
Tradeo� Analysis of Integer Multiplier Circuits Implemented in FPGAs

M� A� Thornton

Mississippi State University

J� D� Gaiche

Acxiom Corporation

J� V� Lemieux

University of Arkansas

Abstract

Integer multiplication is a necessary operation for per�
forming many tasks relevant to multimedia and telecommu�
nications processes� Here� we discuss the results of an inves�
tigation into the e�ectiveness of automated synthesis tools
as related to a sample of modern Programmable Logic De�
vices �PLDs�� Although it is generally accepted that superior
results in terms of required area and circuit delay can gen�
erally be obtained through manual implementation of such
circuits� the exclusive use of automated synthesis tools based
upon an original speci�cation in terms of a Hardware De�
scription Language �HDL� is presented here� The results
of several di�erent approaches to multiplier architectures are
presented�

� Introduction

Field Programmable Gate Array �FPGA� and Complex
Programmable Logic Devices �CPLDs� devices have ma�
tured to the point that they present a viable alternative
for the implementation of general arithmetic and digital sig�
nal processing �DSP� circuitry ��� ���	 DSP processing tasks
have traditionally been realized using microprocessors
 Ap�
plication Speci�c ICs �ASIC� or special purpose DSP pro�
cessors	 However
 the logic density and speeds of modern
FPGA�CPLDs have now reached levels where they can be
competitive with special purpose DSP devices	 In terms of
custom solutions
 the FPGA�CPLD approach oers imme�
diate availability compared to the relatively lengthy devel�
opment and turn around time for the design and fabrication
of an ASIC	 As a result of these bene�ts
 many developers
are investigating the feasibility of porting DSP applications
into FPGA�CPLD based circuitry	

Digital signal processing algorithms are generally multi�
plication intensive tasks and many dierent multiplication
circuit architectures exist ��� ��� ���	 It is therefore crucial
that the particular multiplier circuit employed must make
e�cient use of the internal FPGA�CPLD architecture for a
DSP task to yield acceptable performance	 Furthermore
 the
multiplication architectures which are utilized in ASIC�s are
not necessarily optimal for a FPGA�CPLD implementation

because of their �xed internal structure	 More information
is needed to help determine which algorithms are best suited
for FPGA�CPLD implementations and to further clarify the
division of hardware and software functions in the circuitry
being implemented	 A survey of various multiplier circuits
is presented in ���	 The motivation for this study is that dy�
namically recon�gurable computing solutions for DSP tasks
will require automatically generated multipliers of various
sizes and resource requirements	 In some cases
 throughput
is enhanced with the use of many small but slow multipliers
versus a large fast one ���	

The suitability of several multiplication algorithms for use
in FPGAs is explored by describing the circuit structure us�
ing the Hardware Descriptive Language �HDL�
 Verilog
 fol�
lowed by simulation and synthesis runs	 Each multiplier in
this investigation is capable of multiplying two ���bit inte�
ger numbers	 Multiplier circuits that are investigated include
a Scaling Accumulator Multiplier
 a Addition Array Multi�
plier
 a Computed Partial Product Multiplier
 a Wallace Tree
Multiplier
 and a Partial Product Look�Up Table Multiplier	
These particular architectures were chosen since they repre�
sent diering resource requirements and all can be scaled to
various wordlengths	

The paper is organized as follows	 First
 a description
of example multiplication circuits is presented	 Next
 the
experimental results are presented and analyzed	 Finally

conclusions and future eorts are addressed	

� Multiplier Circuit Architecture

Descriptions of the integer multiplication architectures are
provided in this section	 As a point of reference
 a purely be�
havioral description of a ���bit multiplier is synthesized and
results are given for the purpose of comparison to the other
approaches considered here	 An attempt was made to choose
candidate architectures that represent diverse approaches	
We have included structures that have traditionally yielded
the best results in terms of ASIC implementation �addition
tree and array based approaches�
 techniques that are known
for speed but require large amounts of circuitry �combina�
tional logic implementations such as the look�up table based
approaches�
 and
 word�serial implementations that require



smaller amounts of circuitry but multiple clock cycles	

��� Behavioral

The behavioral multiplier is implemented using a Verilog
statement of the form� prod � mplier � mcand�	 When
the synthesis tools encounter this statement
 they default to
built in multiplier models for the target device	 Thus
 these
results are useful for comparing against the RTL level mul�
tiplier descriptions of the other architectures	 The Verilog
code for this model is shown in Figure �	

Figure �� Verilog Description of Behavioral Multiplier

module behmult�mcand�mplier�prod�clk�

reset�din�valid�dout�valid��

		 I	O Declarations

input 
���� mcand� mplier�

input clk� rest� din�valid�

output 
���� prod�

output dout�valid�

		 Data Type Declarations�

reg 
���� prod�

reg dout�valid�

always ��posedge clk�

if �reset �� ��b��

begin

prod � ��

dout�valid � ��b��

end

else

if �din�valid �� ��

begin

prod � mplier � mcand�

dout�valid � ��b��

end

endmodule

��� Scaled Accumulator

This is a �shift and add� approach to generating the prod�
uct	 The advantages are a small amount of circuitry
 but a
number of clock cycles equal to the wordsize of the multiplier
operand	

��� Computed Partial Product

This circuit stores the multiplicand
 twice the multipli�
cand and three times the multiplicand in three internal reg�
isters	 These are generated very e�ciently through the use
of a single�bit left�shift and an adder	 The multiplier word is
then used two bits at a time to select the appropriate multi�
ple of the multiplicand	 As each successive bit pair from the
multiplier word is brought in
 the �nal product is accumu�
lated in a shift register	 This approach is a generalization of

the scaled accumulator where a digit size of two bits versus
a single bit is used	 Figure � contains a block diagram of the
computed partial product multiplier	

Mcand
(regs)

Mplier
(digits)

Scal. Accum.

Add.

Mux

Figure �� Block Diagram of Parallel Multiplier �array�tree
type�

��� Addition Array

This is a array based multiplier circuit ��� using full and
half single�bit adders	 This approach is known for producing
fast multipliers with a regular layout pattern and is popular
in ASIC designs	 It operates by generating all the partial
products in parallel and adding them together using a rect�
angular array of single bit addition circuits	 This is a fully
parallel approach in that a product is returned at each clock
cycle	 Figure � contains a diagram of this type of multiplier	

��� Addition Tree

This approach accumulates the partial products through
the use of a tree of ��� and ��� compressors �or single bit
adders� ��� ���	 While these approaches often yield the fastest
multipliers in ASIC designs
 they are known for large area
requirements and usually do not map well to the regular lay�
outs inherent in FPGAs and CPLDs	 In terms of operational
functionality
 this approach is very similar to the array mul�
tiplier described above with the dierence being that a tree
of adders is used to accumulate the partial products	 Figure
� also represents the addition tree multiplier	

Partial Prod.
Generator

Addition
Circuitry

(array/tree)

prod.

mplier mcand

Figure �� Block Diagram of Parallel Multiplier �array�tree
type�

��� Memory Based Lookup Table

Here
 external memory is used to store the product with
the address serving as the concatenation of the multiplier and



multiplicand	 To reduce the size of the required memory
 four
partial products are stored versus the entire ���bit product
and programmable device logic is used to scale �shift� and
accumulate the �nal products	 Due to the small amount of
logic required
 this approach is generally limited in speed
due to the memory access times	 This approach also places
additional demands on FPGA�CPLD I�O requirements since
pins are needed to drive the memory device address and to
read in the resulting data for scaling and accumulation	

Lookup-Table
(Memory)

Scaling
Accum.
(PLD)

prod.
mplier

mcand

Figure �� Block Diagram of Memory Based LUT Multiplier

� Experimental Results

Table � contains results that were generated using the
place and route tools from Altera MaxPlusII �ver	 �	�	��
and Xilinx Foundation Express �ver	 �	��	 The Verilog de�
scriptions were synthesized using the Synopsys FPGA Ex�
press tools bundled with MaxPlusII and Foundation
 and
the Synplicity Synplify tool �ver	 �	�	��	 The Verilog models
were tested using the PC�based Model Tech and the Unix�
based Cadence Verilog�XL simulators	 Estimated operating
frequencies and logic resource utilization metrics are com�
piled based on the place and route tool log �les	 The place
route tools were set to place approximately equal emphasis
on area and delay	 Since the various FPGA�CPLD manu�
facturers market devices with dierent internal architectures

each multiplier circuit is synthesized onto a variety of target
devices	

In the data presented below
 each multiplier type is des�
ignated using a three�letter acronym	 beh is the behavioral
multiplier
 aam is the addition array multiplier
 atm is the
addition tree multiplier
 cpp is the computed partial prod�
uct multiplier
 sca is the scaling accumulator approach
 and

lpp is the look�up table based circuit	 The table entries io
and lb refer to inadequate device resources in terms of re�
quired I�O pins and logic blocks respectively	 The columns
labeled IOB
 CLB
 IO and LB contain the percentage of the
device resources needed to implement the circuit	 For those
circuits that were implemented as a block of combinational
logic with a register for the product
 clock speed was com�
puted as the inverse of the critical path delay plus the output
register setup time	 The frequencies for the lpp type circuits
are given assuming a �� ns SRAM
 a �� ns DRAM and a ���
ns EPROM are used for storing the partial products	

� Conclusion

Various scalable multipliers have been synthesized and an�
alyzed in terms of speed and area for implementation in pro�
grammable devices	 It should be noted that the purpose here
is not to compare the eectiveness of logic synthesis tools or
programmable device architectures
 but rather to get a feel
for the trend in resource requirements given the various ap�
proaches	 A fair comparison of the synthesis tools would
require careful adherence to coding styles required by each
tool and the to compare the architectures
 details about in�
ternal features �such as dedicated carry�ripple logic� would
need to be exploited in the HDL descriptions	

These results are useful for researchers in the area of re�
con�gurable computing where tradeos between speed and
logic usage must be evaluated dynamically	 The results can
also be of use to designers of dedicated programmable logic
circuits in the preliminary phases of resource estimation and
the evaluation of candidate designs with respect to functional
requirements	

References

��� R	 Andraka	 Multiplication in FPGAs	 Web Page

http		users�ids�net	 randraka	multipli�htm

����	

��� Altera Corporation	 Improving �xed�point dsp proces�
sor system performance
with plds as a dsp coprocessor	 Altera Application Brief

http		www�altera�com	document	papers	cpdsp�pdf

����	

��� L	 Dadda	 Some Schemes for Parallel Multipliers	 Alta
Freq�
 ����������
 ����	

��� S	 K	 Knapp	 Using programmable logic to ac�
celerate dsp functions	 Xilinx Application Brief

http		www�xilinx�com	appnotes	dspintro�pdf

����	

��� I	 Koren	 Computer Arithmetic Algorithms	 Prentice Hall
Publishers
 Englewood Clis
 New Jersey
 ����	

��� S	 D	 Pezaris	 A ���ns ���bit by ���bit Array Multiplier	
IEEE Transactions on Computers
 C�����������
 ����	

��� J	 Pihl	 Tradeos Between Parallel and Serial Archi�
tectures in High Performance Digital Signal Processing	
Proceedings of the International Symposium on Integrated
Circuits
 ����	

��� C	 S	 Wallace	 A Suggestion for a Fast Multiplier	
IRE Transactions on Electronic Computers
 EC�������
��
 ����	

��� S	 Waser and M	 J	 Flynn	 Introduction to Arithmetic for
Digital Systems Designers	 Holt
 Rinehart and Winston

New York
 ����	



Table �� Results Using Various FPGA�CPLDs

Xilinx Synopsys Express Synplicity Synplify
Arch� �IOB � CLB CLK �MHz� Rate �MHz� � CLB CLK �MHz� Rate �MHz�

V���PQ�	�
	 �Virtex�
beh 	� � ���	 ���	 	 	��	 	��	
aam 	� �� ���� ����  �� ��
atm 	� �� ���� ���� �� ���� ����
cpp �� � ���� ��� 	 	��� ���
sca �� � ���� ��� � ��� 	�	
lpp �� � ���� �	��������� � ���� �����������

S��VQ���
� �Spartan�
beh �� 	� ���� ���� � ���� ����
aam �� �� 	�� 	�� �� 	�� 	��
atm �� �� ��� ��� �� ���� ����
cpp �� �� ���� ��� �� ���� ���
sca �� �� ���	 ��� � ���	 ���
lpp ��  io io � io io

S��XLPC�	
	 �Spartan XL�
beh ��� ��� io�lb io�lb ��	 io�lb io�lb
aam ��� ��� io�lb io�lb �� io�lb io�lb
atm ��� ��� io�lb io�lb �	� io�lb io�lb
cpp �� �		 lb lb ��� lb lb
sca �� �� 		� ��� � ���	 ���
lpp ��� �	 io io �� io io

	���EXHQ��� ex
� �	���EX�
beh 	� �	 ���� ���� �� ���� ����
aam 	� �� 	�� 	�� �� ��� ���
atm 	� �� �� �� �� ���� ����
cpp �� �	 ���	 ��� �� ���� ��
sca �� � ���� ��� � ���� ���
lpp �� � ���	 ����������� � ���� ������������

	����XVHQ�	� xv
� �	���XV�
beh �� 	 �� �� 	 ���� ����
aam �� � ��	 ��	 � ���� ����
atm �� � ��� ��� � ���� ����
cpp �� � ��� ��	 � ���� 	��
sca � � ���� ��� � ���� ���
lpp 	� � ���	 ����������� � ��� �����������

����APC��
� �����A�
beh ��� 	�	 io�lb io�lb ��� io�lb io�lb
aam ��� ��� io�lb io�lb ��� io�lb io�lb
atm ��� �	� io�lb io�lb ��� io�lb io�lb
cpp � ��� lb lb �	� lb lb
sca � ��� lb lb � ����� ��	
lpp �	� � io io �	 io io

Altera Synopsys Express Synplicity Synplify
Arch� �IO � LC CLK �MHz� Rate �MHz� � LC CLK �MHz� Rate �MHz�

EPF��K��TC�		
� �Flex ��k�
beh �	 �� �� �� 	� ���� ����
aam �	 �� ��� ��� �	 ��� ���
atm �	 �� ���	 ���	 lb lb lb
cpp �� �� ���� ��� �� ��� 	��
sca 	� �� ���� ��� �� 	�� ���
lpp �� �� ���� �������	��� � ���� �����������

EPF�����AQC���
� �Flex �k�
beh 	� �� ��� ��� �� ���� ����
aam 	� �� ��� ��� �� 	�� 	��
atm 	� �� �� �� �� ��� ���
cpp �� � ���� ��� �	 ���� ���
sca �� �� ���� ��� �	 �	�� ���
lpp �� �� ���� ���������  	��� ������������

EPF����ATC���
� �Flex �k�
beh � � ���� ���� �� ���� ����
aam � � ��� ��� lb lb lb
atm � �� ���	 ���	 lb lb lb
cpp �	 �� �	�� ��� �� ���� 	��
sca �� �� ���	 ��� �� 	��� ���
lpp io io io io io io io


