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ABSTRACT 
Decomposition is an important strategy in synthesis 

and verification. BDD-based conjunctive decomposition 
has been successfully used in verification, especially in 
image computations in Finite State Machine (FSM) state-
space traversals. Conjunction decomposition also has 
applications in other areas of CAD.  A “two-step” 
algorithm for representing a large function as a 
conjunctive decomposition of BDDs is described where a 
Genetic Algorithm (GA) approach for ordering individual 
bit functions is given followed by an affinity-based 
clustering technique.  Experimental results are given that 
show the effectiveness of the algorithm.  
 

1. INTRODUCTION 
Binary Decision Diagrams (BDD) can be very efficient 

data structures in synthesis and verification applications. 
However, the size of BDD’s that arise in synthesis and 
verification computations continues to pose a problem in 
many cases. Various strategies have been proposed to 
avoid size explosion. Decomposition is an important 
strategy to reducing the size of large BDDs.  

Decomposition of a BDD is closely related to finding 
efficient partitioned representations of a given Boolean 
function. Partitioned representations may be derived in the 
process of building a BDD or by decomposing a given 
BDD. The former approach can yield compact 
decompositions when some structure information, such as 
an underlying network, is provided. Our decomposition 
technique belongs to the former approach. We noticed 
that some Boolean functions, like Characteristic functions, 
can be represented as product form from circuit structure, 
such as 1 2 nF D D D= ∧ ∧ ⋅⋅⋅∧ , where each jD  is a 
product term. We are targeting at this type of Boolean 
functions and trying to find a good way to cluster some of 
smaller product term. The motivation for the 
decomposition of this type of Boolean function comes 
from the following aspect: forming a monolithic BDD for 
such F is impractical when the circuit is complicated; 
however, working on every single term directly without 
clustering causes too many iterations and is time 
consuming. Past research [1] has shown that there are 
some tradeoffs between the number of product terms and 
the size of each product term. Clustering some of the 
product terms and also keeping the size of each clustered 

function within a reasonable threshold reduces the number 
of iterations and improves efficiency.  

A two-step process strategy is deployed to determine an 
efficient partition. Original product terms are ordered 
according to the correlations of their supporting variables 
first. The purpose of ordering is to keep the product terms 
that have a similar support set close so that few new 
variables are introduced by clustering. Secondly, ordered 
product terms are conjoined to form clustered product 
terms whose size are within a given threshold. 

A Genetic Algorithm (GA) based ordering algorithm is 
presented in the paper to address the ordering problem. 
The overall objective is to reduce the shared size (to 
occupy less storage space) and the individual size (for 
easier manipulation) of the decomposed set as compared 
to the original BDD size as well as the number of product 
terms (few iterations). 

The rest of the paper is organized as follows. In section 
2, we review background material and related work.  
Section 3 describes our GA approach for conjunctive 
decomposition. Section 4 describes experimental results 
and Section 5 concludes. 
 

2. PRELIMINARIES AND RELATED WORK 
2.1 Characteristic Function and BDD 

Notation: A Boolean network N with n primary inputs 
X = 1{ ,... }nx x and m primary outputs 1{ ,... }mZ z z=  can 

be viewed as a set of m Boolean functions defined as 
f:Bn Bm.  Let λ  represent the set )}(),...({ 1 XX mλλ  
where each iλ  is an output function. A characteristic 
function of Boolean network N is defined as a Boolean 
function C( X , Z , λ ) such that C( X , Z , λ )=1 ⇔  

)(Xz ii λ≡ . In other words, a characteristic function 
maps every valid input/output combination to ‘1’, and 
every invalid combination to ‘0’. Computationally, the 
characteristic function can be derived by the following 
formula [2]:  

 C( X , Z , λ )=
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where ( ba ≡ ) corresponds to )( baab + , Ci( X , iz , iλ ) is 
also called a bit function. 

BDD: BDDs are data structures used to represent 
Boolean functions. Bryant [3] introduced the concept of 



reduced, ordered BDDs (ROBDDs) along with a set of 
efficient operators for their manipulation and proved the 
canonicity property of ROBDDs. In the rest of the paper, 
BDD refers to a ROBDD.  

Decomposition: An early systematic approach to 
functional decomposition was proposed by Ashenhurst [4] 
and Curtis [5]. According to decomposition, a Boolean 
function ( )f X  can be represented as 

1 2( ) ( ( ), )f X h g X X=  where 1 2X X X∪ = . Here 1X  is 
referred to as a bound set and 2X  is a free set.  

Bi-decomposition [6] is a restricted class of 
functional decompositions that has the form 

1 1 1 2( ) ( ) ( )f X g X g X=  where 1 2X X X∪ =  and  
stands for any binary Boolean operation. The functional 
decomposition we are interested in can be seen as an 
extension of a conjunctive bi-decomposition which has 
the form of 1 1 2 2( ) ( ) ( ) ( )n nf X g X g X g X= ∧ ∧ ⋅⋅⋅∧ , 
where each ( )i ig X  is a product term and 

1 2... nX X X X∪ ∪ = .  
Decomposition of Characteristic Functions: For a 

design that has a large number of outputs and/or inputs, it 
is impractical to build a monolithic characteristic function 
BDD for the entire network. However, clustering allows 
the characteristic function to be written as:  

C( X , Z , λ ) = 
^
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where k m≤ , and each cluster 
^

iC is the conjunction of 
some proper subset of iC ’s, called a clustered function.  

The conjunctive decomposition problem consists of 
deciding the value of k and determining which bit 
functions are to be clustered together.  

 
2.2 Related Work 

Previous work in conjunctive decomposition mostly 
focused on sequential logic, especially for image 
computation [1][8][9]. Moon et al. [7] proposed a 
generalized strategy, known as FMCAD. The ordering 
algorithm of FMCAD is based on computing the Bordered 
Block Triangular form of the dependence matrix. The bit 
functions are clustered according to the affinity between 
them.  

 
3. CONJUNCTIVE DECOMPOSITION 

The two-step conjunctive decomposition presented in 
the paper consists of a GA-based ordering algorithm and 
an affinity based clustering algorithm. The overall 
objective is to reduce the shared size, the individual size 
as well as the number of product terms.  
 
3.1 GA Based Ordering Algorithm  

A genetic algorithm emulates the metaphor of natural 
biological evolution to solve optimization problems.  
Genetic algorithms generally utilize the following steps. 
a) Initialize population: find a collection of potential 
solutions to the problem, also called current population. b) 
Create offspring: produce a new population through the 
application of genetic operations on selected members of 
the current generation.  c) Evaluate fitness: evaluate the 
quality of the solution in the new generation. d) Apply 
selection: select solutions that will survive to become 
parents of the next generation based on their quality of 
solution to the problem. In this way, it is more likely that 
desirable characteristics are inherited by the offspring 
solutions. e) This cycle repeats until some threshold or 
stopping criterion is met.  

 
3.1.1 Problem Representation and Initial Population 

The GA starts with mapping a problem into a set of 
chromosome representations used within GA. Since we 
are interested in the order of functions and their support 
set, a preprocessing step converts the order information 
into a chromosome. Each gene (denoted as π ) in 
chromosome is an index of a function. Any ordered set of 
functions could be a solution, so an initial population is 
generated by randomly mutating the order of the genes in 
the chromosome  
 
3.1.2 Fitness function and Selection 

The fitness function discussed here is based on the 
dependency matrix of chromosome. The dependence 
matrix defined in [7] is used for an ordered set of 
functions.  The dependence matrix of a set of m single-
output functions ( mff ,...,1 ) depending on n variables 

1,..., nx x  is a matrix D with m rows (corresponding to m 
functions) and n columns (corresponding to n variables) 
such that 1, =jid  if function if  depends on variable jx , 

and 0, =jid  otherwise. We can define the dependency 

matrix of a chromosome in the same way. The size of a 
BDD depends on the number of variables and the 
functions it represents. Smaller BDDs usually can be 
produced by conjoining two product terms that have a 
similar support set because few new variables are 
introduced. Based on the above observation, the 
normalized active lifetime of the variables in matrix D is 
given in [7] by   
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where )( jj hl  be the smallest (largest) index i  in column 

j  such that 1, =jid  respectively.  



 j jh l− gives out a quantity measure on sharing the 
variable in column j  stays. The normalized active 
lifetime measure how closely that the product terms stays 
based on their support variables. The objective of ordering 
becomes to lower the normalized average active lifetime 
for a given matrix by manipulating the order of columns.  

Because the objective of ordering is to minimize α , 
we use α  as fitness function. 

The selection is performed by linear ranking selection, 
i.e the probability that one element is chosen is 
proportional to its fitness. The size of the population is 
constant after each generation. Additionally, some of the 
best elements of the old population are inherited in the 
new generation. This strategy guarantees that the best 
element never gets lost and a fast convergence is obtained. 
Genetic algorithm practice has shown that this method is 
usually advantageous [10].  
 
3.1.3 Genetic Operators 

Two genetic operators are used in the algorithm: 
Partially Matched Crossover (PMX) and a random 
Mutation (MUT).     

PMX generates two children from two parents. The 
parents are selected by method described above. The 
operator chooses two cut positions at random. Notice that 
a simple exchange of the parts between the cut positions 
would often produce invalid solutions. A validation 
procedure has to be executed after exchange. The detailed 
procedure for PMX is given below.  

Construct the children by choosing the part between the 
cut positions from one parent and preserve the position 
and order of as many variables as possible from the 
second parent. For example, )4,3,2,1(1 π=p  and 

)1,3,4,2(2 π=p  are the parents while 11 =i  and 32 =i  are 
the two cut positions. The resulting children before the 
application of the validation procedure are 

)4,3,4,1(1 π=′c and )1,3,2,2(2 π=′c . The validation 
procedure goes through the elements between the cut 
positions and restores the ordering. This results in the two 
valid children )2,3,4,1(1 π=c and )1,3,2,4(2 π=c . 

MUT selects a parent by the method described above 
and randomly choose two positions. Two values at these 
two positions are exchanged. 
 
3.1.4 Algorithm 

The genetic algorithm is outlined as follows:  
a) The initial population is generated using an arbitrary 

order as the first individual in current generation and by 
applying MUT to create other populations in current 
generation. b) Genetic operators are selected randomly 
according to a given probability. The selected operator is 
applied to the selected parent (MUT) or parents (PMX). 
The better half of the population is inherited in each 

iteration without modification. c) The new generation is 
updated according to their fitness. d) The algorithm stops 
if no improvement is obtained for certain number of 
iterations. 
 

Genetic algorithm(){ 
Generate_initial_population(); 
do{ 

for( each child  i ){ 
j =linear_ranking_selection(); 

randomly_select_method; 
case MUT: child( i ) = MUT(parent j ); 

    case PMX: k =linear_ranking_selection(); 
         child( i , 1+i ) = PMX(parent j , k ); 
   } 
   update_population(); 
 }until(no improvement iterations > threshold) 

} 
3.2 Affinity Based Clustering Algorithm 

The ordering algorithm described above rearranges 
product terms so that product terms sharing more 
variables stay as closely as possible. The next step is 
clustering some of the small product terms to a big one 
while the BBD size of the clustered product terms is 
within a reasonable threshold. The motivation for 
clustering is to reduce iterations and improves efficiency 
in computation.  

Affinity defines the similarity of support sets of two 
functions [7]. 
 Let id  be the i-th row of the dependency matrix. Let 

ji dd ×  designate the inner product of id , jd  and d  be 

the width of matrix. The affinity, ijβ  of vector id and jd  

is defined as: 
i j

ij

d d
d

β
×

=  

The affinity based clustering algorithm is now 
discussed. The affinities for pairs of adjacent product 
terms are computed as above, and then the pair with the 
highest affinity is merged. As in the sequential approach, 
merging is accepted only if the resulting BDD size does 
not exceed the cluster threshold size. If the threshold is 
exceeded, a barrier is introduced between the two terms. 
The process is then recursively applied to the two subsets 
of the rows above and below the barrier. If the size of the 
conjunction BDD is below the threshold, the algorithm 
computes the affinity for the new function and its 
neighbors and then selects a new pair with the highest 
affinity. The terminal case of the recursion occurs when 
only one function is left.  

Affinity based approach sacrifices complexity to 
achieve more compact BDDs.  



 
4. EXPERIMENTAL RESULTS 

In order to evaluate the GA approach, we ran the 
conjunctive decomposition algorithm. The benchmarks 
we used are from the ISCAS’89 and LGSYNTH’91 
suites. The algorithm is implemented using the CUDD 
BDD package [11]. All experiments are carried out on a 
733MHz HP PC running Linux.  

We compared the GA approach with FMCAD. FMCAD 
is implemented in VIS 2.0 [12]. In ISCAS’89 set, we 
ignore the benchmarks larger than s3271 since both 
methods can not handle these benchmarks. Dynamic BDD 
variable reordering is enabled in both approaches. A time 
limit of 7200 seconds is used. A threshold, 5000, is set to 
limit the number of nodes for each partitioned BDD. The 
two parameters we measured for decomposition are the 
number of clusters (in the column labeled “clusters”) and 
the total number of BDD nodes (in the column labeled 
nodes). Shared nodes among various clusters only count 
once. Table 1 shows the result. Compared with FMCAD, 
our GA approach has a better result in term of memory 
requirements in most cases. We don’t compare time in the 
table 1 since the clustering time information for FMCAD 
is not available in VIS. 

TABLE 1. COMPARISON OF DECOMPOSITION 
FMCAD  GA  Circuit 

  clusters nodes cluster
s 

nodes Improve 
on nodes 

sbc 2 3163 2 1545 51% 
clma 2 4336 2 3270 24% 
clmb 2 4780 2 3270 31% 
mm9a 2 3001 1 1526 49% 
mm9b 2 4304 2 3130 27% 
mm30a 4 6846 3 3369 50% 
s1512 2 2097 3 1665 20% 
s1269 4 9664 9 8069 16% 
s4863 30 81660 29 70466 13% 
s3271 10 10522 8 6668 36% 
 

5. CONCLUSIONS 
We presented a Genetic Algorithm for the conjunctive 

decomposition of large combinational functions and 
discussed its’ application. This technique is a practical 
alternative as compared to existing methods and the 
experimental results show that the method performs well.  

In sequential logic verification, FSM traversals based 
on transition relations is a key component. The transition 
relation is a type of characteristic function. Our 
conjunctive decomposition technique can be applied to 
image computation in FSM traversal. 

Optimization of Timed Shannon Circuits [13] is another 
application for our conjunctive decomposition. Timed 

Shannon Circuits are motivated by the need to 
automatically synthesize circuits with low power 
dissipation characteristics. One difficulty of the Timed 
Shannon Circuit approach is that each output is a separate 
circuit. Thus, detecting the sharing of gates between 
circuits needs extra work. An improvement was proposed 
by using characteristic function in [14]. Our conjunctive 
decomposition could be used to improve the scalability of 
the method in [14]. 
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