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Abstract 
 

     Phased Logic (PL) is a design style for binary-valued 
asynchronous logic circuits.  A performance enhancement 
known as Early Evaluation (EE) allows for increased 
throughput in PL circuits.  PL circuits are produced using 
clocked circuit descriptions as input and then 
automatically mapping them into PL equivalents while 
adding optimization features.  The PL mapping process 
requires initially partitioning the input circuit and then 
inserting additional control circuitry around each 
partition while removing the synchronous clock control.  
In the process of adding the EE performance 
enhancement, a special function known as a “trigger 
function” is extracted from the partitions. Here, we 
describe a method for finding candidate trigger functions 
using BDDs and a technique for combining multiple 
trigger functions to support a single circuit partition 
using Multiple-valued Logic (MVL).  Experimental results 
show that these methods yield better coverage as 
compared to using a single trigger function. 

 
1.0 Introduction 

 
     Asynchronous design styles can offer advantages over 
their clocked circuit counterparts.  Some advantages 
include decreased power consumption, increased 
performance, more desirable EMI characteristics, and 
avoidance of clock distribution network design.  The 
Phased Logic (PL) design style offers advantages in 
increased performance.  Furthermore, PL has the 
advantage that the design methodology is the same as that 
used for clocked circuits resulting in no new techniques or 
specialized libraries required.  This latter advantage leads 
to an efficient and fast method for producing PL circuits 
that is not available for other asynchronous design 
methodologies. 
     The basis of PL is an implementation of 
micropipelines [1] that utilizes a dual-rail signal encoding, 
Level-Encoded Dual-Rail (LEDR) [2].  In [3], this 
approach was generalized through the use of marked 
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graph theory [4] and the development of circuit 
constraints that preserve liveness and safeness.  Based on 
the results in [3], a PL mapping tool was implemented [5] 
that allows for a netlist of a clocked sequential circuit to 
be automatically transformed into a PL netlist utilizing 
cell designs based on those described in [6].  A 
performance enhancement technique known as Early 
Evaluation (EE) was described in [7] that allowed the 
mapped PL designs to have significant performance 
advantages as compared to their clocked counterparts.  
Several moderately large circuits have been successfully 
mapped into PL forms including the MIPs processor [8,9].   
     In mapping a clocked netlist to a PL netlist, the circuit 
is partitioned into a collection of subcircuits functionally 
described by master functions.  The incorporation of EE 
requires the identification of a subcircuit that depends on 
a proper subset of inputs for the master function.  This 
subcircuit is called the trigger function.  The purpose of 
the trigger function is to produce a signal that indicates 
that the master function can evaluate only when a proper 
subset of input signals have arrived.   
     The work described here describes two enhancements 
to the EE optimization technique; 1) automatic 
determination of trigger functions for large master 
functions, and 2) the use of multiple trigger functions in 
support of a single master function.    In the first 
enhancement, BDDs are used to find trigger functions for 
large master functions.  In the second optimization, a 
method based on a Multiple-valued Logic (MVL) 
formulation is used to allow multiple trigger functions to 
support a single master function. 
     The remainder of the paper is organized as follows.  
Section 2 will provide an overview of the PL circuit 
structure and mapping technique with an emphasis on EE 
performance optimization.  Section 3 will describe the 
problem of trigger function extraction and explain how 
the new technique based on the use of BDDs is 
implemented.  In Section 4, we describe the idea of using 
multiple trigger functions to support a single master 
function and describe the underlying circuitry and how 
MVL is used to formulate the appropriate set of trigger 
functions.  Section 5 contains the experimental results and 
their interpretation.  Conclusions are provided in Section 
6. 
 
 



2.0 PL Background 
 
     PL is a self-timed design methodology that provides an 
automated translation of a clocked system in the form of 
D-flip-flops (DFFs) and combinational gates into a self-
timed netlist of PL gates.  The only global net in the 
resulting self-timed netlist is a reset signal.    The PL 
netlist is a micropipelined system with two-phase control.  
Two distinct implementation technologies are supported, 
fine-grain and coarse-grain.  The fine-grain approach 
uses a one-to-one mapping of gates in the clocked system 
to PL gates that use a 4-input Lookup-Table as the logic 
element with delay-insensitive dual-rail routing between 
gates.  This technology forms the basis for the 
implementation of a self-timed FGPA.   Because all 
routing between gates is delay-insensitive, there are no 
timing mechanisms external to a PL gate that can cause a 
failure due to timing. The coarse-grain approach maps 
groups of gates in the clocked netlist into a combinational 
compute function embedded in a PL block with bundled 
data signaling used between blocks.   
     The combinational compute function of a coarse-grain 
PL block can be implemented using a traditional standard 
cell library.   The coarse-grain technology is an ASIC 
approach to the implementation of PL systems. All timing 
concerns in a coarse-grain implementation are block-to-
block; there are no global mechanisms that can cause 
failure due to timing.  If desired, delay insensitive 
signaling can be used between coarse grain blocks to 
remove timing uncertainty due to wire delays.  This will 
add extra latency in the control path but this latency can 
be hidden if the coarse grain block delay is long enough. 

 
2.1 Mapping Technique 

 
     The algorithm for mapping a clocked netlist to a PL 
netlist was developed in [3] and is summarized below: 

 
a. All DFFs are mapped one-to-one to barrier gates 

in the PL netlist.  The output phase of a barrier gate 
always matches the gate phase resulting in an active token 
at the output of a barrier gate upon reset.   

b. All combinational compute blocks are mapped 
one-to-one to through gates in the PL netlist.  The output 
phase of a through gate is always opposite the gate phase. 

c. Single rail signals called feedbacks are added 
where necessary to ensure liveness and safety of the 
resulting marked graph.  Liveness means that every signal 
is part of a loop that has at least one gate ready to fire.  
Safety means that a gate cannot fire again until all 
destination gates have consumed the output data.  To 
ensure safety, all signals must be part of a loop containing 
at most one active token.  Feedbacks cannot be added 
between two barrier gates because this would result in a 

loop with two active tokens violating the safety 
constraint.   

d. If necessary, buffer-function through gates called 
splitter gates are inserted between barrier gates to provide 
a source and termination for feedback.  This feedback 
signal is equivalent to an acknowledge signal in a 
micropipeline [1]. 

e. Feedbacks that originate from a barrier gate have 
an initial token on them (after reset) since all outputs from 
barrier gates have tokens.  This implies that feedbacks 
from barrier gates must terminate on a through gate, 
hence the need for splitter gates in some circumstances. 

f. A feedback that originates from a through gate 
and terminates on a through gate must have a token 
present after reset since the output of the destination 
through gate will not have an initial token. 

g. A feedback that originates from a through gate 
and terminates on a barrier gate must not have an initial 
token since the output of the destination barrier gate will 
have an initial token. 

     More details and examples of the PL mapping process 
are available in [5, 8, 9]. 

 
2.2 Early Evaluation 

 
     Both fine-grain and coarse-grain PL implementations 
support a speedup mechanism known as early evaluation 
(EE) that can enable a PL system to outperform a clocked 
system.  All micropipeline approaches suffer a 
performance degradation compared to clocked systems 
because the output latch latency of a micropipeline block 
is in the critical path. EE allows PL systems to overcome 
this performance penalty.  Simulations of fine-grain and 
coarse-grain netlists of a MIPs-compatible 5-stage 
pipelined CPU mapped to four-input lookup tables 
(LUT4s) indicate a speedup of over 35% compared to 
equivalent clocked versions.  Results in mapping other 
moderately large open cores have shown similar 
performance enhancements. 

 
3.0 Trigger Function Definition 

 
     When master functions depend on a relatively small 
number of input signals, such as is the case for the fine-
grain approach, it is feasible to search over all possible 
subsets of inputs for a suitable trigger function, however; 
as the support set of the master function grows, such an 
exhaustive search quickly becomes impractical.  For this 
reason, the focus of the work described here is applicable 
only to the coarse-grain version of PL. 
     The role of a trigger function is to determine when the 
output of the master function can be deduced by the 



currently arrived inputs, regardless of the other inputs that 
have not yet arrived.  To illustrate this idea, consider the 
function f ab ac bc= + + .  A truth table for this function 
is shown in Figure 1 with four entries emphasized in bold 
and italic font.  The emphasized entries yield values of f 
that are only dependent upon variables a and b.  A trigger 
function can be formulated that has an output of 1 when f 
may be evaluated based only upon the values of variables 
a and b.  The truth table for this trigger function (ftrig) is 
given in Figure 2. 

 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 
Figure 1: Truth Table of f 

 
a b ftrig 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

 
Figure 2: Truth Table of ftrig 

 
     If f represents a master function then the trigger 
function ftrig can be extracted from f and the output of ftrig 
can be used as an additional input to f allowing it to go 
ahead and evaluate when only a and b are present at the 
inputs.  This would allow for f to evaluate based on only 
two data inputs being present yielding a coverage value of 
50% of the truth table entries of f.  It is noted that other 
trigger functions could be formulated such as a trigger 
function only dependent upon variables b and c.  This 
alternative trigger function would also yield a coverage 
value of 50%. 
     In order for trigger function usage to be effective in 
increasing PL circuit throughput, the dependent variable 
set for the trigger function should be comprised of 
variables representing signals that tend to arrive early.  
For this reason, a merit function is evaluated to choose 
appropriate variables for the support set of the trigger 
function [7].  This merit function allows the trigger 
function to be chosen based upon the coverage and the 
relative arrival times.   
The merit function is: 

(% ) max

max

M
Merit coverage

T
= ×  

     Where Mmax is the maximum delay value among all 
signals in the support of the master function and Tmax is 

likewise the maximum delay value among all signals in 
the support of the candidate trigger function.   

 
3.1 Trigger Function Extraction 
 
     In the fine-grain PL mapping method, trigger function 
extraction is completely automated based on the 
technique described in [7].  In the work reported in [8], 
automated trigger function extraction was accomplished 
by evaluating the cost function for all possible variable 
subsets of master functions implemented using 4-input 
look-up tables.  Exhaustive evaluation of all possible 
trigger functions was not a costly endeavor since only 14 
different candidate trigger functions were evaluated for 
each master function that was dependent upon only 4 
variables. 
     For the coarse-grain approach, master functions are 
utilized that can have large numbers of dependent 
variables, hence, exhaustive searches for appropriate 
trigger functions is impractical. As master functions can 
be quite large in terms of primary inputs, a convenient 
way to represent them is through the use of Binary 
Decision Diagrams (BDDs).  This approach motivated us 
to develop a trigger function extraction method based on 
the BDD representation of the master function. 
     Because the trigger function must depend upon a 
proper subset of dependent variables of the master 
function, all cubes in a candidate trigger function 
correspond directly to the 1-paths and 0-paths in the 
master function BDD.  Such paths are easily extracted 
from the master function BDD through a single traversal.  
In order to incorporate the timing constraint, we reorder 
the variables in the BDD such that those variables 
corresponding to minimum arrival time signals are first in 
the ordering.  This approach effectively translates the 
process of extracting trigger functions to variable 
reordering of a BDD although we are not using the typical 
constraint of BDD minimization to perform reordering.  
In the event that the BDD representing the master 
function exceeds some preset size limitation, the master 
function can be partitioned into two new master functions 
and the process repeated.  As an example, consider the 
BDD depicted in Figure 3 that corresponds to the example 
master function truth table in Figure 1.  The circled paths 
correspond to the cubes in the trigger function that depend 
only upon variables a and b since those paths terminate 
without inclusion of variable c. 
     This idea is implemented as an algorithm that accepts a 
BDD representing a master function and with variables 
ordered according to the earliest arriving signals closer to 
the initial node and building another BDD that represents 
the trigger function. 

 
 
 



4.0 Multiple Trigger Function Support 
 
     Circuits produced using the PL method reported in the 
literature have used one trigger function per master 
function.  However, a master function may yield other 
trigger functions with equal cost that are dependent on 
different subsets of the input signals.  These other trigger 
functions may cover EE opportunities that are not 
recognized by the originally chosen trigger function.  
Therefore, the use of more trigger functions will cover 
more early evaluation opportunities for a given master 
function. 

 
Figure 3: BDD Representation of Example Master 

Function 
 

     In the initial mapping of a PL netlist, the clocked 
netlist is mapped to the set of master functions 
corresponding to the partitioned subcircuits.  EE is 
implemented by evaluating each master function for the 
possibility of improvement using EE.  Whenever the cost 
value indicates the improvement can be achieved, the 
master function is replaced with a PL EE gate.  A PL EE 
gate consists of the original master function PL cell 
augmented with another PL cell [10] (along with a small 
amount of control circuitry between the two).  Figure 4 
contains a diagram of the organization of a PL EE gate 
with a single trigger function and n>m.  The box labeled 
“Input Detect” outputs a signal indicating that all 
dependent variables of ftrig have arrived. 
 

 
Figure 4: PL EE Gate with Single Trigger  

 
     In order to effectively utilize multiple trigger 
functions, the control mechanism between the master 
function and the multiple trigger functions must be 
augmented resulting in a new organization of a PL EE 

gate.  A naive implementation of such a gate would be to 
replicate trigger function cells for each candidate trigger 
function and then use a large fan-in OR gate to 
concentrate their outputs into a single signal causing the 
master function to early evaluate as shown in Figure 5.  
While this resulting functionally is correct, this approach 
is too costly in terms of area since a considerable amount 
of circuitry in the trigger functions could potentially be 
shared.  The unlabeled uppermost boxes represent the 
candidate trigger functions, ti and the lowermost represent 
the respective “Input Detect” functions for each ti. 

 

 
Figure 5: Naïve Implementation of Multi-trigger 

EE PL Gate 
 

4.1 Formulation of Multi-trigger EE PL Gates 
 

     It is desired to use a single super trigger function by 
forming a function that is the union of the on-sets of each 
individual trigger function allowing for term sharing to be 
exploited.  If the outputs of the corresponding C-Muller 
elements are also ORed together, as shown in Figure 6, 
“false” EE can occur.  In Figure 6, the uppermost OR gate 
concentrates outputs of all possible trigger functions 
while the lowermost OR gate concentrates outputs of the 
respective “Input Detect” functions for each. 
 

 
Figure 6:  Incorrect Multi-Trigger EE PL Gate 

 
     A “false” trigger can occur since the trigger function 
should evaluate only when all dependent variables are 
present.  However, an individual C-Muller element may 
evaluate when only a subset of variables of the super 
trigger function are present.   
     To illustrate this problem, consider a master function 
f(a,b,c,d) with individual trigger functions 
t1(a,b,c)=ab+bc and t2(a,b,d)=abd.  If the organization in 
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Figure 6 were used, the super trigger function is formed 
as tsup=t1+t2=ab+bc+abd and the two C-Muller elements 
(supporting t1 and t2) evaluate when variables {a,b,c} are 
all present (corresponding to t1) while the second C-
Muller element will evaluate when variables {a,b,d} are 
present. 
     Suppose that the signals corresponding to variables 
{a,b,d} have arrived with values {1,1,0} respectively and 
that variable c has not yet arrived.  In this case, the C-
Muller element corresponding to trigger t2 will evaluate 
although the trigger function t2 has value 0.  However, tsup 
has a value of 1 causing the master function f to 
incorrectly evaluate early although the signal 
corresponding to variable c has not arrived.  In such a 
case, a false trigger occurs causing the master function to 
evaluate before it should have. 
     To solve this problem, a notion of “which” variables in 
the support of tsup have arrived is needed.  With a single 
trigger function, this notion is not needed since the single 
C-Muller element will evaluate only when all inputs 
corresponding to the trigger function are valid.  Our 
approach is to formulate the super trigger function such 
that the individual C-Muller elements are combined into a 
single binary valued-function that depends on ternary-
valued variables resulting in tmvl.  The organization of this 
form of the EE PL gate is then depicted as shown in 
Figure 7. 

 

 
 

Figure 7: PL EE Gate with MVL-based Multiple 
Trigger Function Support 

 
     The notion of signal availability is incorporated into 
the PL EE Gate depicted in Figure 7 by using the 
dependent ternary-valued variable encoding shown in 
Table 1. 

 
Table 1: Ternary Encoded PL Signals 
Logic Value Interpretation 

0 Signal arrived with binary value 0 
1 Signal arrived with binary value 1 
2 Signal has not yet arrived 

 
     The MVL super trigger function tmvl is formed as the 
disjunction of terms that represent each individual trigger 
function and the availability of their respective inputs.  
Each such term is the conjunction of the individual trigger 
functions and a corresponding expression indicating input 
signal availability.  The expressions representing input 
availability effectively take the place of the C-Muller 
elements and are represented as MVL functions Ci. 

     Using the example shown above that precludes the 
organization as shown in Figure 6, the individual trigger 
functions and their corresponding Ci functions become: 

{1} {1} {1} {1}
1

{2} {2} {2} {0,1} {0,1} {0,1}
1

{1} {1} {1}
2

{2} {2} {2} {0,1} {0,1} {0,1}
2

( , , )

( , , )

( , , )

( , , )

t a b c a b b c

C a b c a b c a b c

t a b d a b d

C a b d a b d a b d

= +

= =

=

= =

 

     Using these formulations, the super trigger function 
tmvl is expressed as: 

1 1 2 2
{1} {1} {0,1} {0,1} {1} {1} {1} {1} {1}

mvl

mvl

t t C t C

t a b c a b c a b d

= +

= + +
 

     It is now easy to see that the cube a{1}b{1}c{2}d{0} 
corresponding to the scenario described previously will 
result in tmvl evaluating to 0. 
     The actual implementation could be accomplished 
using MVL circuitry, or, by mapping back to a binary 
circuit where dual-rail lines are used for each variable.  
Although the binary-mapped version may appear to 
double the amount of required wiring, we note that signals 
are already present in dual-rail form in order to support 
the LEDR encoding used in PL circuits.  This increase in 
wiring for the inputs of the super trigger portion of the EE 
PL gate is less overhead overall than would be present in 
the naive approach of ORing all individual single trigger 
function blocks as shown in Figure 5. 

 
5.0 Experimental Results 

 
     Two sets of experimental results are reported here.  In 
the first set, the effectiveness of extracting individual 
trigger functions from large master functions using BDDs 
is demonstrated.  In the second set of results, 
enhancements obtained using a multiple trigger function 
for an EE PL gate are presented. 
     The BDD-based trigger function extraction experiment 
was carried out by constructing a BDD using the CUDD 
software and by using the mcnc benchmark circuits in 
.pla format.  No variable reordering is applied to the 
BDDs as it was assumed that those variables higher in the 
assumed order correspond to earlier arriving inputs.  Each 
output was considered to represent a single-output master 
function and trigger functions were extracted that depend 
upon the first ⎣j/2⎦ variables in the BDD ordering where j 
represents the total number of variables in the BDD.  The 
choice of j/2 variables in the support of the trigger 
functions is arbitrary and the actual number chosen will 
depend upon the value of the cost function as selected by 
the designer.   
     Table 2 contains the experimental results. The 
computer runtime required to compute the trigger 
functions in Table 2 all required less than 1 ms.  This is 
not surprising since the algorithm is merely a modified 
depth-first traversal, which is known to be O(N), with N 



being the number of vertices in the BDD.  Column one 
contains the name of the benchmark circuit.  Column two 
shows the total number of inputs/outputs.  Columns three 
and four pertain to the first output bit.  The third column 
contains the number of dependent variables in support of 
the trigger function (k) (maximum possible value of k is 
⎣j/2⎦ and the minimum is 0).  The fourth column contains 
the percentage of minterms in the on-set of the trigger 
function divided by the number of all those possible (ie. 
on-set minterms divided by 2j).  This latter value is a 
measure of the coverage value that the trigger function 
provides. 
 

Table 2: Results for Single Triggers 
name in/out k Coverage 

5xp1 7/10 0 0 
addm4 9/8 5 0.781 

majority 5/1 3 0.125 
cordic 23/2 10 0.758 
sao2 10/4 6 0.828 

squar5 5/8 3 0.875 
dist 8/5 4 0.625 

 
     In the second set of experimental results, super trigger 
functions are found and compared to single trigger 
functions using the method corresponding to that reported 
in [7].  The experiments were carried out by using the 
mcnc benchmarks to represent master functions with the 
first output being used to represent the master function 
output.  Multiple trigger functions were generated using 
random subsets of variables.  These trigger functions were 
then used to form an MVL trigger function.  The results 
of these MVL trigger functions were then compared to the 
best single trigger function within the set of possible 
trigger functions.  Table 3 contains these experimental 
results.  The first column contains the name of the 
benchmark (master) function, the second contains the 
inputs/cubes of the master function, the third contains the 
inputs/cubes of the single trigger function found using the 
method in [7] the fourth contains the coverage achieved 
by the single trigger function, the fifth contains the 
inputs/cubes of the multi-trigger function, and the final 
(sixth) column contains the coverage provided by the 
multi-trigger function. 
     These results are given after espresso was used to 
minimize all functions after MVSIS version 1.1 [11] was 
used to map the tmvl function back to binary form.  
 
6.0 Conclusions 

 
     An improvement in the formation of EE PL gates is 
described where a BDD-based method allows for the 
extraction of trigger functions from large master functions 
is demonstrated as effective as compared to the 
exhaustive method described in [7].  The coverage 

provided by a trigger function was also enhanced by 
utilizing multiple trigger functions for the same master 
function and then using MVL methods to combine them 
into a super trigger function. 

 
Table 3: Results for Multi-Triggers 

name master single EE MVL EE 
5xp1 7/7 3/3 0.75 6/3 0.75 

Addm4 9/9 2/2 0.75 14/6 0.83 
majority 5/5 3/2 0.63 6/2 0.63 
cordic 23/143 8/10 0.55 18/33 0.59 
sao2 10/10 6/7 0.81 14/14 0.84 

squar5 5/2 3/3 0.88 8/4 0.94 
dist 8/12 5/3 0.41 12/5 0.58 
 

7.0 References 
 
[1] I. Sutherland, “Micropipelines”, Comm. of the ACM, Vol 32, 
No. 6, 1989, pp. 720-738. 
[2] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR),” Proc. 
ARVLSI, 1991, pp. 55-70. 
[3] D.H. Linder and J.C. Harden, “Phased Logic: Supporting the 
Synchronous Design Paradigm with Delay-insensitive 
Circuitry.” IEEE Tran. on Comp., Vol. 45, No 9, 1996, pp. 
1031-1044. 
[4] F. Commoner, A.W. Hol, S. Even, A. Pneuli, “Marked 
Directed Graphs”, J. Computer and System Sciences, Vol. 5, 
1971, pp. 511-523. 
[5] R.B. Reese, M.A. Thornton, and C. Traver, “Arithmetic 
Logic Circuits using Self-timed Bit-Level Dataflow and Early 
Evaluation”, Proc. ICCD 2001, Sept. 2001, pp. 18-23. 
[6] C. Traver, R.B. Reese, M.A. Thornton, “Cell Designs for 
Self-timed FPGAs”, Proc. ASIC Conf., Sept. 2001, pp. 175-179 
[7] M.A. Thornton, K. Fazel, R.B. Reese, and C. Traver, 
“Generalized Early Evaluation in Self-Timed Circuits”, Proc. 
DATE, March 2002, pp. 255-259. 
[8] R.B. Reese, M.A. Thornton, and C. Traver, “A Fine-grain 
Phased Logic CPU”, Proc. ISVLSI, Feb. 2003, pp. 70-79. 
[9] R.B. Reese, M.A. Thornton, and C. Traver, “A Coarse-grain 
Phased Logic CPU”, Proc. ASYNC, May 2003, pp. 2-13. 
[10] D.E. Muller and W.S. Bartky, “A Theory of Asynchronous 
Circuits”, Proc. Int. Symp. on Theory of Switching, vol. 29, 
1959,  pp. 204-243. 
[11] MVSIS version 1.1, 
http://www-cad.eecs.berkeley.edu/Respep/Research/mv 


