A Numerical Method for Reed-Muller
Circuit Synthesis

M. A. Thornton, V.S.S. Nair
Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas, 75275

Abstract

A numerical computation based circuit synthests
technique s presented for the Reed-Muller canonical
form. The synthesis methodology 1s reduced to the
problem of finding a solution to linear system of equa-
tions i the real-field. The mathematical formulation
for this technique is developed and it s shown that a
untque solution exists. A synthesis example is pre-
sented along with a discussion on tmplementation is-
sues.

1 Introduction

As the complexity of VLSI circuitry increases,
testability concerns tend to grow proportionally. The
well-known properties of the Reed-Muller canonical
form make it an attractive candidate for testable cir-
cuit implementations [1]. Previously, the automated
synthesis of Reed-Muller logic circuits was accom-
plished via symbolic Boolean algebra manipulations
[2] [3], or the use of the Reed-Muller transforms [9]
[10] [13]. In this paper, we present an approach similar
to the Reed-Muller transform technique, however, we
develop a more general mathematical framework such
that the calculations may be performed in the field of
real numbers. Specifically, it is shown that the Reed-
Muller synthesis methodology can be reduced to solv-
ing a system of linear equations over the real-number
field.

By translating the Reed-Muller logic circuit real-
ization problem into a numerical calculation, we are
able to take advantage of the vast amount of results
available in the areas of numerical analysis and lin-
ear system theory (such as LINPACK [6]). Numerical
techniques using spectral information have been pro-
posed for general logic circuit synthesis in the past [7]
[8] [11]. These techniques have suffered from the expo-
nentially increasing sizes of the transformation matri-

ces. Recent work has resulted in more efficient means
for the computation of spectral coefficients [12] which
has renewed interest in spectral techniques and numer-
ical methods in general. The approach presented here
differs from the Reed-Muller transform in that we for-
mulate the problem as the determination of a solution
of a general linear system in the field of real numbers
rather than using spectral, or correlation, computa-
tions.

The organization of this paper is as follows. First,
the mathematical foundations of this technique are
developed and all of the necessary intermediate re-
sults are derived. Following the mathematical formu-
lation, a synthesis example is given. The details of
the synthesis example, including the specific solution
vector and resulting circuit, are provided. Further
implementation concerns are discussed including the
Input/Output and efficiency issues. Finally, we a dis-
cuss the advantages and motivation for the use of this
technique. In section 4 we conclude the results of this
research.

2 Mathematical Formulation

The development of the mathematical foundations
of this technique relies upon the concepts of rings and
morphisms.

The Boolean ring satisfies all of the properties of
a general ring along with the idempotence property
[4]. The familiar Boolean algebra is equivalent to the
Boolean ring, R, defined as follows:

R {Oala@a'}

Where 0 and 1 denote the logic values of zero and
one, the addition operator, @, denotes the binary
XOR operation, and the multiplicative operator, -, de-
notes the binary AND function. Clearly, the set, R,
forms a Boolean ring since all of the properties of a

general ring are satisfied [5] along with the idempo-
tence property.

Next, consider an alternative set, /. This set con-
tains the following elements:

R0, I+, x}
Where:
0 ={0,£2,£4,£6,...,£2j,.. .}
and
IT={+1,£3,£5,...,+(2i+1),...}

Thus, @ and I are the sets of all even integers (in-
cluding 0) and all odd integers (excluding 0), respec-
tively. The two operators in the set, 3/, are the addi-
tive operator, +, and the multiplicative operator, x.
These operators perform real addition and real multi-
plication, respectively. ' also satisfies the properties
of a Boolean ring [4].

The following lemma establishes the relationship
between the two rings ® and R’

Lemma 1 : The function, f(z) = x(mod2), forms
a ring morphism from R’ to R.

Proof: To prove this lemma, we demonstrate that
the following relationships exist:

fla+b)= f(a) & f(b) (1)

fla xb) = f(a)- f(b) (2)
for the following three exhaustive cases:
Case 1 : (a,b) €
Case 2 : (a,b) €1
Case3 :acl,bel

Case 1:
Let ¢ = 2n and b = 2m:

fla+b)

f(2n + 2m)

([)2(71 + m)](mod2)
[2n(mod2)] & [2m(mod2)]
0@ 0

= 0

fla)® f(b)

“f(a+b) = fla)® f(b)

flaxb) = f(2n x2m)
= 4nm(mod2)
= 0
fla) - f(b) = [2n(mod2)]- [2m(mod2)]
- 0.0
= 0

lax) = fa))
Case 2:
Let a=2n+1and b = 2m + 1:

fla+d) = f@2n+1+2m+1)
= [2(n+m+ 1)](mod2)
= 0
flay® f(b) = (2n+4 1)(mod2) & (2m + 1)(mod2)
= 1&1
= 0

“f(a+b) = fla)® f(b)

flaxb) = fl2n+1)x(2m+1)]
= [2(2nm+ n+ m) + 1](mod2)
= 1
fla) - f(6) = (2n+1)(mod2)-(2m+ 1)(mod2)
= 1

flaxb) = fla)- £(b)
Case 3:
Let ¢ = 2n and b = 2m + 1:

fla+bd) = f2n+2m+1)
= [2(n+ m)+ 1](mod2)
= 1
fla)y® f(b) = 2n(mod2)® (2m+ 1)(mod2)
= 0&1
= 1
Lfla+b) = fla) @ f(b)
flaxbd) = f2nx(2m+1)]
i [2(2nm + n)](mod2)
fla) - f(b) = 2n(mod2)-(2m + 1)(mod2)

-1

Il
cownw o

" flaxb) = f(a)- f(b)

Since equations 1 and 2 hold for all 3 cases, f(x) =
z mod 2 forms a ring morphism between R’ and ®. O

Next, the Reed-Muller form is presented with a
3-variable example as motivation for the following

mathematical results. The complement-free ring sum
formulation of the canonical Reed-Muller form for a
three-variable function may be expressed as:

F(x) =10 ®ri# @ ro®s ®raxs ® ry21€2®

T5X1T3 D reXals O rrL1%aTs (3)

Where the dotted variables represent function in-
puts that are either all complemented, or, none are
complemented. The r; terms are Boolean constants
that have value 71”7 or 70”. Equation 3 contains op-
erations and elements from the Boolean ring, & (the
omission of a binary operator between two consecutive
variables in 3 implies that the operation denoted by -
occurs). Equation 3 is rewritten in the following form:

F(x)=rogo ® r1g1 ® rags ® 1393 D 494D

r595 & rege D rrg7 (4)

Where the r; are Boolean constants described
above, and each g; is the AND (product) of a subset of
the function’s literals. Each particular realization of
the complement-free ring sum of the Reed-Muller form
is then simply a specified set of r; values that will be
referred to as the vector, R. The set of functions, g¢;,
will be referred to as the ”constituent functions” of
f(z). Tt is convenient to rewrite equation 4 in vector
matrix form as:

GR=F ()

Where the elements of the function vector, F, and
the constituent function matrix, GG, are known (or are
easily computed), and the elements of the R vector
specify the complement-free ring sum formulation of
the Reed-Muller canonical form. The column vectors
formed from all possible outputs of the constituent
functions, g¢;, are concatenated to form the coefficient
matrix, (7, and the corresponding function outputs are
concatenated to form the function vector, F.

The two forms for the complement-free ring sum
expression were given in equation 3. This implies that
two different coefficient matrices exist for 5, denoted
by G and G’. The matrix, G, is used when all z; =
z; and G’ is used when all #; = z} (' indicates the
application of the complement function to a Boolean
variable). In the following, we define the coefficient
matrix, GG formally.

Definition 1 : The matriz, G, is a concatenation of
the output column vectors of the constituent functions,
gi, with no mverted inputs. a

Consider the smallest possible (¢ matrix, denoted as
(5, where the subscript indicates the number of func-
tion inputs.

dgo 4 2 g3

19
0 0
1 0
0 1
1 1

_ o O O

Where the constituent functions are defined as:

go = 1

g1 = o

g2 = 1

gs = Zo-T1

Likewise, the matrix G is defined as:

g5 95
1

O O O =
==

1
0
0

Where the constituent functions are defined as:

go = 1
o= %

g = T

g5 = xH- T

Lemma 2 : The coefficient matrices, G and G’ are
triangular matrices with all g;; = ¢}, = 1.

Proof: The trivial matrix,

1 0
=[]
is triangular.

Also, from definition 1, (G5 1s also seen to be tri-
angular. Higher ordered matrices, (G,,, may be recur-
sively defined using (7 as a kernel since all functions,
gi, are AND functions or literal values themselves.
The following definition holds:

Also, G| and G4 are triangular and G% may also be
used to recursively define G/, as follows:

! G/
G;z — [n—1 n—1:|
0 no1
Where,
11
! —
o = o]

Since (1 and (5 are triangular and G, may derived
in terms of Gy_1, by induction, GG, is also triangular
since it 1s formed with sub-matrices, G,,_1, along its
diagonal with the all zero sub-matrix in one quadrant.
O

Next, we will show that the solution vector, R, al-
ways contains components that are members from the
field of positive and negative integers, 7. Where 7 is
defined as:

Z=1{..,-3,-2,-1,0123,..}

Lemma 3 : The solution vector, R, in the equation,
GR = F, contains only integer components.

Proof: As mentioned previously, the coefficient
matrices, G, and G7,, contain only 1 and 0 elements.
Also, these matrices are triangular with diagonals con-

sisting of all 1’s. Hence:
det(Gy) = det(GL) =1
It is desired to solve the equation:
G'R=F

Where G* represents either G,,, or GJ,. The solu-
tion to this equation is well known and may be ex-
pressed in terms of the cofactors of G* as:

R = G'E
= [det(G*)] teofactor(G*)F
[1][ecofactor(G™)]F

Since the cofactor matrices are formed with no divi-
sion operations, the matrix, [cofactor(G*)], contains
only integers. Since the matrix, G*, always has a de-
terminant of 1, the solution vector, R, is formed as
a vector-matrix multiplication of the integer matrix,
[cofactor(G*)], and the integer vector, F. Hence the
solution vector always contains integer components.

O

This lemma establishes the fact that the solution
of equation 5 is performed over the Boolean ring, :’.
This result along with the previous definitions and
lemmas allow the following theorem to be stated and
proved:

Theorem 1 : Given any Boolean function, F', and a
binary vector, B = [by, b, b3, ..., b,]7 such that F =
b1g1 @ bogo ® ... D bpgn, then there exists a vector,
R with each r; € 7, such that GR = F and R(mod
2) = B. Where I is the binary vector formed from the
output column of the truth table of the function, F.

Proof: From lemma 3, R has the property that
each r;, € Z. From lemma 1, the function, f(z) =
z(mod2) forms a ring morphism between R’ and .
Hence, the application of f(z) to each component in
the vector, R, isomorphically maps R to B. a

Corollary 1 : FEvery Boolean function has a unique
complement-free ring sum form of the Reed-Muller ex-
pansion.

Proof: From lemma 2 it was proven that all G,
and (G, matrices are triangular. From definition 1 it
was noted that all g;; = g/, = 1. Hence the deter-
minant of the coefficient matrices is 1, guaranteeing
a unique matrix inverse exists. Since R and B from
theorem 1 are isomorphic and R is unique due to the
existence of a unique inverse of G and G’, then B also
1s unique. a

This section has presented the mathematical justifi-
cation for the synthesis technique for the complement-
free Reed-Muller forms. These results may easily
be extended to any of the generalized Reed-Muller
(GRM) expansions with any arbitrary polarity num-
ber. The following section will provide a numerical
example and a discussion of implementation issues.

3 Example

Consider the Boolean function specified by the fol-
lowing truth table:

9 sl o F
0 0 0|1
0 0 111
0 1 00
0 1 111
1 0 0] 1
1 0 110
1 1 0] 1
1 1 111

Figure 1: Truth Table Contents of the Function to be
Synthesized

The resulting matrix equation is given as:

10000000 1
11000000 1
10100000 0
L1 11000 0f , _ |1
1000 1000]| = = |1
11001100 0
10101010 1
11 11 1 11 1] 1]

Solving this system in the real field yields the fol-
lowing solution vector:

R = [10 -1011 -1 0]

Mapping this vector, from R’ to R using f(x), we
obtain:
7=

[1 01 01 11 0]

Each element of the solution vector corresponds to a
specific r; resulting in a realization of the Reed-Muller
form as given in 3. The resulting function is:

f(2) =18 218 xoz1 & 2oz B 2120 (6)

Currently, we have implemented an experimental
version of this code using the C language. It is appar-
ent, however, that due to the well-defined nature of
the G, and G, matrices, it is not necessary to com-
pute a linear equation solution for each synthesis. In
fact, a more efficient method would consist of access-
ing a database of the inverses of G, or G, and sim-
ply performing a vector-matrix multiplication for each
synthesis task similar to computing the Reed-Muller
transform in the real field.

The input to the experimental algorithm is the out-
put vector of the function to be synthesized. However,
it would be very easy to incorporate a Boolean ex-
pression parser at the front end to produce the output
vector automatically, resulting in defining the input in
terms of an equation.

The output of our program is of the form of a
a structural Hardware Description Language (HDL)
net-list. By choosing this form for output, the cor-
responding circuit is easily verified and may be piped
into any automated synthesis tool that supports struc-
tural HDL input. Specifically, the output of this pro-
gram is in the Verilog© HDL.

4 Conclusions

A numerical technique for Reed-Muller circuit syn-
thesis has been developed and presented. It has been
shown that this technique is equivalent to determin-
ing the solution to a set of linear equations in the
real-number field. An example of this technique was
provided with a brief description of implementation
issues.

Further investigations into numerical techniques for
logic synthesis are ongoing. In particular, we are inves-
tigating the use of heuristics for the reduction of the
synthesis algorithm complexity (both space and time)
and the use of generalized linear transformation tech-
niques. The result presented in this paper is significant
in our ongoing research since 1t develops the necessary
mathematics for performing Reed-Muller circuit syn-
thesis using real-number arithmetic and providing a
unique solution.

References

[1] Reddy, S.M. Easily Testable Realizations for
Logic Functions, IFEE Trans. Comp. vol.
C-21, no. 11, pp.1183-1188, 1972.

[2] Muller, D.E. Application of Boolean Algebra
to Switching Circuit Design and to Error De-
tection, IRE Trans. Elec. Comp. vol. EC-3,
pp-6-12, Sept. 1954.

[3] Mukhopadhyay, A. and Schmitz, G. Min-
imization of EXCLUSIVE OR and LOG-
ICAL EQUIVALENCE Switching Circuits,
IEEE Trans. Comp. vol. C-19, no. 2,
pp-132-140, 1970.

[4] Bartee, T.C., Lebow, L.L., and Reed, L.S.,
Theory and Design of Digital Ma-
chines, Mc-Graw-Hill, New York, 1962.

[5] Larney, V.H., Abstract Algebra A First
Course, Prindle;, Weber, and Schmidt,
Boston, MA., 1975.

[6] Dongarra, J., Bunch, J.R., Moler, C.B., and
Stewart, G.W., LINPACK Users Guide,
SIAM Publications, Philadelphia, PA., 1978.

[7] Thornton, M.A., Nair, V.S.S. An Tterative
Combinational Logic Synthesis Technique
Using Spectral Information, To Appear in
Proceedings of FURO-DAC '93

(8]

[13]

Edwards, C.E.; The design of easily tested
circuits using mapping and spectral tech-

niques, Radio and FElectronic Engineer vol.
47, no. 7, pp.321-342, 1977.

Green, D., Modern Logic Design,
Addison-Wesley, Reading, Massachusetts,
1986.

Davio, M., Deschamps, J.-P., and Thayse,
A., Discrete and Switching Functions,
Mec-Graw-Hill, New York, 1978.

Hurst, S.L., Miller, D.M., and Muzio, J.C.,
Spectral Techniques in Digital Logic,
Academic Press, Orlando, Florida, 1985.

Clarke, E.M.; McMillan, K.L., Zhao, X.,
Fujita, M., and Yang, J., Spectral Trans-
forms for Large Boolean Functions with
Applications to Technology Mapping, 30-th
ACM/IEEE Design Automation Conference,
Dallas, Texas, 1993.

Varma, D. and Trachtenberg, E.A. Design
Automation Tools for Efficient Implementa-
tion of Logic Functions by Decomposition,
IEFEE Trans. on CAD vol. 8 no. 8, August,
pp. 901-916, 1989.

