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Abstract

A probabilistic equivalence checking method is developed
based on the use of partial Haar spectral diagrams �HSDs��
Partial HSDs are de�ned and used to represent a subset of
Haar spectral coe�cients for two Boolean functions� The re�
sulting coe�cients are then used to compute and to iteratively
re�ne the probability that two functions are equivalent� This
problem has applications in both logic synthesis and veri�ca�
tion� The method described here can be useful for the case
where two candidate functions require extreme amounts of
memory for a complete BDD representation� Experimental
results are provided to validate the e�ectiveness of this ap�
proach�

� Introduction

The equivalence checking problem for two Boolean func�
tions of n variables� f�X� and g�Y �� is addressed in this work�
Here� we assume that the correspondence between the vec�
tors of variables� X and Y is known� Although this problem
is easily solved when f and g can be completely represented
in BDD form� problems can arise for some functions whose
corresponding BDD representations are too large� Thus� we
have motivation to formulate a technique for equivalence
checking based on partial representations of f and g� The in�
corporation of the Haar spectral coe�cients in our approach
allows for further information about the two candidate func�
tions to be exploited�

This problem has applications in logic synthesis in terms
of the library binding stage where a technologically indepen�
dent sub�function� f � must be �mapped	 to a technologically
dependent �library cell	 represented functionally by g such
that f�X� 
 g�Y � ��
�� Typically a subset of gi cells sat�
isfy this equivalence and the logic synthesis system chooses
a speci�c gi based on some optimization constraint such as
area minimization� shape factor� speed� etc� Determining the
appropriate set of �library cells	� fgig� can be accomplished
via the application of an equivalence checking technique�

The equivalence checking function is also of concern in ver�
i�cation systems where two representations of a function are
compared �
� ��� ���� ���� ����� Two abstractions of a circuit
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resulting from di�erent optimization phases of a logic syn�
thesis system �eg� f�X� and g�Y �� may need to be checked
to determine if f�X� 
 g�Y �� This is applicable for meth�
ods that express state machines as BDDs as well as for the
veri�cation of purely combinational logic�

In many cases� this problem can be easily solved by build�
ing an Ordered Binary Decision Diagram �OBDD� ��� ���
representing f and g according to a common variable order�
When this is possible� the determination of equivalence is
accomplished by simply comparing two pointer values� How�
ever� some classes of functions result in OBDDs with an ex�
ponential number of vertices regardless of the variable order
��� ����

The technique described here allows for the equivalence
checking problem to be formulated in terms of a subset of
Haar spectral coe�cients ���� ����� Given a set of Haar spec�
tral coe�cients� we examine the probability that f�X� 

g�Y �� This allows the equivalence checking problem to be it�
eratively re�ned in terms of possible error by accounting for
the existence of more matching coe�cients� Thus� techniques
that provide subsets of Haar spectral coe�cients ��� ��� ����
for representations of f and g can be used for non�tautology
checking� A similar approach using an arithmetic transform
and a decision diagram structure known as an Interleaved
BDD �IBDD� has also been proposed ����� The technique
described here di�ers due to the fact that we utilize partial
HSDs versus IBDDs allowing us to make use of the multi�
resolution� modi�ed Haar wavelet transform ���� ���� rather
than the arithmetic transform� This allows for the advan�
tage of partially representing the functions under considera�
tion and to obtain the Haar spectral coe�cients directly from
a traversal of the HSD without performing additional spec�
tral computations� Furthermore� the multi�resolution nature
of the Haar transform o�ers advantages in the probability
calculations since higher ordered coe�cients can represent
disjoint portions of the function of interest�

In this approach� we adapt the method reported in ��� that
allows the Haar spectral coe�cients to be represented as a
HSD with the concept of the partial BDD as given in �����
This allows for a partial function representation to be used
for quickly computing subsets of Haar spectral coe�cients
avoiding problems that may arise for functions that result
in very large BDDs when represented in their fully speci�ed
form� Once the subsets of Haar spectral coe�cients are found
to be equivalent for two candidate functions� f and g� we



compute the probability that f and g are equivalent� If any
two same�ordered Haar spectral coe�cients are found that
have di�erent values� we can declare that f �
 g and halt the
process�

A discussion of the background of partial BDDs and HSDs
is reviewed followed by a section on the mathematical ba�
sis of our technique� The mathematical basis includes a re�
view of relevant aspects of the Haar transform and contains
the derivations for the probability computations� Next� we
present a simple example and the results of some preliminary
experiments that indicate the e�ectiveness of using matching
Haar coe�cients for statistical veri�cation� Finally� a section
containing conclusions and future e�orts is given�

� Binary Decision Diagrams

Boolean variables can assume values from B �
 f�� �g� In
the following� we consider Boolean functions f � Bn � Bm

over the variables speci�ed by the vector X 
 �x�� � � � � xn��
As is well�known� each Boolean function f � Bn � B can be
represented by a Binary Decision Diagram �BDD� ���� which
is a directed acyclic graph where a Shannon decomposition

f 
 xifxi�� � xifxi�� �� � i � n�

is carried out in each node�
A BDD is called ordered if each variable is encountered at

most once on each path from the root to a terminal node and
if the variables are encountered in the same order on all such
paths� A BDD is called reduced if it does not contain mul�
tiple isomorphic sub�graphs or any instances of both edges
from a single vertex pointing to the same node� Reduced
and ordered BDDs are unique since each distinct Boolean
function and a given variable ordering result in a canonical
representation�

BDDs are de�ned analogously for multi�output functions
f � Bn � Bm as for the case of single�output functions� A
BDD Gj for each component function fj �� � j � m� is used
for the shared BDD representation G for f � The order of the
variables is �xed over all Gjs�

For functions represented by reduced� ordered BDDs� e��
cient manipulation algorithms may be formulated ���� In the
following discussion� only reduced� ordered BDDs are consid�
ered and for briefness these graphs are referred to as BDDs�

��� Incomplete Construction

As long as symbolic simulation can be carried out com�
pletely� the veri�cation process succeeds� But problems arise
if BDDs do not �t in the main memory of a computer� This
might be due to several reasons�

The �rst �and simplest� reason is that a �bad	 variable
ordering has been chosen� In the past� several techniques
have been proposed for BDD minimization �for an overview
see ����� Furthermore� the ordering in which the operands are
combined is very important� as can be seen by the following
simple example�

x2 x2

x3x3

x4

0 1

1x

0

0

0

0

0

0 0

0 0

1

11

1 1 1

1

00 11 1001

00

01

11

10

Figure �� Complete BDD

Example � Let F be an AND gate with three inputs f �
g and h that occurs during symbolic simulation of a circuit�
BDD packages based on recursive synthesis have to compute�

�f � g� � h� f � �g � h� or �f � h� � g

The order in which the calculation is performed largely in�
�uences the number of nodes that are needed during the
computation� e�g� if f �g is computed �rst� but h 
 �� In this
case the result f � g �which might be large� is computed �rst
even though the results of the AND gate is ��

Some �rst steps for �nding good orderings involve travers�
ing gates in circuit representations as described in ���� How�
ever� there also exist functions for which the corresponding
BDD size becomes exponential �independent of the variable
ordering�� The most popular example is the multiplier ����

In ���� an approach based on partial information has been
proposed� If the BDD size becomes too large some parts
can be projected to a new �terminal	 node� called U for
unde�ned� The drawback of this method is that the complete
functionality of the represented circuit is no longer present
and complete veri�cation is not possible�

Fortunately� the resulting partial DD gives enough infor�
mation to compute at least some Haar coe�cients� This fact
will allow us to formulate the equivalence checking technique
based on matching subsets of Haar coe�cients using only the
partial BDDs�

To give a better understanding of partial BDDs� including
the value U� we consider the function from ���� given by
the table in Figure �� As can be seen� the BDD for this
function requires � non�terminal nodes �in the following� we
�x the variable ordering�� We assume that the memory of
the BDD package is limited to � non�terminal nodes� Thus�
complete construction is not possible� However� if two runs
are made using partial information and the rest is projected
to an unde�ned value� U �see Figure � and 
�� we see that the
complete function can be obtained using two partial BDDs�

��� Haar Spectral Diagrams

In ���� a directed graph is de�ned that is referred to as a
Haar Spectral Diagram �HSD�� This is a directed graph rep�
resentation of the Haar spectrum of a given Boolean func�
tion� One advantage of HSDs is that they are isomorphic to
BDDs �with the exception that all BDD terminal vertices are
�mapped	 to a common HSD terminal vertex�� This means
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� Second incomplete BDD

that the BDD representation of a function can double as a
representation of the Haar spectrum with extra memory stor�
age required only in the form of an additional edge�attribute
value� The additional storage is needed because all ��edges
in the HSD have a Haar spectral coe�cient as an attribute�

The enabling observation for de�ning the HSD is that the
Haar transformation matrix can be expressed in terms of
Kronecker products if the natural order of the coe�cients
is permuted� This result also forms the basis for developing
recursive methods for the computation of the Haar spectrum
of a function given its� corresponding BDD� An example of an
HSD is shown in the leftmost part of Figure � with the Haar
spectral coe�cients annotating the ��edges of the graph�

� Mathematical Basis and Derivation

In this section� the notation used throughout the remain�
der of the paper is de�ned and relations between probabilistic
events and Haar spectral coe�cients are derived�

��� Notation

The following notation is used�

� f�x�� x�� � � � � xn� represents a fully speci�ed Boolean
function of n variables that may also be represented by
the vector� X 
 �x�� x�� � � � � xn��

� HT represents the transpose of the modi�ed Haar spec�
tral coe�cient vector representing some function� f�X��

� Hi�f� represents the individual ith Haar spectral co�

e�cient of the Boolean function� f�X�� where HT 


�H�� H�� � � � � H�n���� Hi is also represented as Ho
s in

some of the literature where o is the order of the spec�
tral coe�cient and s is the sth Haar function �����

� P �A� is the discrete probability that some event� A� oc�
curs�

� P �f � is the output probability of a Boolean function� f �
which is the likelihood that f 
 � given the distribution
of the dependent variables in X�

� Si is the event that Hi�f� 
 Hi�g�� that is� the ith Haar
spectral coe�cients of f and g are equal in value�

� E is the event that f�X� 
 g�Y �� that is� the functions
f and g are functionally equivalent�

��� Haar Spectrum

This section will summarize the ideas about how output
probabilities can be used to compute the modi�ed Haar spec�
tral coe�cients directly as given in ����� The idea was de�
veloped by making observations about the structure of the
transformation matrix�

Each transformation matrix row consists of the integer
elements ��� �� and �� An integer �� represents the Boolean
� constant� an integer �� represents the Boolean � constant�
and an integer � indicates the absence of a Boolean constant�
Each row represents a particular modi�ed Haar function� fc�
dependent upon n or fewer variables where n is the number
of variables of f � the function to be transformed�

Figure � contains the modi�ed Haar transformation ma�
trix for a function of n 
 
 dependent variables� It is noted
that higher ordered coe�cients are computed from matrix
row functions with a decreasing range space dimension� In
fact� this decrease in the dimension of the range space corre�
sponds directly to various Shannon co�factors of the function
to be transformed�

The output vector of the function to be transformed gen�
erally contains integers with �� representing logic�� and ��
representing logic��� With this viewpoint� we can de�ne the
number of matches between a particular transformation ma�
trix row vector as the number of times the row vector and
function vector components are simultaneously equal to ��
or ��� Since some of the rows represent functions that are
masked by co�factors� the row�function space is less than ��

in size and the presence of a � value acts as a place holder�
The presence of co�factors in the Haar constituent func�

tions can be accounted for by using Baye�s theorem to rep�
resent these quantities as output probabilities of the AND
of the function to be transformed with its respective depen�
dent literals� These functions are shown to the left of the
transformation matrix in Figure ��

In order to determine the total number of matching out�
puts between f and a row�function� it is necessary to deter�
mine when both simultaneously evaluate to a logic�� level
as well as a logic�� level� We denote the percentage of the
total number of matches of logic�� between some f and a
row�function as pm� and likewise for the logic�� levels� pm��
With this viewpoint� the composite fc expressions can be
constructed �shown to the left of the transformation matrix
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Figure �� Example of Modi�ed Haar Transformation Matrix
for n 
 


in Figure �� that utilize co�factors of the function to be trans�
formed to restrict the range space and to dictate where the
relative location of the valid output of the fc function occurs
in the �n row vector components�

Given these observations� we see that the kth modi�ed
Haar spectral coe�cient can be calculated as�

Hk 
 �n�i���pm� � pm��� �� ���

Where n is the dimension of the range space of the func�
tion to be transformed� f � and i is the dimension of the range
space of a particular Shannon co�factor of f � If Nm repre�
sents the number of times an intermediate product value of
�� occurs in the computation of a particular modi�ed Haar
spectral coe�cient �corresponding to ��� and ����� prod�
ucts� and Nmm corresponds to the number of times a product
value of �� occurs �corresponding to ���� products�� then
the kth modi�ed Haar spectral coe�cient is given as�

Hk 
 Nm �Nmm ���

It is noted that the sum of Nm and Nmm must neces�
sarily equal �n�i where i indicates the number of variables
about which co�factors have been taken� Substituting this
observation into Equation � yields�

Hk 
 �Nm � �n�i �
�

We de�ne pm to be the total percentage of times that
a matching output between the f and fc functions occur�
therefore pm 
 �n�i �Nm� Furthermore� pm 
 pm� � pm��
Substituting these de�nitions into Equation 
 yields the re�
sult�

Hk 
 �n�i���pm� � pm��� �� ���

The result of Equation � reduces the computation of a
single modi�ed Haar spectral coe�cient to that of �nding
matching percentages of identical similar outputs of f and
a transformation matrix row�function� This can be accom�
plished by applying the output probability computation algo�
rithm to an OBDD representation of the fc functions� Using
the result of Baye�s theorem� the co�factor output probabil�
ities can be computed by ANDing various cubes with the
original function f and dividing the result by the output
probability of the cube itself� which is a constant�

The following table contains symbols for each of the Haar
spectral coe�cients �Hi� values that indicate the size of the
co�factor function range �i� and probability expressions that
evaluate whether the function to be transformed and the row
function simultaneously evaluate to logic�� �denoted as pm���
or evaluate to logic�� �denoted as pm���

Table �� Relationship of the Haar Spectrum and Output
Probabilities

SYMBOL i n� i pm� pm�

H� � 
 P �f � �� P �f � ��

H� � 
 P �f � x�� P �f � x��

H� � � P �f �x��x��
P �x��

P �f �x��x��
P �x��

H� � � P �f �x��x��
P �x��

P �f �x��x��
P �x��

H� � � P �f �x��x��x��
P �x��x��

P �f �x��x��x��
P �x��x��

H	 � � P �f �x��x��x��
P �x��x��

P �f �x��x��x��
P �x��x��

H
 � � P �f �x��x��x��
P �x��x��

P �f �x��x��x��
P �x��x��

H� � � P �f �x��x��x��
P �x��x��

P �f �x��x��x��
P �x��x��

By observing that the pm� and pm� expressions for a given
Hk in Table � are statistically independent� the individual
computations may be combined into a compact form� As an
example� consider H	�

Example � The divisor for the pm� and pm� expressions	
P �x�x�� is a constant equal to �

�i and thus may be factored
out resulting in Equation 
 being rewritten as�

Hk 
 �n�i��i���pm� � pm��� �� ���

Since the Boolean expressions f �x� �x� �x� and f �x� �x� �x�
are disjoint	 the overall probability may be computed as the
sum of the individual probabilities	 or alternatively	 as the
probability of the inclusive�OR of the functions� This is true
because it is easy to see that P �g�h� 
 P �g��P �h� for g and
h that are covered by disjoint cube sets�

Combining the Boolean arguments and simplifying�

f � x� � x� � x� � f � x� � x� � x� 
 x�x��x� 	 f� ���

Therefore	 we can rewrite Equation � as�

Hk 
 �n�i��i��P �x�x��x� 	 f�� � �� ���

�

The manipulations used in Example � may be applied
to all of the modi�ed Haar spectrum coe�cients� This
leads to the interesting result that the modi�ed Haar
coe�cients depend on the set of n � � Boolean rela�
tions� ff 	 �� f 	 x�� f 	 x�� � � � � f 	 xng� which describe the
equivalence of a particular dependent variable� xi� and the
function to be transformed� f � We refer to this set of func�
tions as the characteristic equivalence relations� Higher or�
dered coe�cients are based on disjoint partitions of the range



space of these equivalence functions� The partitioning is ac�
complished by ANDing the equivalence functions with vari�
ous cubes of other dependent variables of f referred to as the
characteristic cubes� The speci�c co�factor that pm is com�
puted from is given by the inherent order of the dependent
variables describing f �

Table � contains the probability functions for an n 
 

variable transformation in terms of the characteristic equiv�
alence relations� Using this table� each coe�cient can be
computed using Equations � and ��

Hi 
 �n�j ��j��pm � �� ���

j 


�
�� i 
 �

blog��i�c� i � �
���

We can also compute the total number of possible dif�
ferent valued coe�cients for a particular i �or equiva�
lently� a particular j�� We note that the Haar coe�cients
range in value as given by f��n�j���n�j � ����n�j �
�� � � � ���� ����� � � � � �n�j � �� �n�j � �� �n�jg� Thus� the to�
tal number of possible di�erent valued coe�cients �denoted
by Nj� is given in Equation ���

Nj 
 �n�j � � ����

Table �� Relationship of the Haar Spectrum and Character�
istic Equivalence Functions

SYMBOL j n� j pm

H� � 
 P �� � f 	 ��

H� � 
 P �� � f 	 x��

H� � � P �x� � f 	 x��

H� � � P �x� � f 	 x��

H� � � P �x� � x� � f 	 x��

H	 � � P �x� � x� � f 	 x��

H
 � � P �x� � x� � f 	 x��

H� � � P �x� � x� � f 	 x��

��� Probabilistic Equivalence Checking

By the de�nition of event E and the assumption that all
functions of n variables are equally likely to arise �uniform
distribution�� it is easy to see that�

P �E� 

�

��n
����

Since the Modi�ed Haar spectrum for a given fully speci�
�ed Boolean function is unique ����� Equation �� also holds�

P �SijE� 
 � ����

Equation �� may be generalized for the occurrence of any
subset of q events� fSig� to that shown in Equation �
�

P �

q�
i��

SijE� 
 � ��
�

Also we see that P �Si� is the ratio of all possible func�
tions that yield the coe�cient� Hi�f�� divided by the total
population of ��

n

� We de�ne a counting function� k�Hi��
that is integer valued and yields the number of fully speci�ed
Boolean functions for which the ith Haar spectral coe�cient
is Hi� Thus we can express this relationship as shown in
Equation ���

P �Si� 

k�Hi�

��n
����

From probability theory� we know that Equation �� holds�

P �E
�

Si� 
 P �SijE�P �E� 
 P �EjSi�P �Si� ����

Using the relationships in Equations �� �
 and ��� we see
that the conditional probability becomes�

P �EjSi� 

P �E�

P �Si�



�

k�Hi�
����

In general� for any subset of events� fSig� we have the
expression as given in Equation ���

P �Ej
Tq

i�� Si� 

P �E

T


T

q

i��
Si��

P �
T

q

i��
Si�




	
�

��n


	
�

P �
Tq

i�� Si�






�

��nP �
Tq

i�� Si�
����

Equation �� is the governing expression for the probabilis�
tic equivalence checking technique described in this paper�
We see that given a subset of matching Haar spectral coe��
cients for two functions� f and g� �or alternatively� a subset
of events� fSig�� the probability that f and g are indeed
equivalent may be computed� By obtaining the information
that a new event Si has occurred� we may update the value
P �
Tq
i�� Si� thereby increasing the value P �Ej

Tq
i�� Si��

��� Relation of Haar Coe�cients to Probabilis�
tic Events

This section will derive the relationship between the prob�
abilistic events� Si� and their dependence upon the corre�
sponding Haar spectral coe�cients� Hi�f� and Hi�g�� The
Haar spectral coe�cients may be obtained through the use
of any e�cient method such as those in ��� ��� �����

We note that given the ith Haar spectral coe�cient for
a function� f � and a function� g� there appear to be four
possibilities as given in Table 
� It is seen that as soon as
Hi�f� �
 Hi�g� occurs� it is possible to declare f �
 g and
to terminate the process of equivalence checking� However�
when Hi�f� 
 Hi�g�� it is not known whether f 
 g or f �
 g
unless all possible Hi are found to be equivalent� However�
it is possible to successively re�ne the P �Ej

Tq
i�� Si� value

using Equation ���
For this probabilistic scheme to be practically useful� we

need to determine the joint distribution� P �
Tj��n��
i Si�� as

a function of the corresponding subset of Haar spectral co�
e�cients� We �rst consider the simple case of determining



Table 
� Apparent Possibilities Given f � g� Hi�f� and Hi�g�

Function Relation Hi Relation Observation

f 
 g Hi�f� 
 Hi�g� Possible f 
 g

f 
 g Hi�f� �
 Hi�g� Not Possible

f �
 g Hi�f� 
 Hi�g� Possible f 
 g

f �
 g Hi�f� �
 Hi�g� f �
 g

a function for P �Si� that depends on the single Haar spec�
tral coe�cient� Hi� For a single matching coe�cient� we
are interested in �nding� P �EjSi�� Since it is known that
P �E 
 Si� 
 P �Si�P �EjSi�� we can express the conditional
probability as given in Equation �� since P �Si� �
 ��

P �EjSi� 

P �E 
 Si�

P �Si�
����

The numerator of Equation �� is the percentage of func�
tions f and g that have a common Haar coe�cient� Hi�
Since all equivalent functions have the same Haar spectra
by the uniqueness property of the transform� we see that
P �E 
 Si� 
 ����

n

� The denominator of Equation �� is the
percentage of functions that have a common Hi value� In
general� many di�erent functions can have common Hi val�
ues� For example� � out �� possible functions of n 
 � vari�
ables have H� 
 �� Based on the de�nition of the counting
function� k�Hi�� we can then express P �Si� 
 k�Hi����

n

and
Equation �� is rewritten as Equation ���

P �EjSi� 

�

k�Hi�
����

The relationship between the characteristic equivalence
functions and the Haar spectral coe�cients is established in
the following results�

Lemma � Two Boolean functions	 f�x�� x�� � � � � xn� and
g�x�� x�� � � � � xn� can not be equivalent if it is true that
P �f 	 xi� �
 P �g 	 xi��

Proof� Assume the contradiction of the lemma� that is
P �f 	 xi� �
 P �g 	 xi�� but f 
 g� Since f 
 g� then it must
be true that f 	 xi 
 g 	 xi and that P �f 	 xi� 
 mf��n

and P �g 	 xi� 
 mg��n where mf is the number of dis�

tinct ��values in the truth vector of f 	 xi and mg is the
number of distinct ��values in the truth vector of g 	 xi�
But since P �f � 
 P �g� and f 	 xi 
 g 	 xi� it must be the
case that mf 
 mg � thus contradicting the assumption that

P �f 	 xi� �
 P �g 	 xi�� �

Corollary � Two co�factors about the same cube of f 	 xi
and g 	 xi have identical output probabilities�

We denote fci as the function that is formed as the inter�
section of some cube and ith characteristic equivalence func�
tion� Thus� fci depends upon all n variables and pm 
 P �fci��
The total number of functions with a common Hi value �de�
noted as k�Hi��� can be computed as the total number of

di�erent fci functions that have a common P �fci� due to
Corollary �� Therefore� k�Hi� is the di�erent number of
ways that a function with a range space of size �n�j can
have �npm logic�� values� This combinatorial quantity must
be scaled by a constant to account for the decreasing magni�
tude of the Hi that are distributed over the entire population
of ��

n

functions as i increases� This scaling factor is seen to
be �N��Nj where Ni is de�ned in Equation ��� Given these
observations� k�Hi� can be expressed as�

k�Hi� 
 �N��Nj

�
�n�j

�npm

�
����

Using the fact that �N��Nj 
 ��
n��n�j and that pm 


Hi��n�j

�n�� � we can reduce Equation �� to Equation ���

k�Hi� 
 ��
n��n�j

�
�n�j

Hi��n�j

�

�
����

Thus� we can rewrite Equation �� as shown in Equation
���

P �EjSi� 


	
�

��n��n�j


�
�n�j

Hi��n�j

�

���

����

As an example� consider the case where H��f� 
 H��g� 

� for n 
 � variables� To compute P �EjS��� we use the
relationship in Equation �� resulting in P �EjS�� 
 �

� �
To successively improve the P �EjSi� value� it must be up�

dated with each subsequent event� Si� For a practical imple�

mentation� this means that P �
Tj��n��
i Si� must be computed

as a function of the corresponding Haar coe�cients� Hi�
However� this value cannot be computed as a simple product
of individual P �Si� values since the multiple Si events are not
necessarily statistically independent�

For the general case� we must re�compute P �
Tq
i�� Si� for

each new event� Si� in order to update the P �Ej
Tq

i�� Si�
value� Some events are statistically dependent while other
subsets are not� Recall that the values� Hi� depend on co�
factor functions of various characteristic equivalence func�
tions about some cube� A subset of events� fSig� are all
statistically independent if they result from a corresponding
subset of matching Haar spectral coe�cients� fHig� that are
formed based on Shannon co�factors with respect to mutu�
ally disjoint cubes� As an example� H� and H�� result from
the functions x� � f 	 x� and x� � f 	 x� which are disjoint�
Thus� P �S�

T
S�� 
 P �S��P �S�� since x� and x� are disjoint

characteristic cubes�
Not all events� fSig� are statistically independent� As an

example� H� and H� are dependent since an intersection of
the co�factors of the characteristic equivalence functions of
H� and H� exists and is non�null� In order to �nd the value
P �S�

T
S��� we generalize our de�nition of the counting func�

tion to k�H�� H�� which will denote the number of possible
Boolean functions that may have both H� and H� as Haar
spectral coe�cients� Given this quantity� we may then ex�
press the desired joint probability as given in Equation �
�

P �S�
�

S�� 

k�H�� H��

��n
��
�



In general� we have Equation �� resulting in Equation ���

P �

q�
i��

Si� 

k�Hi� Hi��� � � � � Hq�

��n
����

P �Ej

q�
i��

Si� 

�

��nP �
Tq
i�� Si�



�

k�Hi� Hi��� � � � � Hq�
����

To compute this joint probability distribution� we must
have some information concerning the dependent relation�
ship between individual k�Hi� and k�Hm� values� As an
example of this dependence� we will derive the relationship
between H� and H�� For i 
 �� �� the integer j is zero valued
yielding the relationships as shown in Equations �� and ���

H� 
 �n��pm� � �� ����

H� 
 �n��pm� � �� ����

For these two coe�cients� we have the output probabilities
pm� and pm� that may be expressed as�

pm� 
 P �� � f 	 �� 
 P �f � 

�

�
fP �fx� � � P �fx� �g ����

pm� 
 P �� �f 	 x�� 
 P �f 	 x�� 

�

�
fP �fx� � �P �fx� �g ����

Thus� the corresponding Haar spectral coe�cients be�
come�

H� 
 �nfP �fx� � � P �fx� � � �g �
��

H� 
 �nfP �fx� � � P �fx� �� �g �
��

Equating the P �fx� � values results in the relationship be�
tween H� and H� as given in Equation 
��

H� 
 H� � �nfP �fx� �� P �fx� �g �
��

Using the result of Equations �� and 
�� we have�

k�H�� 


�
�n

H���n

�

�



�
�n

H���nfP �fx� ��P �fx� �g��n

�

�




�
�n

H���n

� � H��H�

�

�
�

�

Using the identity relation��
n

k

��
n� k

m� k

�



�
n

m

��
m

k

�
�
��

We rewrite Equation 

 as��
�n

H���n

�

��
H���n

�
H���n

�

�




�
�n � H���n

�
H���n

� � H���n

�

��
�n

H���n

�

�
�
��

Equation 
� reduces to Equation 
� and we de�ne the
resulting quantity as the value A����

A��� 

k�H��

k�H��



�
�n � H���n

�
H���n

� � H���n

�

��
H���n

�
H���n

�

���

�
��

Thus� we have the result that the values k�H�� and k�H��
are deterministically related as k�H�� 
 A���k�H��� Using
this fact� we devise a means for computing the desired joint
quantity� k�H�� H��� We know that for a given H� and H�

to exist for a single function� the corresponding k�H�� �
A���k�H�� 
 �� Thus� it is possible to check all possible
k�H�� values for H� 
 f��n���n � �� � � � ���� �� �� � � � � �n �
�� �ng and where the relationship is satis�ed� we increment
the value of k�H�� H��� This may be expressed in closed form
through the use of the unit�step function� u���� as de�ned
Equation 
��

u��� 


�
�� � 
 �

�� otherwise
�
��

Equation 
� then expresses the desired relationship�

k�H�� H�� 


�n��X
i��

u�k�H�� �A���k�Hi�� �
��

The upper bound of the summation is the total number
of possible Haar spectral coe�cients that can result for the
i 
 � coe�cient� Although the complexity of this approach
is prohibitive for low�ordered coe�cients� Equation 
� can
be algorithmically stated as follows�

�� Compute A��� based on the value of the Haar spectral
coe�cients�

�� Initialize k�H�� H�� 
 ��


� Loop over all possible �n � � values of H� and evaluate
if �k�H���A���k�H�� 

 �� then k�H�� H�� � �

�� P �S�
T
S�� 
 k
H��H��

��n
� or� P �Ej�S�

T
S��� 
 �

k
H��H��
�

This procedure can be generalized by deriving and com�
puting new Ai�j�����k values each time a new event� Sk� occurs
and updating the P �

Tq

i�� Si� and hence� the P �Ej
Tq

i�� Si�
values�

In general� this procedure leads to exponential complex�
ity for updating all new k values� However� we note that the
multi�resolution nature of the Haar transform allows us to
determine subsets of coe�cients that are statistically inde�
pendent� thus avoiding the computation of large joint distri�
butions� This can also be coupled with the construction of
of the partial BDDs by constraining them to represent mu�
tually disjoint portions of the functions under consideration�
We also note that the decreased range space dimension of
high�ordered coe�cients� Hi� can allow the algorithm to run
in reasonable time for those Hi�



Table �� All Possible Boolean Functions for n 
 � and their
Haar Spectra

Function� f H� H� H� H�

� � � � � � � �

� � � � � � � �

� � � � � � � ��

� � � � � � � �

� � � � � �� � �

� � � � � � � �

� � � � � � � ��

� � � � �� � � �

� � � � � �� �� �

� � � � � � �� �

� � � � � � �� ��

� � � � �� � �� �

� � � � � �� � �

� � � � �� �� � �

� � � � �� �� � ��

� � � � �� � � �

� Example Calculation

As an example� consider Table � which contains the Haar
spectral vectors for all possible functions of n 
 � vari�
ables� We will assume that we are dealing with two func�
tions� f�x�� x�� and g�x�� x�� such that f and g are equiv�
alent to the function represented in the third row of Ta�
ble �� Thus� the corresponding Haar spectral vector is
HT �f� 
 HT �g� 
 �H�� H�� H�� H�� 
 ��� �� ������ Figure �
contains the Karnaugh maps and corresponding partial and
complete BDDs for the function f �or g�� Note that the
BDDs are also interpreted as HSDs with the �� edges hav�
ing an attribute equal to a Haar spectral coe�cient value�
The coe�cient attributes are shown on the HSD�BDDs with
an ��	 indicating that the exact coe�cient could not be
computed� From the center partial HSD�BDD� we see that
H� 
 � and from the rightmost partial HSD�BDD we see
that H� 
 ���

From the partial BDDs� it is seen that only two Haar
spectral coe�cients can be obtained� H� and H�� This is
due to the fact that H� and H� require a completely speci�ed
HSD since the corresponding transform matrix rows have no
��valued entries� For more practical cases with much larger
values of n� we obtain a larger fraction of the total number
of Haar coe�cients than the ��� obtained from this small
example�

Using the previously derived equations� we have k�H�� 

�� k�H�� 
 � and k�H�� H�� 
 �� These values result
in the probability values P �EjS�� 
 �

� � P �EjS�� 
 �
� and

P �Ej�S�
S��� 
 �
� � Furthermore� we note that P �S�
S�� 


P �S��P �S�� 
 � �� �� �� � 
 �
� in this case since S� and S� are
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Figure �� Karnaugh Maps and HSD�BDDs of Complete and
Partial Functions

statistically independent� The independence arose from the
fact that the two partial BDDs represent disjoint segments
of the range space of the function� If this is ensured during
the construction of all partial BDDs� the joint computation
of k�H�� H�� may be avoided and P �Ej�S� 
 S��� may be
computed as given in Equation 
��

P �Ej�S� 
 S��� 
 �
��nP �S��S��



�

��nP �S��P �S��



�

�� �
�



�

�
�
��

This result shows that there are only � possible functions
out of the population of ��

n


 �� that have H� 
 � and
H� 
 ���

� Experimental Results

Some preliminary experiments were formulated to inves�
tigate the e�ectiveness of using Haar spectral coe�cients for
equivalence checking� Our initial experiments were run to
observe the average number of Haar coe�cients needed be�
fore a mismatch in value was found for two functions known
to be slightly di�erent� These results also give an indication
of how di�erent errors between two versions of a circuit a�ect
the number of required Haar coe�cients for a mismatch to
be found�

The initial set�up for this experiment involved choosing
a single output from a benchmark function and randomly
inserting a single inverter in the netlist� Next� HSDs were
formed for the circuit with the inverter and without� To
ensure the two HSDs did indeed represent di�erent functions�
a graphical equivalence checker was used� The experiment
consisted of randomly extracting pairs of same�order Haar
coe�cients from the two representations until two were found
that di�ered in value� For each given circuit error �that is�
each given inverter insertion� ���� trials were made�

Table � contains the results for �� benchmark functions�
each with �� di�erent inverter errors� The column labeled



Table �� E�ect of Di�erent Errors on Haar Coe�cient Matching

Circuit Inp Inverter Error ��� Random Trials�
c�
� 
� avg ���� ���� ����� ���� ���
 ��� ��� ��� ���� ����

dev ���
 ���� ����� ���� ���
 ��� ��� ��� ���� ����
c��� �� avg ���
 ���
 ���� ���
 ���� ����� ���� ���� ���� ����

dev ���� ���� ���� ���� ���
 ��
�� ���� ���� ���� ����
c��� �� avg ����
 
�
�� 
��� ����� ����� �
��� ���� ���� ���� ����

dev ����� 
���� 
��� ����� ��
�� ����� ���
 ���� ���
 ����
c���� �� avg ���� ��� ���� ����� ��� ���� ��� ��� ���
 �����

dev ���� ��
 ���� ����� ��� ���� ��� ��� ���� �����
cm���a �� avg ��
 ���� ��� ��� ���� 
���� ��� ��
 ����
 ���

dev ��� ���
 ��� ��� ���� ��
�� ��� ��� ����� 
��
cu �
 avg ���� ���� ���� ���� ����� ��
�
 ����� 
��� ����� ����

dev ���� ���� ���� ���� ����� ����� ����� 
��� ����� ����
misex
 �� avg 
���� ���� ����� 

��� 
�
�� �
��� ���� ���� �
��� ����

dev 

��� ���� ����� 
���
 ����
 ��
�� ���� ���� ����� ����
frg� �� avg 
�����
 ���� ����� �������� ������ ����� 
����� ������� 
������ ������

dev 
������ ���� ����� ����
��
 ������ ������ ������ ������� 
������ ������
too large 
� avg �
��� ������ �������� ������ ����� �
���� ����� �
��� ����� ������

dev ����� ������ ��
����� ������ ����� ������ ����� �
��� ����� ������
t��� �� avg ����� ��
�� ����� �
�
 
�� ������ �
�� 
�
�� ����� �����

dev ����� ����� ����� ���� ��� ������ ���� 
���� ����� �����

Inp contains the number of distinct variables that the func�
tion depends on and the row labeled avg is the average num�
ber of Haar coe�cients �over the ���� trials� that were re�
quired before a mismatch occurred� Likewise� the row la�
beled dev contains the standard deviation of the number of
required Haar coe�cients� It is apparent that the standard
deviation is approximately the same value as the mean in all
cases� This is a result of the fact that the subset of Haar
coe�cients was chosen randomly with the assumption that
each was equally likely for two designs that are known to
di�er �ie�� a geometric distribution resulted in terms of the
average number of coe�cients before a mismatch occurred��
Although this observation is largely an artifact of our exper�
imental setup� another result is the large range in value of
the required number of coe�cients in order to detect the dif�
ferences in the two circuits� As an example� we see that the
benchmark frg
 has di�erences in the averages that are as
great as four orders of magnitude �eg� ���� versus ����������

The data presented in Table � was computed in order to
compare the Haar coe�cient matching scheme to random
simulations� These results compare the average number of
required Haar coe�cients to the number of random simula�
tions that must be performed before a di�erence in the two
circuits is detected� The simulations were performed using
equally likely� randomly generated test vectors� The aver�
ages were formed over the �� circuit modi�cations described
above with ���� trials each� In terms of comparing just the
number of simulations to required Haar coe�cients� we see
that each technique is approximately equal since of the ��
benchmark functions in Table �� �
 required fewer coe��
cients than random simulations�

However� we must point out the very important fact that
the computational overhead required to obtain a single Haar
coe�cient is likely not equal to that for performing a sim�
ulation� Furthermore� the assumption that the Haar coef�

�cients are equally likely to occur also biases these results
to some degree since the subset of coe�cients resulting from
a speci�c partial HSD will have mutual dependence due to
the de�nition of the transform� Nevertheless� we can con�
clude that the use of Haar coe�cients does appear to yield
as much information as random simulations over this sam�
ple of benchmark functions� The importance of this result is
that schemes that allow for the computation of Haar coe��
cients more e�ciently than a netlist simulation can be used
to increase the e�ectiveness of statistical veri�cation�

� Conclusion and Future E�orts

A method for probabilistically determining the equiva�
lence of two Boolean functions has been developed and pre�
sented� We have combined the use of two notions partial
BDDs ���� and the computation of Haar spectral coe�cients
using a BDD as a HSD ���� The probabilistic framework has
been derived for the equivalence checking problem�

Preliminary experimental results indicate that this ap�
proach may be a viable alternative for equivalence checking
of functions that are di�cult to represent completely� Our
experiments also indicate that this approach may be better
in terms of required computational resources as compared to
a repeated simulation approach�

In the future� we plan to do more extensive experimen�
tation and to apply these techniques to a wide variety of
benchmark circuits and di�erent design errors� We also plan
to investigate the use of alternative spectral transforms other
than the Haar and to experiment with various methods for
choosing the way the partial BDDs are formed�



Table �� Average Number of Haar Coe�cients Before a Mis�
match Occurs

Circuit Inp Avg Number Avg Number
Coe�cients Simulations
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