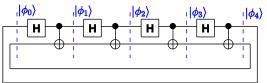
Single Qubit Quantum Ring Oscillator and Applications for Storage and True Random Number Generation

Mitchell A. Thornton¹, William V. Oxford², Duncan L. MacFarlane³, and Tim P. LaFave Jr⁻³

¹Darwin Deason Institute for Cybersecurity, Southern Methodist University, Dallas, TX 75275, USA

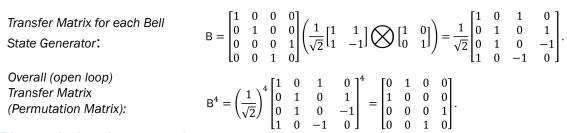
²Bra-Ket Science, Inc. 106 E. Sixth Street, Suite 900, Austin TX 78701, USA

³Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275, USA

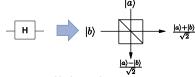

Introduction

- Bell State Oscillator
 - Loop of 4 Bell State Generators (Hadamard cascaded with C-NOT Gate)
- Generation and Maintenance of EPR Pairs
- Timing and Synchronization
- Qubit Storage

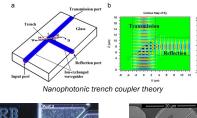
Analysis

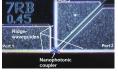

- TRNG possible with CNOT and H-Gate cascades
- Free Space Optic and QPIC Realizations

Architecture



Quantum Circuit of Bell State Oscillator


- Output state, $|\phi_4\rangle$, becomes input state $|\phi_0\rangle$.
- Dashed lines denote quantum state evolutions, |φ₀⟩, |φ₁⟩,
 |φ₂⟩, |φ₃⟩, |φ₄⟩.
- When $|\phi_0\rangle = |00\rangle$, then $|\phi_4\rangle = |01\rangle$, a basis state.
- When $|\phi_0\rangle = |01\rangle$, then $|\phi_4\rangle = |00\rangle$, a basis state.
- Subsequent quantum states $|\phi_o\rangle_{\!\!\!\!o}$ or $|\phi_s\rangle_{\!\!\!o}$ oscillate between $|00\rangle$ and $|01\rangle_{\!\!\!.}$



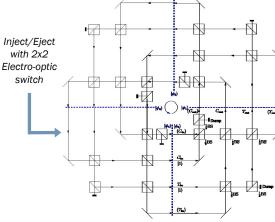
Photonic Implementation

Optical micrograph of photonic integrated circuit with waveguides and integrated nanophotonic coupler

Cross-section of etched nanoscale trench that comprises the integrated nanophotonic coupler

= 4.675 µ

A Hadamard gate may be realized in integrated photonics using a nanophotonic coupler



BRA-KET SCIENCE, INC. www.braketscience.com

_____(Tin)_____

Bell State Oscillator