

BDD-BASED CONJUNCTIVE DECOMPOSITION USING A GENETIC ALGORITHM AND
DEPENDENT VARIABLE AFFINITY

Lun Li, Mitchell A. Thornton, Stephen Szygenda
Department of Computer Science and Engineering, Southern Methodist University

{lli,mitch,szygenda}@engr.smu.edu

ABSTRACT
Decomposition is an important strategy in synthesis

and verification. BDD-based conjunctive decomposition
has been successfully used in verification, especially in
image computations in Finite State Machine (FSM) state-
space traversals. Conjunction decomposition also has
applications in other areas of CAD. A “two-step”
algorithm for representing a large function as a
conjunctive decomposition of BDDs is described where a
Genetic Algorithm (GA) approach for ordering individual
bit functions is given followed by an affinity-based
clustering technique. Experimental results are given that
show the effectiveness of the algorithm.

1. INTRODUCTION
Binary Decision Diagrams (BDD) can be very efficient

data structures in synthesis and verification applications.
However, the size of BDD’s that arise in synthesis and
verification computations continues to pose a problem in
many cases. Various strategies have been proposed to
avoid size explosion. Decomposition is an important
strategy to reducing the size of large BDDs.

Decomposition of a BDD is closely related to finding
efficient partitioned representations of a given Boolean
function. Partitioned representations may be derived in the
process of building a BDD or by decomposing a given
BDD. The former approach can yield compact
decompositions when some structure information, such as
an underlying network, is provided. Our decomposition
technique belongs to the former approach. We noticed
that some Boolean functions, like Characteristic functions,
can be represented as product form from circuit structure,
such as 1 2 nF D D D= ∧ ∧ ⋅⋅⋅∧ , where each jD is a
product term. We are targeting at this type of Boolean
functions and trying to find a good way to cluster some of
smaller product term. The motivation for the
decomposition of this type of Boolean function comes
from the following aspect: forming a monolithic BDD for
such F is impractical when the circuit is complicated;
however, working on every single term directly without
clustering causes too many iterations and is time
consuming. Past research [1] has shown that there are
some tradeoffs between the number of product terms and
the size of each product term. Clustering some of the
product terms and also keeping the size of each clustered

function within a reasonable threshold reduces the number
of iterations and improves efficiency.

A two-step process strategy is deployed to determine an
efficient partition. Original product terms are ordered
according to the correlations of their supporting variables
first. The purpose of ordering is to keep the product terms
that have a similar support set close so that few new
variables are introduced by clustering. Secondly, ordered
product terms are conjoined to form clustered product
terms whose size are within a given threshold.

A Genetic Algorithm (GA) based ordering algorithm is
presented in the paper to address the ordering problem.
The overall objective is to reduce the shared size (to
occupy less storage space) and the individual size (for
easier manipulation) of the decomposed set as compared
to the original BDD size as well as the number of product
terms (few iterations).

The rest of the paper is organized as follows. In section
2, we review background material and related work.
Section 3 describes our GA approach for conjunctive
decomposition. Section 4 describes experimental results
and Section 5 concludes.

2. PRELIMINARIES AND RELATED WORK
2.1 Characteristic Function and BDD

Notation: A Boolean network N with n primary inputs
X = 1{ ,... }nx x and m primary outputs 1{ ,... }mZ z z= can

be viewed as a set of m Boolean functions defined as
f:Bn Bm. Let λ represent the set)}(),...({ 1 XX mλλ
where each iλ is an output function. A characteristic
function of Boolean network N is defined as a Boolean
function C(X , Z , λ) such that C(X , Z , λ)=1 ⇔

)(Xz ii λ≡ . In other words, a characteristic function
maps every valid input/output combination to ‘1’, and
every invalid combination to ‘0’. Computationally, the
characteristic function can be derived by the following
formula [2]:

 C(X , Z , λ)=
1

(, ,)
m

i i i
i

C z X λ
=
∏ =

1

(())
m

i i
i

z Xλ
=

≡∏ (1)

where (ba ≡) corresponds to)(baab + , Ci(X , iz , iλ) is
also called a bit function.

BDD: BDDs are data structures used to represent
Boolean functions. Bryant [3] introduced the concept of

reduced, ordered BDDs (ROBDDs) along with a set of
efficient operators for their manipulation and proved the
canonicity property of ROBDDs. In the rest of the paper,
BDD refers to a ROBDD.

Decomposition: An early systematic approach to
functional decomposition was proposed by Ashenhurst [4]
and Curtis [5]. According to decomposition, a Boolean
function ()f X can be represented as

1 2() ((),)f X h g X X= where 1 2X X X∪ = . Here 1X is
referred to as a bound set and 2X is a free set.

Bi-decomposition [6] is a restricted class of
functional decompositions that has the form

1 1 1 2() () ()f X g X g X= where 1 2X X X∪ = and
stands for any binary Boolean operation. The functional
decomposition we are interested in can be seen as an
extension of a conjunctive bi-decomposition which has
the form of 1 1 2 2() () () ()n nf X g X g X g X= ∧ ∧ ⋅⋅⋅∧ ,
where each ()i ig X is a product term and

1 2... nX X X X∪ ∪ = .
Decomposition of Characteristic Functions: For a

design that has a large number of outputs and/or inputs, it
is impractical to build a monolithic characteristic function
BDD for the entire network. However, clustering allows
the characteristic function to be written as:

C(X , Z , λ) =
^

1

(, ,)
k

i i i
i

C z X λ
=
∏ (2)

where k m≤ , and each cluster
^

iC is the conjunction of
some proper subset of iC ’s, called a clustered function.

The conjunctive decomposition problem consists of
deciding the value of k and determining which bit
functions are to be clustered together.

2.2 Related Work

Previous work in conjunctive decomposition mostly
focused on sequential logic, especially for image
computation [1][8][9]. Moon et al. [7] proposed a
generalized strategy, known as FMCAD. The ordering
algorithm of FMCAD is based on computing the Bordered
Block Triangular form of the dependence matrix. The bit
functions are clustered according to the affinity between
them.

3. CONJUNCTIVE DECOMPOSITION

The two-step conjunctive decomposition presented in
the paper consists of a GA-based ordering algorithm and
an affinity based clustering algorithm. The overall
objective is to reduce the shared size, the individual size
as well as the number of product terms.

3.1 GA Based Ordering Algorithm

A genetic algorithm emulates the metaphor of natural
biological evolution to solve optimization problems.
Genetic algorithms generally utilize the following steps.
a) Initialize population: find a collection of potential
solutions to the problem, also called current population. b)
Create offspring: produce a new population through the
application of genetic operations on selected members of
the current generation. c) Evaluate fitness: evaluate the
quality of the solution in the new generation. d) Apply
selection: select solutions that will survive to become
parents of the next generation based on their quality of
solution to the problem. In this way, it is more likely that
desirable characteristics are inherited by the offspring
solutions. e) This cycle repeats until some threshold or
stopping criterion is met.

3.1.1 Problem Representation and Initial Population

The GA starts with mapping a problem into a set of
chromosome representations used within GA. Since we
are interested in the order of functions and their support
set, a preprocessing step converts the order information
into a chromosome. Each gene (denoted as π) in
chromosome is an index of a function. Any ordered set of
functions could be a solution, so an initial population is
generated by randomly mutating the order of the genes in
the chromosome

3.1.2 Fitness function and Selection

The fitness function discussed here is based on the
dependency matrix of chromosome. The dependence
matrix defined in [7] is used for an ordered set of
functions. The dependence matrix of a set of m single-
output functions (mff ,...,1) depending on n variables

1,..., nx x is a matrix D with m rows (corresponding to m
functions) and n columns (corresponding to n variables)
such that 1, =jid if function if depends on variable jx ,

and 0, =jid otherwise. We can define the dependency

matrix of a chromosome in the same way. The size of a
BDD depends on the number of variables and the
functions it represents. Smaller BDDs usually can be
produced by conjoining two product terms that have a
similar support set because few new variables are
introduced. Based on the above observation, the
normalized active lifetime of the variables in matrix D is
given in [7] by

mn

lh
n

i
jj

⋅

+−

=
∑
=1

)1(
α

where)(jj hl be the smallest (largest) index i in column

j such that 1, =jid respectively.

 j jh l− gives out a quantity measure on sharing the
variable in column j stays. The normalized active
lifetime measure how closely that the product terms stays
based on their support variables. The objective of ordering
becomes to lower the normalized average active lifetime
for a given matrix by manipulating the order of columns.

Because the objective of ordering is to minimize α ,
we use α as fitness function.

The selection is performed by linear ranking selection,
i.e the probability that one element is chosen is
proportional to its fitness. The size of the population is
constant after each generation. Additionally, some of the
best elements of the old population are inherited in the
new generation. This strategy guarantees that the best
element never gets lost and a fast convergence is obtained.
Genetic algorithm practice has shown that this method is
usually advantageous [10].

3.1.3 Genetic Operators

Two genetic operators are used in the algorithm:
Partially Matched Crossover (PMX) and a random
Mutation (MUT).

PMX generates two children from two parents. The
parents are selected by method described above. The
operator chooses two cut positions at random. Notice that
a simple exchange of the parts between the cut positions
would often produce invalid solutions. A validation
procedure has to be executed after exchange. The detailed
procedure for PMX is given below.

Construct the children by choosing the part between the
cut positions from one parent and preserve the position
and order of as many variables as possible from the
second parent. For example,)4,3,2,1(1 π=p and

)1,3,4,2(2 π=p are the parents while 11 =i and 32 =i are
the two cut positions. The resulting children before the
application of the validation procedure are

)4,3,4,1(1 π=′c and)1,3,2,2(2 π=′c . The validation
procedure goes through the elements between the cut
positions and restores the ordering. This results in the two
valid children)2,3,4,1(1 π=c and)1,3,2,4(2 π=c .

MUT selects a parent by the method described above
and randomly choose two positions. Two values at these
two positions are exchanged.

3.1.4 Algorithm

The genetic algorithm is outlined as follows:
a) The initial population is generated using an arbitrary

order as the first individual in current generation and by
applying MUT to create other populations in current
generation. b) Genetic operators are selected randomly
according to a given probability. The selected operator is
applied to the selected parent (MUT) or parents (PMX).
The better half of the population is inherited in each

iteration without modification. c) The new generation is
updated according to their fitness. d) The algorithm stops
if no improvement is obtained for certain number of
iterations.

Genetic algorithm(){
Generate_initial_population();
do{

for(each child i){
j =linear_ranking_selection();

randomly_select_method;
case MUT: child(i) = MUT(parent j);

 case PMX: k =linear_ranking_selection();
 child(i , 1+i) = PMX(parent j , k);
 }
 update_population();
 }until(no improvement iterations > threshold)

}
3.2 Affinity Based Clustering Algorithm

The ordering algorithm described above rearranges
product terms so that product terms sharing more
variables stay as closely as possible. The next step is
clustering some of the small product terms to a big one
while the BBD size of the clustered product terms is
within a reasonable threshold. The motivation for
clustering is to reduce iterations and improves efficiency
in computation.

Affinity defines the similarity of support sets of two
functions [7].
 Let id be the i-th row of the dependency matrix. Let

ji dd × designate the inner product of id , jd and d be

the width of matrix. The affinity, ijβ of vector id and jd

is defined as:
i j

ij

d d
d

β
×

=

The affinity based clustering algorithm is now
discussed. The affinities for pairs of adjacent product
terms are computed as above, and then the pair with the
highest affinity is merged. As in the sequential approach,
merging is accepted only if the resulting BDD size does
not exceed the cluster threshold size. If the threshold is
exceeded, a barrier is introduced between the two terms.
The process is then recursively applied to the two subsets
of the rows above and below the barrier. If the size of the
conjunction BDD is below the threshold, the algorithm
computes the affinity for the new function and its
neighbors and then selects a new pair with the highest
affinity. The terminal case of the recursion occurs when
only one function is left.

Affinity based approach sacrifices complexity to
achieve more compact BDDs.

4. EXPERIMENTAL RESULTS

In order to evaluate the GA approach, we ran the
conjunctive decomposition algorithm. The benchmarks
we used are from the ISCAS’89 and LGSYNTH’91
suites. The algorithm is implemented using the CUDD
BDD package [11]. All experiments are carried out on a
733MHz HP PC running Linux.

We compared the GA approach with FMCAD. FMCAD
is implemented in VIS 2.0 [12]. In ISCAS’89 set, we
ignore the benchmarks larger than s3271 since both
methods can not handle these benchmarks. Dynamic BDD
variable reordering is enabled in both approaches. A time
limit of 7200 seconds is used. A threshold, 5000, is set to
limit the number of nodes for each partitioned BDD. The
two parameters we measured for decomposition are the
number of clusters (in the column labeled “clusters”) and
the total number of BDD nodes (in the column labeled
nodes). Shared nodes among various clusters only count
once. Table 1 shows the result. Compared with FMCAD,
our GA approach has a better result in term of memory
requirements in most cases. We don’t compare time in the
table 1 since the clustering time information for FMCAD
is not available in VIS.

TABLE 1. COMPARISON OF DECOMPOSITION
FMCAD GA Circuit

 clusters nodes cluster
s

nodes Improve
on nodes

sbc 2 3163 2 1545 51%
clma 2 4336 2 3270 24%
clmb 2 4780 2 3270 31%
mm9a 2 3001 1 1526 49%
mm9b 2 4304 2 3130 27%
mm30a 4 6846 3 3369 50%
s1512 2 2097 3 1665 20%
s1269 4 9664 9 8069 16%
s4863 30 81660 29 70466 13%
s3271 10 10522 8 6668 36%

5. CONCLUSIONS
We presented a Genetic Algorithm for the conjunctive

decomposition of large combinational functions and
discussed its’ application. This technique is a practical
alternative as compared to existing methods and the
experimental results show that the method performs well.

In sequential logic verification, FSM traversals based
on transition relations is a key component. The transition
relation is a type of characteristic function. Our
conjunctive decomposition technique can be applied to
image computation in FSM traversal.

Optimization of Timed Shannon Circuits [13] is another
application for our conjunctive decomposition. Timed

Shannon Circuits are motivated by the need to
automatically synthesize circuits with low power
dissipation characteristics. One difficulty of the Timed
Shannon Circuit approach is that each output is a separate
circuit. Thus, detecting the sharing of gates between
circuits needs extra work. An improvement was proposed
by using characteristic function in [14]. Our conjunctive
decomposition could be used to improve the scalability of
the method in [14].

6. REFERENCES

[1] R. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.
Brayton, “Efficient BDD algorithms for FSM
synthesis and verification.”, In Proc. of IWLS, Lake
Tahoe, 1995.

[2] Shi-Yu Huang, Kwang-Ting Chang, Formal
equivalence checking and design debugging, Kluwer
Academic Publishers, Boston, 1998

[3] R. Bryant, “Graph-based algorithms for boolean
function manipulation,” IEEE Trans. Computers, vol.
35, pp. 677–691, Aug. 1986.

[4] R. Ashenhurst, “The decomposition of switching
functions,” Technical report, Bell Laboratories, BL-
1(11), 1952, pp. 541-602.

[5] H. Curtis, “A New Approach to the Design of
Switching Functions”, Van Nostrand, Princeton, N.J.
1962.

[6] D. Bochman, F. Dresig, and B. Steinbach, “A new
decomposition method for multilevel circuit design”,
in In Proc. of Eur. DAC, 1991, pp. 374-377.

[7] I. Moon and F. Somenzi, “Border-block triangular
form and conjunction schedule in image
computation”, In Proc. FMCAD, vol. 1954 of LNCS,
Nov. 2000, pp. 73–90.

[8] P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith,
and D. Wang, “Using combinatorial optimization
methods for quantification scheduling”, In Proc.
CHARME, Sep. 2001.

[9] R. Hojati, S. C. Krishnan, and R. K. Brayton. “Early
Quantification and Partitioned Transition Relations”,
In Proc. ICCD, pp. 12-19, Austin, TX, Oct. 1996.

[10] R. Drechsler, Evolutionary Algorithms for VLSI CAD,
Kluwer Academic Publishers, 1998.

[11] F. Somenzi et al. CUDD: University of Colorado
Decision Diagram Package.
http://vlsi.colorado.edu/~fabio/CUDD/.

[12] R. K. Brayton et al. VIS: A system for verification
and synthesis. http://vlsi.colorado.edu/vis/.

[13] L. Lavagno, P. McGeer, A. Saldanha, and A.L.
Sangiovanni-Vincentelli. “Timed shannon circuits: A
power-efficient design style and synthesis tool”, In
Proc. DAC, pp 254–260, 1995.

[14] M.A. Thornton, R. Drechsler, D. M Miller, “Multi-
output Timed Shannon Circuits”, In Proc. ISVLSI, pp.
47-52, 2002.

