
�

Application of a Hardware Synthesis Technique for
Database Query Optimization*

 Vivek Komaragiri, Mitchell A. Thornton Rolf Drechsler
 Mississippi State University Siemens AG
 Mississippi State, Mississippi Munich, Germany

*This work was supported in part by a Research Initiation Award
 from Mississippi State University, the National Science Found-
 ation under grant INT-0096008 and the DaaD under grant
 315/PPP/gü-ab.

ABSTRACT

 The size of a typical modern Database is on the
order of hundreds of Gigabytes (GB) and the need for
developing systems for processing such huge amounts of
data has emerged. A highly efficient information retrieval
method is required to make the process quicker and easier.
This paper focuses on this aspect and presents a method to
optimize an SQL query for efficient information retrieval. It
is shown that an SQL query can be optimized using
AND/OR graphs. Experimental results, which show the
efficiency of this method, are provided.

1.0 Introduction
 SQL is a very widely used commercial language
for query processing. As a query can be formulated in
multiple ways to obtain same set of information, the way it
is formulated and presented to the DataBase (DB) has a
tremendous impact on the efficiency of the corresponding
data retrieval.
 Query optimization is the process of optimizing a
query before it is presented to the database according to
some criteria. Here, we focus on data access speed as the
optimizing criterion. A query can be represented efficiently
using a data structure called an AND/OR graph. The main
advantage of AND/OR graph representation is that sub-
graph isomorphism frequently occurs as described in detail
in [2]. This crucial property coupled with the fact that
several powerful CAD techniques developed over the past
few years can be used to optimize an SQL query if it is
represented using AND/OR graph is the basis for
representing the query in this form.
 Section 2 gives the background information about
digital logic optimization and AND/OR graphs. Section 3
describes the methodology used in this approach. Section 4
gives the experimental results and the conclusion is given in
Section 5.

2.0 Background
 In this section the concepts of digital logic
optimization and relational databases are very briefly
introduced. Digital logic circuits are circuits that operate

using only two voltages assigned with values ‘0’ and ‘1’.
These digital logic circuits can be viewed as
implementations of Boolean functions that operate on a set
of binary valued variables. Given a specific functionality, a
digital function can be represented in many ways, functions
containing a minimum number of literals are hard to find
and are considered to be absolute optimal functions. A
‘literal’ is the occurrence of a variable in an expression.
Since finding an absolute optimal function is a provably
hard problem many heuristics have been used to achieve
near optimal solutions.
 A DB is a term used for the storage of data in a
particular organization in the computer. A Database
Management System (DBMS) is used to access and
manipulate data in a DB. Among all the models proposed so
far, the “relational” model is the most widely used model for
DB’s. Information is typically extracted from a database
through the use of a query. After a query is presented to a
DB, the DBMS initiates a search over its entire set of
records and retrieves the information. This may take an
increasing amount of time as the size of DB increases and
even more time if the query is formulated in an inefficient
way.

2.1 AND/OR Graphs
 An efficient underlying data structure was a
necessity to solve many problems in the area of computer
aided design and so several methods based on Decision
Diagrams (DD) came into existence [4]. DD’s are canonical
representations of Boolean function and can be easily
manipulated and many operations can be performed on a
Boolean function if it is represented using a Decision
diagram.

DD’s are based on pure OR search and in this kind
of search each outgoing edge from a node represents a
possible move that can be made at the current state of search
process and a solution is formed by traversing the graph
using certain strategy. AND/OR graphs were proposed
recently as an efficient data structure for representing a
Boolean function. In these type of graphs the kind of search
technique employed is known as AND/OR search and in
this kind of search process, a certain move at a given search

state leads to several new problems that all have to be
solved. One of the key features of AND/OR search is that it
is sufficient to only partially traverse the graph in order to
extract valuable information. The main differences between
AND/OR graphs and binary decision diagrams are described
in [1]. Techniques for building AND/OR graphs from an
arbitrary combinational circuit are described in detail in [7].

3.0 Methodology

The experimental setup for achieving SQL query
optimization is as shown in Figure 3.0.

Figure 3.0: Experimental Setup

An AND/OR graph is generated corresponding to

the query queried by the user. An SQL parser is interfaced
with an AND/OR package to achieve the task of generating
AND/OR graphs for the queries. AND/OR package
identifies all isomorphic parts and reduces the AND/OR
graph (in size) and this reduced graph represents the same
query but in most cases it will be more compact than the
original query. The process of reduction in AND/OR graph
is described in detail in [2]. Two types of isomorphism’s
occur in an AND/OR graph, they are AND and OR type
isomorphism’s designated by isomorphic sub-graphs rooted
in AND and OR subgraphs respectively. The reduction
process involves the use of an open hashing technique
which is used to share all the isomorphic sub-graphs in an
AND/OR graph. The AND/OR nodes that are addressed by
the same list hash to the same hash key. The details about
the hashing technique, the hash function used and the
algorithms used for the reduction of AND/OR graphs are
given in [2]. The query can be reconstructed back from
reduced AND/OR graph and will be an optimized query of
reduced length.

This process can be explained with the help of an
example. Consider the following SQL query:

 Select pname from project where (Pteam= CAD and
Pcity=Starkville and P#=P1006) or
(Pcity=Starkville and EmpName=John and Pteam = CAD)
or (Pteam=CAD and Pleader= chris and Pcity =
Starkville);

 This query is represented in the form of a digital circuit as
shown in Figure 3.1. This circuit represents the case where
the query will not succeed (Pname=0).

Figure 3.1: Circuit corresponding to example query

At this stage, optimizing the query can be

considered as optimizing the corresponding digital logic
circuit. In this way, the query optimization problem can now
be thought of as the problem of digital logic optimization.
As finding an absolute minimal expression for a digital
logic function is hard, it is also not always possible to get an
absolute optimal query.
 The AND/OR graph generated from the above digital
circuit is shown in Figure 3.2.

Figure 3.2: AND/OR graph of example query

 The above AND/OR graph contains some

redundant information and this redundancy is removed in
the AND/OR package resulting in the graph shown in
Figure 3.3 and this graph contains a fewer number of nodes
and also the crucial information that “Pteam=CAD” and
“Pcity = Starkville” are necessary conditions for the success
of the query. If either of these conditions fail then the query
fails irrespective of other conditions. If we build a digital
logic circuit from the reduced AND/OR graph then the
circuit obtained is shown in Figure 3.4.

SQL SQL to AND/OR

AND/OR optimize

DBMS AND/OR to SQL

Database Optimized result

Figure 3.3: Reduced AND/OR Graph

Figure 3.4: Ciruit Corresponding to Reduced AND/OR

Graph

The circuit shown in Figure 3.4 represents the case
of a query failure and since we are interested in probable
success of the query and not failure, the circuit in figure 3.4
is converted to a circuit that represents the success of the
query (Pname=1). This is obtained by placing inverters at
the outputs of OR gate and at all the inputs since we want
equalities of field values, not inequalities.

The circuit which is obtained for Pname =1 is
shown in Figure 3.5 which reduces to Figure 3.6 and the
query can be constructed back from the circuit in Figure 3.6
and doing so yields the following:

Figure 3.5: Negated Circuit Used to Obtain Successful

Query

Select Pname from project where Pteam = CAD and
Pcity=Starkville and (P#=P1006 or Empname=John or
Pleader=Bryan);

Figure 3.6: Circuit Corresponding to Optimized Query

 This is a trivial example but it clearly indicates
how AND/OR graphs can be used to reduce the length of
the query. Most of the redundant information is discarded
from the query if represented by an AND/OR graph.

4.0 Experimental Results

The execution time taken for optimized queries
(using AND/OR graphs) using the ORACLE DBMS is
compared with that of original query. The total execution
time for the optimized query is the sum of execution time
taken in the AND/OR package and the execution time taken
by the DBMS to process the resulting query. The details of
implementation of AND/OR package used in this method
are described in detail in [2].

Table 4.0: Experimental Results

 Table 4.0 shows the experimental results. “Orig”
is the execution time taken by the original query,
“AND/OR” is the time taken for building an AND/OR
graph for the query in the AND/OR package, “opt. query” is
the time taken by the DBMS to process the optimized query.
All results are given in seconds of CPU runtime. These
results indicate that this technique is very effective for some
queries. This technique is very effective for queries having
similar sub-queries. In almost all the queries tested the
execution time taken by the optimized query is either equal
to or less than original query but not more.

5.0 Conclusions and Future Work
 A method is introduced for optimizing an SQL
query with the use of AND/OR graphs as an intermediate
data structure. The experiments indicate that in most cases
the execution time of the query is reduced at least by 30%.
 Future directions in this research include
implementation to pass a set of queries simultaneously to
the AND/OR generation software and then to identify sub-
graph isomorphism among the queries. This would result in
an inter-query optimization where we have only examined
intra-query optimization here. Another possible extension to
this research would be to use a “Multivalued decision
diagram” (MDD) instead of an AND/OR graph as a data
structure for representing the query. AND/OR graphs can be
used to represent a subset of queries only in Boolean
domain whereas if an MDD is used to represent the query
then all possible sets of queries can be optimized.

REFERENCES

[1] R. Drechsler, W. Kunz, A. Zuzek and D. Stoffel,
“Decision Diagrams and AND/OR graphs for Design
Automation problem”, Proceedings of the International
Conference on Information, Communication and Signal
Processing, 1997, pp 67-72.

[2] A. Zuzek, R. Drechsler and M. A. Thornton, “Boolean
Function Representation and Spectral Characterization
using AND/OR graphs”. INTEGRATION, The VLSI
journal. Vol. 29, September 2000, pp 101-106

[3] D. Stoffel, W. Kunz and S. Gerber, “AND/OR reasoning
graphs for determining prime implicants in Multilevel
combinational circuit,” in Proceedings of the ASP Design
Automation Conference, 1997, pp 25-32.

[4] B. Becker and R. Drechsler, “Decision Diagrams in
Synthesis, algorithms , applications and extensions”, in
VLSI Design Conference, 1997, pp 46-50.

[5] R. E. Bryant, “Binary Decision Diagrams and beyond:
Enabling techniques for formal verification”, in Int’l Conf
on CAD, 1995, pp 236-243.

[6] R. E. Bryant, “Graph Based Algorithms for Boolean
function manipulation”, IEEE Transactions on computers,
1986, pp 677-691.

[7] D. Stoffel, W. Kunz, S. Gerber,” AND/OR Graphs”,
Technical Report, MPI-I-95-602, 1995.

[8] H. Korth and A. Silberschatz, Database System
Concepts, McGraw-Hill, Inc., New York, NY, 2nd edition,
1991.

[9] W. Kunz and D. K. Pradhan, “Recursive Learning, A
New Implication Technique for efficient solutions to CAD
problems: Test, Verification and Optimization”, IEEE
Transactions on CAD, 1994, pp 1143-1158.

[10] K.S Brace, R.L Ruddell, and R. E. Bryant, “Efficient
implementation of a BDD package,” in Proceedings of
design automation Conf., 1990, pp 40-45.

