
Early Evaluation for Phased Logic Circuits Using BDDs and MVL*

Kenneth Fazel, Mitchell A. Thornton Robert B. Reese
Southern Methodist University Mississippi State University
{kfazel,mitch}@engr.smu.edu reese@ece.msstate.edu

Abstract

 Phased Logic (PL) is a design style for binary-valued
asynchronous logic circuits. A performance enhancement
known as Early Evaluation (EE) allows for increased
throughput in PL circuits. PL circuits are produced using
clocked circuit descriptions as input and then
automatically mapping them into PL equivalents while
adding optimization features. The PL mapping process
requires initially partitioning the input circuit and then
inserting additional control circuitry around each
partition while removing the synchronous clock control.
In the process of adding the EE performance
enhancement, a special function known as a “trigger
function” is extracted from the partitions. Here, we
describe a method for finding candidate trigger functions
using BDDs and a technique for combining multiple
trigger functions to support a single circuit partition
using Multiple-valued Logic (MVL). Experimental results
show that these methods yield better coverage as
compared to using a single trigger function.

1.0 Introduction

 Asynchronous design styles can offer advantages over
their clocked circuit counterparts. Some advantages
include decreased power consumption, increased
performance, more desirable EMI characteristics, and
avoidance of clock distribution network design. The
Phased Logic (PL) design style offers advantages in
increased performance. Furthermore, PL has the
advantage that the design methodology is the same as that
used for clocked circuits resulting in no new techniques or
specialized libraries required. This latter advantage leads
to an efficient and fast method for producing PL circuits
that is not available for other asynchronous design
methodologies.
 The basis of PL is an implementation of
micropipelines [1] that utilizes a dual-rail signal encoding,
Level-Encoded Dual-Rail (LEDR) [2]. In [3], this
approach was generalized through the use of marked

*These research results were obtained with support by the
National Science Foundation under grants CCR-0098272
and CCR-0243365 and the Texas Advanced Technology
Program under grant 003613-0029-2003.

graph theory [4] and the development of circuit
constraints that preserve liveness and safeness. Based on
the results in [3], a PL mapping tool was implemented [5]
that allows for a netlist of a clocked sequential circuit to
be automatically transformed into a PL netlist utilizing
cell designs based on those described in [6]. A
performance enhancement technique known as Early
Evaluation (EE) was described in [7] that allowed the
mapped PL designs to have significant performance
advantages as compared to their clocked counterparts.
Several moderately large circuits have been successfully
mapped into PL forms including the MIPs processor [8,9].
 In mapping a clocked netlist to a PL netlist, the circuit
is partitioned into a collection of subcircuits functionally
described by master functions. The incorporation of EE
requires the identification of a subcircuit that depends on
a proper subset of inputs for the master function. This
subcircuit is called the trigger function. The purpose of
the trigger function is to produce a signal that indicates
that the master function can evaluate only when a proper
subset of input signals have arrived.
 The work described here describes two enhancements
to the EE optimization technique; 1) automatic
determination of trigger functions for large master
functions, and 2) the use of multiple trigger functions in
support of a single master function. In the first
enhancement, BDDs are used to find trigger functions for
large master functions. In the second optimization, a
method based on a Multiple-valued Logic (MVL)
formulation is used to allow multiple trigger functions to
support a single master function.
 The remainder of the paper is organized as follows.
Section 2 will provide an overview of the PL circuit
structure and mapping technique with an emphasis on EE
performance optimization. Section 3 will describe the
problem of trigger function extraction and explain how
the new technique based on the use of BDDs is
implemented. In Section 4, we describe the idea of using
multiple trigger functions to support a single master
function and describe the underlying circuitry and how
MVL is used to formulate the appropriate set of trigger
functions. Section 5 contains the experimental results and
their interpretation. Conclusions are provided in Section
6.

2.0 PL Background

 PL is a self-timed design methodology that provides an
automated translation of a clocked system in the form of
D-flip-flops (DFFs) and combinational gates into a self-
timed netlist of PL gates. The only global net in the
resulting self-timed netlist is a reset signal. The PL
netlist is a micropipelined system with two-phase control.
Two distinct implementation technologies are supported,
fine-grain and coarse-grain. The fine-grain approach
uses a one-to-one mapping of gates in the clocked system
to PL gates that use a 4-input Lookup-Table as the logic
element with delay-insensitive dual-rail routing between
gates. This technology forms the basis for the
implementation of a self-timed FGPA. Because all
routing between gates is delay-insensitive, there are no
timing mechanisms external to a PL gate that can cause a
failure due to timing. The coarse-grain approach maps
groups of gates in the clocked netlist into a combinational
compute function embedded in a PL block with bundled
data signaling used between blocks.
 The combinational compute function of a coarse-grain
PL block can be implemented using a traditional standard
cell library. The coarse-grain technology is an ASIC
approach to the implementation of PL systems. All timing
concerns in a coarse-grain implementation are block-to-
block; there are no global mechanisms that can cause
failure due to timing. If desired, delay insensitive
signaling can be used between coarse grain blocks to
remove timing uncertainty due to wire delays. This will
add extra latency in the control path but this latency can
be hidden if the coarse grain block delay is long enough.

2.1 Mapping Technique

 The algorithm for mapping a clocked netlist to a PL
netlist was developed in [3] and is summarized below:

a. All DFFs are mapped one-to-one to barrier gates

in the PL netlist. The output phase of a barrier gate
always matches the gate phase resulting in an active token
at the output of a barrier gate upon reset.

b. All combinational compute blocks are mapped
one-to-one to through gates in the PL netlist. The output
phase of a through gate is always opposite the gate phase.

c. Single rail signals called feedbacks are added
where necessary to ensure liveness and safety of the
resulting marked graph. Liveness means that every signal
is part of a loop that has at least one gate ready to fire.
Safety means that a gate cannot fire again until all
destination gates have consumed the output data. To
ensure safety, all signals must be part of a loop containing
at most one active token. Feedbacks cannot be added
between two barrier gates because this would result in a

loop with two active tokens violating the safety
constraint.

d. If necessary, buffer-function through gates called
splitter gates are inserted between barrier gates to provide
a source and termination for feedback. This feedback
signal is equivalent to an acknowledge signal in a
micropipeline [1].

e. Feedbacks that originate from a barrier gate have
an initial token on them (after reset) since all outputs from
barrier gates have tokens. This implies that feedbacks
from barrier gates must terminate on a through gate,
hence the need for splitter gates in some circumstances.

f. A feedback that originates from a through gate
and terminates on a through gate must have a token
present after reset since the output of the destination
through gate will not have an initial token.

g. A feedback that originates from a through gate
and terminates on a barrier gate must not have an initial
token since the output of the destination barrier gate will
have an initial token.

 More details and examples of the PL mapping process
are available in [5, 8, 9].

2.2 Early Evaluation

 Both fine-grain and coarse-grain PL implementations
support a speedup mechanism known as early evaluation
(EE) that can enable a PL system to outperform a clocked
system. All micropipeline approaches suffer a
performance degradation compared to clocked systems
because the output latch latency of a micropipeline block
is in the critical path. EE allows PL systems to overcome
this performance penalty. Simulations of fine-grain and
coarse-grain netlists of a MIPs-compatible 5-stage
pipelined CPU mapped to four-input lookup tables
(LUT4s) indicate a speedup of over 35% compared to
equivalent clocked versions. Results in mapping other
moderately large open cores have shown similar
performance enhancements.

3.0 Trigger Function Definition

 When master functions depend on a relatively small
number of input signals, such as is the case for the fine-
grain approach, it is feasible to search over all possible
subsets of inputs for a suitable trigger function, however;
as the support set of the master function grows, such an
exhaustive search quickly becomes impractical. For this
reason, the focus of the work described here is applicable
only to the coarse-grain version of PL.
 The role of a trigger function is to determine when the
output of the master function can be deduced by the

currently arrived inputs, regardless of the other inputs that
have not yet arrived. To illustrate this idea, consider the
function f ab ac bc= + + . A truth table for this function
is shown in Figure 1 with four entries emphasized in bold
and italic font. The emphasized entries yield values of f
that are only dependent upon variables a and b. A trigger
function can be formulated that has an output of 1 when f
may be evaluated based only upon the values of variables
a and b. The truth table for this trigger function (ftrig) is
given in Figure 2.

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 1: Truth Table of f

a b ftrig
0 0 1
0 1 0
1 0 0
1 1 1

Figure 2: Truth Table of ftrig

 If f represents a master function then the trigger
function ftrig can be extracted from f and the output of ftrig
can be used as an additional input to f allowing it to go
ahead and evaluate when only a and b are present at the
inputs. This would allow for f to evaluate based on only
two data inputs being present yielding a coverage value of
50% of the truth table entries of f. It is noted that other
trigger functions could be formulated such as a trigger
function only dependent upon variables b and c. This
alternative trigger function would also yield a coverage
value of 50%.
 In order for trigger function usage to be effective in
increasing PL circuit throughput, the dependent variable
set for the trigger function should be comprised of
variables representing signals that tend to arrive early.
For this reason, a merit function is evaluated to choose
appropriate variables for the support set of the trigger
function [7]. This merit function allows the trigger
function to be chosen based upon the coverage and the
relative arrival times.
The merit function is:

(%) max

max

M
Merit coverage

T
= ×

 Where Mmax is the maximum delay value among all
signals in the support of the master function and Tmax is

likewise the maximum delay value among all signals in
the support of the candidate trigger function.

3.1 Trigger Function Extraction

 In the fine-grain PL mapping method, trigger function
extraction is completely automated based on the
technique described in [7]. In the work reported in [8],
automated trigger function extraction was accomplished
by evaluating the cost function for all possible variable
subsets of master functions implemented using 4-input
look-up tables. Exhaustive evaluation of all possible
trigger functions was not a costly endeavor since only 14
different candidate trigger functions were evaluated for
each master function that was dependent upon only 4
variables.
 For the coarse-grain approach, master functions are
utilized that can have large numbers of dependent
variables, hence, exhaustive searches for appropriate
trigger functions is impractical. As master functions can
be quite large in terms of primary inputs, a convenient
way to represent them is through the use of Binary
Decision Diagrams (BDDs). This approach motivated us
to develop a trigger function extraction method based on
the BDD representation of the master function.
 Because the trigger function must depend upon a
proper subset of dependent variables of the master
function, all cubes in a candidate trigger function
correspond directly to the 1-paths and 0-paths in the
master function BDD. Such paths are easily extracted
from the master function BDD through a single traversal.
In order to incorporate the timing constraint, we reorder
the variables in the BDD such that those variables
corresponding to minimum arrival time signals are first in
the ordering. This approach effectively translates the
process of extracting trigger functions to variable
reordering of a BDD although we are not using the typical
constraint of BDD minimization to perform reordering.
In the event that the BDD representing the master
function exceeds some preset size limitation, the master
function can be partitioned into two new master functions
and the process repeated. As an example, consider the
BDD depicted in Figure 3 that corresponds to the example
master function truth table in Figure 1. The circled paths
correspond to the cubes in the trigger function that depend
only upon variables a and b since those paths terminate
without inclusion of variable c.
 This idea is implemented as an algorithm that accepts a
BDD representing a master function and with variables
ordered according to the earliest arriving signals closer to
the initial node and building another BDD that represents
the trigger function.

4.0 Multiple Trigger Function Support

 Circuits produced using the PL method reported in the
literature have used one trigger function per master
function. However, a master function may yield other
trigger functions with equal cost that are dependent on
different subsets of the input signals. These other trigger
functions may cover EE opportunities that are not
recognized by the originally chosen trigger function.
Therefore, the use of more trigger functions will cover
more early evaluation opportunities for a given master
function.

Figure 3: BDD Representation of Example Master

Function

 In the initial mapping of a PL netlist, the clocked
netlist is mapped to the set of master functions
corresponding to the partitioned subcircuits. EE is
implemented by evaluating each master function for the
possibility of improvement using EE. Whenever the cost
value indicates the improvement can be achieved, the
master function is replaced with a PL EE gate. A PL EE
gate consists of the original master function PL cell
augmented with another PL cell [10] (along with a small
amount of control circuitry between the two). Figure 4
contains a diagram of the organization of a PL EE gate
with a single trigger function and n>m. The box labeled
“Input Detect” outputs a signal indicating that all
dependent variables of ftrig have arrived.

Figure 4: PL EE Gate with Single Trigger

 In order to effectively utilize multiple trigger
functions, the control mechanism between the master
function and the multiple trigger functions must be
augmented resulting in a new organization of a PL EE

gate. A naive implementation of such a gate would be to
replicate trigger function cells for each candidate trigger
function and then use a large fan-in OR gate to
concentrate their outputs into a single signal causing the
master function to early evaluate as shown in Figure 5.
While this resulting functionally is correct, this approach
is too costly in terms of area since a considerable amount
of circuitry in the trigger functions could potentially be
shared. The unlabeled uppermost boxes represent the
candidate trigger functions, ti and the lowermost represent
the respective “Input Detect” functions for each ti.

Figure 5: Naïve Implementation of Multi-trigger

EE PL Gate

4.1 Formulation of Multi-trigger EE PL Gates

 It is desired to use a single super trigger function by
forming a function that is the union of the on-sets of each
individual trigger function allowing for term sharing to be
exploited. If the outputs of the corresponding C-Muller
elements are also ORed together, as shown in Figure 6,
“false” EE can occur. In Figure 6, the uppermost OR gate
concentrates outputs of all possible trigger functions
while the lowermost OR gate concentrates outputs of the
respective “Input Detect” functions for each.

Figure 6: Incorrect Multi-Trigger EE PL Gate

 A “false” trigger can occur since the trigger function
should evaluate only when all dependent variables are
present. However, an individual C-Muller element may
evaluate when only a subset of variables of the super
trigger function are present.
 To illustrate this problem, consider a master function
f(a,b,c,d) with individual trigger functions
t1(a,b,c)=ab+bc and t2(a,b,d)=abd. If the organization in

fInputs Output

...

...f

ftrig

Inputs Output
Master

Trigger

Input
Detect

n

m

a

bb

c

10

0

0
0

0 1

1

1

1

fInputs Output

…...
……...

Master

Trigger

n

m

Figure 6 were used, the super trigger function is formed
as tsup=t1+t2=ab+bc+abd and the two C-Muller elements
(supporting t1 and t2) evaluate when variables {a,b,c} are
all present (corresponding to t1) while the second C-
Muller element will evaluate when variables {a,b,d} are
present.
 Suppose that the signals corresponding to variables
{a,b,d} have arrived with values {1,1,0} respectively and
that variable c has not yet arrived. In this case, the C-
Muller element corresponding to trigger t2 will evaluate
although the trigger function t2 has value 0. However, tsup
has a value of 1 causing the master function f to
incorrectly evaluate early although the signal
corresponding to variable c has not arrived. In such a
case, a false trigger occurs causing the master function to
evaluate before it should have.
 To solve this problem, a notion of “which” variables in
the support of tsup have arrived is needed. With a single
trigger function, this notion is not needed since the single
C-Muller element will evaluate only when all inputs
corresponding to the trigger function are valid. Our
approach is to formulate the super trigger function such
that the individual C-Muller elements are combined into a
single binary valued-function that depends on ternary-
valued variables resulting in tmvl. The organization of this
form of the EE PL gate is then depicted as shown in
Figure 7.

Figure 7: PL EE Gate with MVL-based Multiple
Trigger Function Support

 The notion of signal availability is incorporated into
the PL EE Gate depicted in Figure 7 by using the
dependent ternary-valued variable encoding shown in
Table 1.

Table 1: Ternary Encoded PL Signals
Logic Value Interpretation

0 Signal arrived with binary value 0
1 Signal arrived with binary value 1
2 Signal has not yet arrived

 The MVL super trigger function tmvl is formed as the
disjunction of terms that represent each individual trigger
function and the availability of their respective inputs.
Each such term is the conjunction of the individual trigger
functions and a corresponding expression indicating input
signal availability. The expressions representing input
availability effectively take the place of the C-Muller
elements and are represented as MVL functions Ci.

 Using the example shown above that precludes the
organization as shown in Figure 6, the individual trigger
functions and their corresponding Ci functions become:

{1} {1} {1} {1}
1

{2} {2} {2} {0,1} {0,1} {0,1}
1

{1} {1} {1}
2

{2} {2} {2} {0,1} {0,1} {0,1}
2

(, ,)

(, ,)

(, ,)

(, ,)

t a b c a b b c

C a b c a b c a b c

t a b d a b d

C a b d a b d a b d

= +

= =

=

= =

 Using these formulations, the super trigger function
tmvl is expressed as:

1 1 2 2
{1} {1} {0,1} {0,1} {1} {1} {1} {1} {1}

mvl

mvl

t t C t C

t a b c a b c a b d

= +

= + +

 It is now easy to see that the cube a{1}b{1}c{2}d{0}
corresponding to the scenario described previously will
result in tmvl evaluating to 0.
 The actual implementation could be accomplished
using MVL circuitry, or, by mapping back to a binary
circuit where dual-rail lines are used for each variable.
Although the binary-mapped version may appear to
double the amount of required wiring, we note that signals
are already present in dual-rail form in order to support
the LEDR encoding used in PL circuits. This increase in
wiring for the inputs of the super trigger portion of the EE
PL gate is less overhead overall than would be present in
the naive approach of ORing all individual single trigger
function blocks as shown in Figure 5.

5.0 Experimental Results

 Two sets of experimental results are reported here. In
the first set, the effectiveness of extracting individual
trigger functions from large master functions using BDDs
is demonstrated. In the second set of results,
enhancements obtained using a multiple trigger function
for an EE PL gate are presented.
 The BDD-based trigger function extraction experiment
was carried out by constructing a BDD using the CUDD
software and by using the mcnc benchmark circuits in
.pla format. No variable reordering is applied to the
BDDs as it was assumed that those variables higher in the
assumed order correspond to earlier arriving inputs. Each
output was considered to represent a single-output master
function and trigger functions were extracted that depend
upon the first ⎣j/2⎦ variables in the BDD ordering where j
represents the total number of variables in the BDD. The
choice of j/2 variables in the support of the trigger
functions is arbitrary and the actual number chosen will
depend upon the value of the cost function as selected by
the designer.
 Table 2 contains the experimental results. The
computer runtime required to compute the trigger
functions in Table 2 all required less than 1 ms. This is
not surprising since the algorithm is merely a modified
depth-first traversal, which is known to be O(N), with N

being the number of vertices in the BDD. Column one
contains the name of the benchmark circuit. Column two
shows the total number of inputs/outputs. Columns three
and four pertain to the first output bit. The third column
contains the number of dependent variables in support of
the trigger function (k) (maximum possible value of k is
⎣j/2⎦ and the minimum is 0). The fourth column contains
the percentage of minterms in the on-set of the trigger
function divided by the number of all those possible (ie.
on-set minterms divided by 2j). This latter value is a
measure of the coverage value that the trigger function
provides.

Table 2: Results for Single Triggers
name in/out k Coverage

5xp1 7/10 0 0
addm4 9/8 5 0.781

majority 5/1 3 0.125
cordic 23/2 10 0.758
sao2 10/4 6 0.828

squar5 5/8 3 0.875
dist 8/5 4 0.625

 In the second set of experimental results, super trigger
functions are found and compared to single trigger
functions using the method corresponding to that reported
in [7]. The experiments were carried out by using the
mcnc benchmarks to represent master functions with the
first output being used to represent the master function
output. Multiple trigger functions were generated using
random subsets of variables. These trigger functions were
then used to form an MVL trigger function. The results
of these MVL trigger functions were then compared to the
best single trigger function within the set of possible
trigger functions. Table 3 contains these experimental
results. The first column contains the name of the
benchmark (master) function, the second contains the
inputs/cubes of the master function, the third contains the
inputs/cubes of the single trigger function found using the
method in [7] the fourth contains the coverage achieved
by the single trigger function, the fifth contains the
inputs/cubes of the multi-trigger function, and the final
(sixth) column contains the coverage provided by the
multi-trigger function.
 These results are given after espresso was used to
minimize all functions after MVSIS version 1.1 [11] was
used to map the tmvl function back to binary form.

6.0 Conclusions

 An improvement in the formation of EE PL gates is
described where a BDD-based method allows for the
extraction of trigger functions from large master functions
is demonstrated as effective as compared to the
exhaustive method described in [7]. The coverage

provided by a trigger function was also enhanced by
utilizing multiple trigger functions for the same master
function and then using MVL methods to combine them
into a super trigger function.

Table 3: Results for Multi-Triggers

name master single EE MVL EE
5xp1 7/7 3/3 0.75 6/3 0.75

Addm4 9/9 2/2 0.75 14/6 0.83
majority 5/5 3/2 0.63 6/2 0.63
cordic 23/143 8/10 0.55 18/33 0.59
sao2 10/10 6/7 0.81 14/14 0.84

squar5 5/2 3/3 0.88 8/4 0.94
dist 8/12 5/3 0.41 12/5 0.58

7.0 References

[1] I. Sutherland, “Micropipelines”, Comm. of the ACM, Vol 32,
No. 6, 1989, pp. 720-738.
[2] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR),” Proc.
ARVLSI, 1991, pp. 55-70.
[3] D.H. Linder and J.C. Harden, “Phased Logic: Supporting the
Synchronous Design Paradigm with Delay-insensitive
Circuitry.” IEEE Tran. on Comp., Vol. 45, No 9, 1996, pp.
1031-1044.
[4] F. Commoner, A.W. Hol, S. Even, A. Pneuli, “Marked
Directed Graphs”, J. Computer and System Sciences, Vol. 5,
1971, pp. 511-523.
[5] R.B. Reese, M.A. Thornton, and C. Traver, “Arithmetic
Logic Circuits using Self-timed Bit-Level Dataflow and Early
Evaluation”, Proc. ICCD 2001, Sept. 2001, pp. 18-23.
[6] C. Traver, R.B. Reese, M.A. Thornton, “Cell Designs for
Self-timed FPGAs”, Proc. ASIC Conf., Sept. 2001, pp. 175-179
[7] M.A. Thornton, K. Fazel, R.B. Reese, and C. Traver,
“Generalized Early Evaluation in Self-Timed Circuits”, Proc.
DATE, March 2002, pp. 255-259.
[8] R.B. Reese, M.A. Thornton, and C. Traver, “A Fine-grain
Phased Logic CPU”, Proc. ISVLSI, Feb. 2003, pp. 70-79.
[9] R.B. Reese, M.A. Thornton, and C. Traver, “A Coarse-grain
Phased Logic CPU”, Proc. ASYNC, May 2003, pp. 2-13.
[10] D.E. Muller and W.S. Bartky, “A Theory of Asynchronous
Circuits”, Proc. Int. Symp. on Theory of Switching, vol. 29,
1959, pp. 204-243.
[11] MVSIS version 1.1,
http://www-cad.eecs.berkeley.edu/Respep/Research/mv

