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Abstract— This paper presents a new methodology
for the computation of the Reed-Muller spectral co-
efficients of a function of any fixed polarity using its
OBDD representation. By using past results that al-
low the computations to be performed using real arith-
metic, an efficient technique may be developed in the
real domain with the resulting coefficients obtained by
using a simple mapping relation to the GF(2) domain.
These results mathematically justify the OBDD based
approach developed in this work. This result is novel
since it relies on the use of OBDDs and the concept
of a Boolean function output probability to compute
the coefficients. This approach is also very general in
that it allows other types of coefficients (such as the
Walsh) to be computed as well as the Reed-Muller
forms with a single OBDD operation. A small exam-
ple of this technique is given to illustrate the approach
followed by some experimental results.

I. INTRODUCTION

The Reed-Muller (RM) spectrum can be used to pro-
vide information regarding the realization of a Boolean
function. However, when the spectrum is computed as
a vector-matrix product, difficulties arise for functions of
even moderate size due to large memory requirements.
We present a new approach that overcomes this difficulty
by allowing the function to be represented using a binary
decision diagram thus reducing the storage requirements.
In addition, the computational requirements are also re-
duced since an efficient method for computing the spectral
coefficients is employed.

By exploiting the relationship between output proba-
bilities of logic functions and their corresponding spectral
values, we have developed an efficient method for com-
puting the RM spectrum of a function of any fixed po-
larity. The spectrum computation problem is first formu-
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lated in terms of operations using real valued arithmetic
to mathematically justify the approach. Next, it is shown
that the spectral calculation problem may be translated
to the computation of the probability that the output of
a function is a logic 71”7 given all possible input values
are equally likely to occur. With this approach, we are
essentially computing the number of minterms using the
concepts of output probabilities as they were first defined
by Parker and McCluskey in [1].

The method presented here is a viable alternative to
other efficient spectral computation techniques recently
developed by other researchers [2] [3] [4] [5]. These tech-
niques use MTBDDs that are formed by performing BDD
operations that represent the computation of a vector
matrix product. In contrast, we use OBDDs that rep-
resent the logic function being transformed and a func-
tion representing a specific transform matrix row. The
method presented here has the desirable property of al-
lowing each spectral coefficient to be computed separately
so that memory resources for the entire spectral vector are
not required.

An approach very similar to the one presented here is
given in [6]. In this similar approach, the BDD represent-
ing the function to be transformed is used. For a given
RM coefficient, the BDD is examined for paths termi-
nating in a logic “1” node that represent a specific set
of minterms. Although our method can be viewed as a
technique for for counting minterms also, it has the desir-
able feature of allowing other forms of spectral coefficients
(such as the Walsh forms) to be computed as well as the
RM types for a single OBDD operation.

Other approaches have been developed to compute
spectral coefficients effectively using disjoint sets of cubes
to represent the function to be transformed [7] [8]. The
method we present can be advantageous to these ap-
proaches since, for large functions, the corresponding OB-
DDs may be very compact while the determination of a
corresponding set of disjoint cubes can result in a large
list. Further, methods to compute OBDD representa-
tions directly from multi-level circuit diagrams may be



employed in our method without resorting to “flattening”
a multi-level circuit in order to compute a corresponding
set of product terms.

One other important approach to the minimization of
the fixed polarity forms, and more general Exclusive-OR
Product of Sums (ESOP) forms is given in [9]. This
method uses ternary decision diagrams (TDDs) and ac-
companying algebraic subexpressions. The TDD repre-
sentation requires the nonterminal nodes to have three
children, two are similar to those found in standard OB-
DDs with the third representing an XOR relation with
preceding node variables. Although this approach is more
general in that it handles ESOP forms other than the
fixed polarity class, it can require more memory during
the computations.

Recently we developed an efficient technique for the
computation of the Walsh coefficients using output prob-
ability expressions (OPEs) [10]. This methodology was
not directly applicable to the RM spectrum since it re-
lied upon computations performed in the real field. In
this work, we show that the RM spectral coefficients are
mathematically related to values that may be computed
efficiently using real arithmetic. Once these computations
are complete, the actual RM spectral values are obtained
by using the isomorphic relation developed in the work
described in [11]. This result allows the recently devel-
oped efficient method for the computation of the Walsh
spectrum to be applied to the RM spectrum as well.

This work was motivated by the fact that other meth-
ods for the efficient computation of the fixed polarity RM
coefficients required the generation of a list of disjoint
cubes representing the function to be transformed, the
use of BDD techniques to compute a vector matrix prod-
uct, or, the evaluation of a BDD for paths terminating
at a logic “1” node. By developing this technique, we
were able to verify results of our experimentation with es-
timation of fixed-polarity numbers for minimal RM forms
using the same method as that for computing the Walsh
coefficients [10]. Since this method allows the coefficients
to be computed separately, it may also prove to be use-
ful for the application of RM coefficients to the Boolean
matching problem such as that recently proposed in [12].
In addition, the usual motivations for utilizing the RM
forms also apply such as a reduced product set for certain
classes of functions [13] [14], and the desirable testability
properties [15].

The remainder of the paper is organized as follows.
First, an overview of the pertinent results in [11] are
presented which describe why the computations may be
performed using real arithmetic. Next, the relationship
between the output probabilities and the spectral coef-
ficients are presented along with an efficient method for
their computation. Following the formulation of the com-
putation technique, a small example is given to illustrate
the method. Finally, a section on experimental results is
given followed by the conclusions.

II. OVERVIEW OF THE RELATION BETWEEN GF(2)
AND THE REAL FIELD

This section provides a brief description of the pertinent
results given in [11]. Although these results may be used
to directly compute the RM spectral coefficients using real
arithmetic, no savings in computation requirements will
result. The purpose of this section is to provide the the-
oretical background needed to explain the computation-
ally efficient approach in the next section. Specifically,
the results of this section show the relationship between
an integer valued linear transformation and the various
fixed polarity RM spectra. In particular, these results de-
scribe an isomorphic mapping function between the Ga-
lois field containing two numbers, G'F(2), and the real
field. Further, it is shown that the isomorphic function
maps into equivalence classes containing single elements
and hence may be used to determine a unique value. Since
the RM transform is defined over GF'(2), the existence of
an isomorphism that provides a unique mapping is crucial
because 1t will allow the transform calculations to be per-
formed in the real field where the efficient computation
method can be exploited. In order to formally develop
the isomorphic relation, the concept of an algebraic ring
and hence, a ring morphism is utilized.

A Boolean ring satisfies all of the properties of a gen-
eral ring along with the idempotence property [16]. The
Boolean algebra can be described with respect to the
Boolean ring, &, defined as follows:

®:4{0,1,®, } (1)

Where 0 and 1 denote the logic values of zero and one,
the addition operator, ¢, denotes the binary XOR op-
eration, and the multiplicative operator, -, denotes the
binary AND function. The set, R, forms a Boolean ring
since all of the properties of a general ring are satisfied
[17] along with the idempotence property.

Next, consider an alternative set, /. This set contains
the following elements:

R {0, 1,4+, x} (2)
Where:
0={0,£2,£4,46,...,£2j5,...} (3)
and,
I={+1,+3,£5,...,+(2i+1),...} (4)

Thus, § and I are the sets of all even integers (including
0) and all odd integers (excluding 0), respectively. The
two operators in the set, ', are the additive operator, +,
and the multiplicative operator, x. These operators per-
form real addition and real multiplication, respectively.
R’ also satisfies the properties of a Boolean ring [16].



The following lemma establishes the relationship be-
tween the two rings $ and $%’. The proof of this lemma
appears in [11].

Lemma 1 The function, f(x) = x(mod2), forms a ring
morphism from R’ to K.

Although Lemma 1 gives the isomorphic relationship
between the rings, & and R, it is also necessary to show
that the mapping is one-to-one so that a particular real
value, r}, does not map into an equivalence class of values
in & that contain more than one value. This fact may
be shown to be true based upon the uniqueness of the
solution of a linear set of equations. In particular, the
RM transformation matrix is used to form a set of equa-
tions whose solutions lie in the real field. The following is
a definition of the polarity-0 RM transformation matrix,
however all of the results hold for matrices of any
arbitrary polarity since they are all triangular.

Definition 1 The matriz, G, is a concatenation of all
possible product terms with each row forming the output
vector of the constituent functions, g;.

Consider the small G matrix, denoted as G5, where the
subscript indicates the number of function inputs.

1 000 90
_ 1 1 0 0 g1

Gz = 1 010 go (%)
11 11 g3

The constituent functions for G5 are defined as:

go = T1-T2
o= T

g2 = T2

g3 = 1

As described in [18] [19], the RM spectrum, R, may

be computed as given in Equation 6 where all arithmetic
operations are performed using those defined in .

R=GF (6)

As defined above, matrix, (7, is formed as the concate-
nation of column vectors corresponding to the output vec-
tors of all possible product terms. Since the RM form is
a linear combination of the product vectors, R must also
satisfy Equations 7 and 8.

GR=F (7)

R=G'F (8)

The reason Equation 6 holds is because G = G~ ! in the
ring ®. However G # G~1in the ring &', therefore the so-
lution of GR = F is required when real valued arithmetic
1s used.

The following Lemmas establish that the solution of
the linear system given in Equation 7 is unique, thereby
allowing the morphism to always map to a single value in
GGF(2). The proofs of these Lemmas appear in [11].

Lemma 2 The coefficient matriz, G, is triangular with
all gii = 1.

Lemma 3 The solution vector, R, in the equation, GR =
F, contains only integer components.

Lemma 3 establishes the fact that the solution of the
matrix equation performed over the Boolean ring, %’ is
always unique. This result along with the previous defi-
nitions and lemmas allow Theorem 1 to be stated. The
proof for this theorem is given in [11].

Theorem 1 Given any Boolean function, F', and a bi-
nary vector, B = [by,bo, b3,... b,]7 such that F =
b1gr ® bags ® ... D bugn, then there exists a vector, R
with each vy € 7, such that GR = F and R(mod2) = B.
Where F s the binary vector formed from the output col-
umn of the truth table of the function, f.

This subsection has presented the mathematical justi-
fication for computing the RM spectrum using real arith-
metic and then using the mapping relation to obtain the
coefficients in GF(2). Since the computations may be
performed in the ring, ', an efficient method may be for-
mulated and used as described in the following section.

ITI. RELATIONSHIP OF OUTPUT PROBABILITIES AND
THE RM SPECTRA

The output probability of a circuit is the probability
that the output of the circuit 1s a logic 71”7 given the
probabilities that each of the inputs are at a logic 717
value. In past work, OPEs were used to evaluate the
effectiveness of random testing [1]. Two methods were
developed for computing the OPE in algebraic form in
[1]. One method used the Boolean logic equation and the
other used logic diagrams. In [10] we noted that for all
possible inputs, each input is equally likely to be 707 or
?1”, and thus if % is used as the probability value for all
inputs, the resulting evaluation of the OPE will yield the
overall percentage of times that the function output is at
logic ”17.

Following this observation, we presented a methodol-
ogy for computing this quantity directly from an OBDD
representation of a logic function without resorting to us-
ing symbolic algebraic manipulations to form the actual
OPE. This technique is called the probability assignment
algorithm (PAA), and is summarized as follows.

Probability Assignment Algorithm

1: Assign probability = 1 for the initial node.



2: If the probability of node j = F;, assign a probability
of %Pj to each of the outgoing arcs from j.

3: The probability, Py, of node k is the sum of the prob-
abilities of the incoming arcs.

In the development given in the preceding subsection, it
was shown that a RM spectral coefficient may be obtained
by first computing a value in ' (denoted as ') and then
mapping it to ®. Unfortunately the formation and solu-
tion of the matrix equation to compute the values in %/
has a complexity similar to computing the coefficient di-
rectly using G'F(2) arithmetic. However, the ¢’ value can
be computed without resorting to solving a matrix equa-
tion by exploiting its relation to the output probability
of a circuit. Before this result is derived, the following
definition is helpful.

Definition 2 A Boolean function, f - g., which is com-
posed as the AND of a function to be transformed, f,
and a constituent function, g., is termed the composition
function and is denoted by feomp.

Definition 2 allows Lemma 4 to be easily stated and
proven.

Lemma 4 The real value, v', is directly proportional to
the output probability of the Boolean function, f.omp.

Proof: The value, v, can be viewed as the inner product
of the output vector of the function to be transformed,
f, and some constituent function, g.. Since each element
in these two output vectors is either 1 or 0, each partial
product of the inner product is also 1 or 0. In fact, the
partial product value of 1 only occurs when both f and g,
produce an output of 1 for a common given set of input
values. Thus, r’ is the total number of times the compo-
sition function, feomp = f - g, produces an output of 1.
If the output probability of f.omp is known (denoted by
@{feomp}) then ' is easily computed as shown in Equa-
tion 9. Note that @{f.omp} is evaluated with all function
variables,; ;, assumed to have a corresponding p{x;} = %

' =2" X p{feomp } (9)

Therefore ' is directly proportional to the output prob-
ability of the composition function with a constant of pro-
portionality of 2" where n is the number of primary in-
puts. O

It is now clear that the value of ¥’ can be obtained with-
out computing an inner product if the output probability
is known. This leads to the main result of this paper and
is given in Theorem 2.

Theorem 2 A RM spectral coefficient, r, may be di-
rectly computed using the value of the output probability

Of fcomp .

Proof:
From Lemma 1 it was shown that a particular RM co-
efficient can be computed from a real value as:

r = r'(mod2) (10)

From Lemma 4, the value, r’ is related to the out-
put probability, p{ feomp }. Substituting Equation 9 into
Equation 10 yields the final result as given in Equation
11.

r=(2"p{f - g.})(mod2) (11)

O

Theorem 2 provides the necessary theoretical relation

for the implementation of a method for computing a RM

spectral coefficient without requiring storage resources
proportional to the size of a functions’ truth table.

IV. EXAMPLE AND EXPERIMENTAL RESULTS

A program for the efficient computation of the RM
spectral coefficients was implemented using the C' pro-
gramming language. The BDD package developed by
David Long was used for all BDD processing. The pro-
gram receives the BDD description of the circuit to be
transformed as input. Based upon the desired polarity
number, a set of constituent functions corresponding to
the rows of the RM transformation matrix are specified.
For each computation of a spectral value, an OBDD rep-
resentation of each composition function is formed. After
the formation of the OBDD representing g., the APPLY
algorithm [20] is invoked thus forming the OBDD repre-
senting the composition function, f.omp. Next, the PAA
is invoked resulting in the output probability which is con-
verted to the RM spectral coefficient according to Equa-
tion 11.

Many logic functions are represented in a very compact
form when they are expressed as BDDs [21] in contrast
to the exponentially large size (in terms of number of in-
puts) required by a truth table, and hence an output vec-
tor. This fact allows the methodology implemented here
to compute a RM coefficient with complexity O(|| Ecomp||)
where ||Eompl|| is the number of edges in the BDD rep-
resenting feomp. However, there are some functions that
have a number of BDD nodes that are comparable to the
number of truth table values [22] [23]. For these cases, our
methodology degenerates to having a complexity equiva-
lent to performing the matrix calculations. Fortunately,
many functions of practical importance are described with
far fewer BDD nodes than truth table entries.

The overall time complexity of our approach is
O(||E¢|] % ||Eg.||) for each RM coefficient since each ap-
plication of the APPLY algorithm visits each node in
the BDD representing f a number of times equal to the
size of the OBDD representing g.. Since the constituent
functions for the RM transform are extremely simple,



the OBDD representing feomp is generally comparatively
small with respect to the OBDD for f. Most of the time
[|Ecomp|l < [|Ef]] X ||Eg.|| so the PAA algorithm requires
relatively little computation time. The storage require-
ment also has a complexity of O(||Ecomp|| since only the
storage of the composition function BDD is required.

Instead of computing and storing a probability value
(which lies in the interval [0,1]), the numerator of the
probability value is stored (which lies in the interval,
[0,27]). This modification alleviates possible underflow
errors, however the numerator value can overflow for large
values of n. The potential overflow problem was addressed
by storing a mantissa and exponent value at each node.
The exponent value is a power of 2 and is always as large
as possible. Therefore, a node at the k** level in the
OBDD always has an exponent value that is at least n—k.
This observation leads to an interesting fact as given in
Lemma 5.

Lemma 5 A necessary condition for a« RM spectral co-
efficient, r;, to have a value of 1 is that the OBDD rep-
resenting the composition function, f - g., must contain
a path consisting of n non-terminal nodes and a logic-1
valued terminal node.

Proof: Since the initial node is labeled with an exponent
value of n and the probability value of a node is halved
to obtain the value of subsequent nodes, each node at the
k" level of the OBDD will have an exponent that is at
least n — & in value. Since the coefficient, r; is computed
as the modulo-2 value of the product of the probability
value and 2”7 as given in Equation 11, the exponent of
the terminal ”1” node must be equal to zero in order for
r; = 1. An exponent value can never reach zero unless
n nodes in a single path have been traversed, allowing
the initial nodes’ exponent value, n, to be decremented n
times. ad
As an example of the computation,
Boolean function described by Equation 12.

consider the

(12)
The constituent function corresponding to the 7" RM

spectral coefficient for a polarity-0 transform is given by
Equation 13.

f(l’) =7T1%3+ €1 Toxs + T1x2 + T2T3

(13)

The output vector of Equation 13 is identical to the
7t row of the polarity-0 RM transformation matrix for
a 3 variable function. The corresponding OBDD repre-
sentations for f(z) and f(z) - g¢(x) are given in Figure
Iv.

The PAA algorithm is applied to the composition func-
tion, f(x) - gs(x), and the probabilities assigned to each
node are shown in Figure IV. The required quantity is the
sum of all probabilities at each terminal logic 717 node
and is given as p{f(x) - gs(x)} = 0.625. Substituting the

gs(z) = T3

probability value into Equation 11 yields the RM spectral
coefficient as shown in Equation 14.

re = [2% x 0.625](mod2) = 1 (14)

This implementation was tested using some of the
ISC'AS85 benchmark circuits as input. The following
tables contain some results of the computations. For ease
of description, we will refer to the subset of RM coeffi-
cients corresponding to constituent functions containing
m literals as the m'"-order subset of RM coefficients. The
particular polarity of each literal is specified by the po-
larity number of the corresponding RM transformation
matrix that defines the set of constituent functions.

Table I contains the results of the 0**-order (g, = 1)
RM coefficients for several different ISCAS85 circuits.
The label assigned to the particular output used is given
followed by the number of inputs, the size of the OBDD
in terms of vertices, and, the CPU time on a DECstation
500 that the computations required. The CPU time also
includes the time required to convert the ISC'AS netlist
into an OBDD representation. Since the OBDD for f.omp
is exactly the same as the OBDD for f in the case of the
0'"-order RM coefficient, only ||f|| is given in Table I.

Table 1I contains some of the 1*-order RM coefficients
for the circuit, ¢432 output 329gat which has 27 inputs
and 2792 vertices in its OBDD representation. The en-
tire amount of CPU time required for the computation of
Table II was 1.0 seconds including the time required to
parse the input netlist and construct the OBDD for ¢432.

TABLE I
O OrRDER RM COEFFICIENTS FOR VARIOUS NETLISTS

Netlist Output # Inputs |[|f|| CPU Time (sec)
c432 223gat 18 2791 0.2
c880 850gat 29 196 < 0.1
2670 188 14 14 0.1
3540 399 26 185 0.1
6288  4946gat 24 17057 7.6
7552 376 28 52 0.3
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Fig. 1. Binary decision diagrams of example function and composition function.

TABLE 11
1%* OrRDER RM COEFFICIENTS FOR OUTPUT 329gat OF c432

Constituent Spectral

Function [|f - ge|l Coeflicient
1gat 1387 0
4gat 2156 1
11lgat 1389 0
17gat 2160 1
24gat 1393 0
30gat 2168 1
37gat 1401 0
43gat 2184 1
50gat 1417 0
60gat 1488 1
73gat 1558 1
86gat 1712 1
99gat 2028 1
112gat 2027 1

V. CONCLUSIONS

An efficient means for the computation of the RM spec-
tral coefficients for a Boolean function has been presented.
The development of the method was described and the re-
lation between the spectral coefficients and the function
output probabilities was given. The experimental results

illustrate the viability of this approach.

This technique is particularly applicable for large func-
tions where it would be impractical to compute and store
the output vector. Since most functions may be repre-
sented in a compact manner using an OBDD representa-
tion, significant savings in computational resources result.
This method is comparable to efficient spectral compu-
tation techniques recently proposed by other researchers
since 1t uses BDD structures for the computations. In
some cases this approach may be advantageous since it
does not require the use of lists of disjoint cubes can be-
come very large and also since the spectral coefficients can
be computed one at a time. This technique also allows
spectral coefficients of the Walsh type to be computed
as well as the RM form with a single application of the
probability assignment algorithm.

In the future, we plan to extend the efficient spectral
computation methodology to use other forms of input
representation. Specifically, the use of shared BDDs [24]
would allow multi-output functions to be used as input,
and, the use of IBDDs [25] would reduce the size of the
required input for some classes of functions.
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