the TR.  In 
subsequent iterations, a modification of the MUT2 operator 
was used where only cases of 0→1 errors were allowed.  New 
generations are obtained by using the same crossover 
operation as described in [17]. 

IV. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of EA methods as applied to 
approximate FSM EC, experiments were conducted where, 
during the construction of a monolithic TR BDD, pruning 
was invoked.  It should be noted that the purpose of these 
experiments is to provide results concerning the behavior of 
the TR BDDs after application of the EA.  A production CAD 
tool would necessarily implement these methods in 
conjunction with reduced TR computations using co-factors 
and other well-known techniques. 

In this scenario, a naïve approach was taken in 
constructing the monolithic TR where each next-state BDD 
was sequentially ANDed together in no particular order and 
the pruning algorithm was invoked. At each instance of 
pruning, the transition relation was reduced to a maximum of 
95% of its original size (for many cases the reduction was 



 
 

greater than 95%) resulting in an over-approximation scheme 
for reachability analysis.   

The approximate EA results are compared to exact results 
in Table 1.  The column labeled CIRCUITS contains the 
names of some ISCAS89 benchmark circuits, the three 
columns labeled SIZE, ITER. and STATES under the 
EXACT heading indicate the original size of the monolithic 
transition relation BDD (in number of vertices), the number 
of image computation iterations to convergence and the total 
number of states in the state space, respectively.  
Corresponding information is provided for the approximation 
case headed by label EA. 

 
TABLE I 

EXPERIMENTAL RESULTS WITH EA PRUNED MONOLITHIC TRANSITION 

RELATION BDD 
 

CIRCUIT 
NAME 

SIZE 
EXACT 
ITER. 

STATES SIZE 
EA 

ITER. 
STATES 

s27 3 3 6 3 3 6 
s208.1 1 256 256 1 128 256 
s298 59 19 218 59 19 218 
s344 590 7 2625 768 7 2625 
s382 123 151 8865 232 142 22649 
s386 11 8 13 11 8 13 
s400 94 151 8865 206 32 10845 

s420.1 1 65536 65536 1 7168 65536 
s444 126 151 8865 1 7168 65536 
s510 7 47 47 7 47 47 
s526 159 151 8868 138 90 224456 
s526n 159 151 8868 142 151 21232 
s641 79 7 1544 118 7 6501 
s713 82 7 1544 191 7 15226 
s820 9 11 25 9 11 25 
s832 9 11 25 9 11 25 
s953 634 11 504 649 8 299336 

s1488 10 22 48 10 22 48 
s1494 10 22 48 10 16 48 

 

The significance of these results is that in many cases the 
approximated results are identical to the exact results.  In 
several instances this occurred with fewer image 
computations such as the case for the benchmark s420.1.  
These results indicate that EA approximations can be used 
successfully and provide motivation for finding alternative 
genetic operators that can yield better approximate results. 

V. CONCLUSIONS 

The experimental results yield exact agreements in some 
cases with others that differ significantly.  Since no attention 
was given to the order in which the TR was constructed, more 
information could be used enhance the approximations.  
Future efforts will include the optimization of the pruning 
BDD EA operators and the investigation of using EAs to 
produce a reduced transition relation BDD by picking the best 
sub-BDDs to AND together.  Since a TR can be replaced (in a 
single iteration) by a generalized co-factor, if the generalized 
co-factor is smaller it becomes the reduced transition relation.  
Furthermore, the reduced transition relation can be produced 
as the conjunction of the co-factored sub-relations.  Thus, the 
problem becomes one of determining a good co-factor.  We 

plan to incorporate EA methods for this selection in addition 
to TR pruning. 
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