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Abstract

Direct transformations amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains are considered.
Matrix based techniquesare given and it is shown how these
can be implemented as fast in-place transforms. It is also
suggested howthesetransformscan beimplemented directly
on decision diagram representations.

1 Introduction

Transformations between the Boolean and various spec-
tral domains have been extensively studied, for example
[1, 2, 16, 18, 19]. In this paper, a set of fast transform tech-
niques are presented for direct transformation amongst cer-
tain spectral domains, i.e. transforms from one spectral do-
main to another that do not pass through the Boolean do-
main. These fast transform techniques can be directly im-
plemented on decision diagram representations. Their po-
tential utility is that the various spectral domains provide
different views of function properties so that being able to
transform directly from one domain to another may make
the exploration of a function more efficient.

This paper develops the desired transformations from
a matrix perspective making considerable use of the Kro-
necker matrix product. The approach is quite simple and
leads to mathematical structures that are consistent across
the transformations and which map very easily to decision
diagrams. The paper is not meant as a comprehensive re-
view of al previous approaches to this problem. The inter-
ested reader should consult the literature.

The paper isorganized asfollows. Section 2 providesthe
necessary mathematical background. Section 3 introduces
the spectral domains considered. Fast transform techniques
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are discussed in Section 4. Direct transforms amongst the
spectral domains are discussed in Section 5. Section 6
briefly outlines the use of decision diagram techniques to
implement the fast transforms. The paper concludes with
suggestions for ongoing research.

2 Background

An n-input completely-specified Boolean function f can
be represented by Y = {mg, my,ms...me._1}* acol-
umn vector with 2" entries each giving the functional value
for the corresponding minterm. f represented by Y can be
transformed from the Boolean to a spectral domain as fol-
lows:

R=T"Y (1)

where T" isa 2" by 2" transform matrix the precise spec-
ification of which defines the spectral domain in question.
In many cases, the matrix has a simple recursive structure
which can be used to significant computational advantage as
will be shown.

We restrict our interest to invertible transforms, hence:

Y =(T")"'R

The consegquence isthat the transformsbetween the Boolean
and spectral domains fully preserve information, but, as is
well known, the spectral domains make certain properties
easier to consider than in the Boolean domain, and different
spectral domainsilluminate different functional properties.

Often, the transform matrix can be expressed as a se-
guence of Kronecker products of a single base matrix. We
here provide a brief summary of the properties of the Kro-
necker product. More detail can befound in[11].

Given amatrix A of order (m x n) with the element in
the i*" row and j** column denoted a;; and a matrix B of



order (r x s), the Kronecker product A @ B isgiven by

a1 B a2B -+ a;,B

aB @B - ay,B
A®B=

am1B  a,2B Amn B

The product matrix has order (mr x ns). Note that unlike
the normal matrix product, the Kronecker product is defined
for any matrix orders.

For matrices A, B, C and D and a scalar «, thefollowing
properties hold

(cA)®B = «a(A®B)

A®(aB) = a(A®B)
(A+B)oC = A@C+BaC
A©(B+C) = A@B+A®C
A®(B®C) = (A@B)®C

(A@B)! = A'@B'

(A@B)(C®D) = AC®BD @

(AeB)™! = A~tgB!

Equation 2 is only valid when the matrices are of appro-
priate dimension for the normal matrix products.

Some simple observations are useful for the presentation
below. The Kronecker product of two symmetric matrices
isitself a symmetric matrix. Since the Kronecker product
is an associative operation, the order of application of a se-
guence of Kronecker products does not matter. The Kro-
necker product can be applied over the field G F'(2), afact
that will be useful in the consideration of the Reed-Muller
transform. Finally, given a square invertible matrix A, we

note that .
XAl =QRA!
i=1 i=1

Thisfollowsby theiterative application of theidentity (A ®
B)~! = A~! @ B™! and the associativity of the Kronecker
product.

3 Spectral Transforms

In this section, we present four particular spectral trans-
forms that have been extensively studied in the literature:
the Walsh, the Reed-Muller, the Arithmetic, and the Haar
transforms.

3.1 Walsh Transform

Perhaps the most well known and most widely studied
spectral transforms are based on a set of orthogonal func-
tions defined by J. L. Walsh in 1923 [29] which are an ex-
tension of a set of functionsdefined by H. Rademacher [22]

ayear earlier. The transform itself is a form of Hadamard
matrix [28].

The Walsh transform matrix W™ in Hadamard order can
be defined as

Wn—l

Wn—l _Wn—l

n—1
We=[1] w'= [ W ]
An equival ent definition using the Kronecker product is par-

ticularly useful here

and
W" = Wl ® Wn—l

SincetheKronecker product isassociative, thismay bewrit-
ten as .
W = Kw!
i=1

The rows of W"are the 2" n-variable Walsh functions of
which the n-variable Rademacher functions are a subset.
In addition to the Hadamard (Wal sh-Hadamard), the Walsh
(Walsh-Kaczmarz), the Paley-Walsh, and the Rademacher-
Walsh orderings have been studied [3][18] . The Hadamard
ordering has seen most use since the simple recursive struc-
ture of the transform matrix alows for ‘fast transform’
methods [6] [25]. The Hadamard, Walsh and Walsh-Paley
orderings share the very useful property that the transform
matrix is its own inverse up to a scaling factor of =-. The
practical importance of thisis that the same computational
procedure can be used for transforming between the func-
tion and spectral domains with the simple adjustment of
scaling.
The Walsh spectrum R of f isgiven by

R=W"Y

where the matrix multiplicationis carried out over the inte-
gers, i.e. logic 0(1) istreated as the integer 0(1).

An aternate formulation represents the function by the
vector Z inwhichlogicOiscoded as+1 andlogic 1iscoded
as —1. Inthis case the spectrum is given by

S=w"z

The information content under these alternate codings is
clearly the same.

Theorem 3.1 (W")~! = ;- W".

Proof: The proof follows from the fact (W")~! = Iw!

and properties of the Kronecker product. |



3.2 Reed-Muller Transform

The Reed-Muller transform is generally considered to
have been motivated by the work in 1954 of 1.S. Reed [23]
and R.E. Muller [21] which led to considerable interest in
the Reed-Muller (AND-XOR) expansion of Boolean func-
tions. (Note: The Reed-Muller transformisreported [24] to
have been earlier presented in Russian by I.1. Zhegalkin in
1927 but that work is accessible to very few readers.)

The transform matrix M"™ is defined by

" Mn—l 0
MO :[ 1 ] M = |: Mn—l Mn—l :| (3)
and the spectrum R is given by
R=M"Y (4)

Inthiscase, thematrix multiplicationisover thefield G F'(2)
i.e. integer addition is replaced with summation modul o-2.
M"™ can be expressed using the Kronecker product as

o[} 1]
|\/|":(§)M1 (5)
i=1

Theorem 3.2 (M")~! = M™ over GF(2).

Proof: The proof followsfromthefact (M*')~! = M! over
GF(2). ]

From this theorem we have:
Y =M"R (6)

The above shows that Y is a linear combination (over
G'F(2)) of the columns of M™ for which the relevant co-
efficient in R is 1. Each column of M"™ represents a func-
tionwhichisthelogical AND of asubset of z1, @2, ..., 2,.
The leftmost column isthe constant function 1 which corre-
spondsto the AND of no variables. Hence the Reed-Muller
spectrum identifiesarepresentation of aBoolean functionas
asum over GF'(2) of acollection of products of variables.
To be precise,
27 —1
Y = r;M? 7)
i=0

where M7 isthe i*" column of M™.
3.3 Arithmetic Transform
Arithmetic operationsfor representing Bool ean functions

date back to Boolein 1854 and were used by Aikenin 1951.
A very comprehensive treatment of the development of the

arithmetic transform, including its development in Eastern
Europe, can be found in [7]. Other work on the arithmetic
transform may be foundin [15] and [20], in [27] whereitis
termed the probability transformandin [5] whereitiscalled
theinverse integer Reed-Muller transform.

Thetransform matrix has arecursive structure analogous
tothat of the Walsh and Reed-Muller transformsandisgiven

by

n An—l 0
AO :[ 1 ] A" = |: _An—l An—l :| (8)
or aternatively
1 10
S
A" = (R)A! 9)
i=1
As before, we define the spectrum as
R=A"Y (10)

Theorem 3.3

w1 ]

i=1

Proof:  The proof follows from the fact (A')~' =

Note that while (A')~1 = M*, their use is quite differ-
ent since the arithmetic spectrum is computed over the in-
tegers whereas the Reed-Muller spectrum is computed over
GF(2). Itisfor thisreason the arithmetic transform was
termed the inverse integer Reed-Muller transform in [5].

3.4 Haar Transform

The orthogona Haar functions presented by A. Haar in
1910[13] form aset of 2™ continuous orthogonal functions
over theinterval [0,1]. They can be defined asfollowswhere
k is over the continuousinterval O to 1:

HY)(k) = +1.0
g ¢+3
i—1
Hi(k) = (V2)'"'(+1.0), for g7 Sk< 22._12
i g+ 3 g+1
= (V2)'7(-1.0), for 22._12 <k < S
= 0, atall other points (11)

Wherei:1,2,...,nandq:0’1’...’2i—1_1.



Discrete sampling of the set of Haar functions gives a
2" x 2" orthogonal matrix T". Forn = 3,

|
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T"isacomplete, orthogonal matrix with $7 ;¢ 5 = 27
if i = j and O otherwise. Hence, [T"]™! = 2-[T"]". Note
that T" is not symmetric so the transpose is needed for the
inverse,

A compuitationally more practical normalized Haar trans-
formK™ isderived from T" by setting the nonzero entries of
T" to thevalues +1 and -1 yielding for n = 3 for example:

K3 =

CoorRORRR
|
cCoorRORRR

Theorem 3.4 The normalized Haar transform can be ex-
pressed as

. [K'e[1 1]
Ko = "'e[1 —1]

Note: This representation of the Haar transform is known
(e.g. [10]. We present the following proof primarily as ex-
position to the reader and as background to later develop-
ments.

Proof: For the modified normalized Haar transform,
Equation 11 becomes:

K'=[1] (12)

HY(k) = +1
g g+3
Hi(k) = +1, for 51 <k< 22,_12
¢+3 g+1
= -1, for 51 <k< 51

= 0, at all other points (13)
wherei =1,2,...,nandqg=0,1,...,2"71 — 1.

For i = n, 2°~! Haar functions are defined, each
sampled at 2" points which are ¢ and ¢ + £ for ¢ =
0,1,...,2"=t — 1. Thefirst of these functions, H? (k) is
al, followed by a -1, followed by 2" — 2 0's. The second,
H}(k),istwo O's, followed by a1, followed by -1 followed
by 2" — 4 0's. The ongoing pattern should be apparent and
isillustrated above for the case of n = 3. These functions
in order are the bottom 2”7~ rows of K”. They can be ex-
pressed inmatrix formas 1"~ @ [1 —1].

Fori =1,2,...,n — 1, the Haar functions defined pre-
ceded by (k) are precisely those that compose K™~ and
itisthese functionsthat comprise the upper half of K™. The
differenceisthat to correspond tothe lower half of K™, these
functions must be sampled twice as often. This corresponds
to duplicating the values across the function which can be
expressed in matrix formas K™~ @ [1 1].

Concatenating the two matrix expressions yields Equa-
tion 12. O

For the normalized Haar transform matrix, the rows
maintain pai rwise orthogonality but the resultant values are
not the same. The inverse of K"is given by the following
theorem.

Theorem 35 (K%)=t = [1]
K = [k |

Proof: Let
n n—1 1 n—1
B:[(B )®[1],| ®[

and consider K"B". Thisyields

o= o i ]
where
Qo = (Kol 1)) (BM@“D
Qi = (< ron (e 30 ))
Qo = ("ot -1) (BM@“D
Qu = ("ol -1) (I"*@[_;Zj])

Applying the mixed product rule (A @ B)(C @ D) =
A C ® BD and then reducing, the above becomes

(14)

n—lpn—1
KHBHI[QK B 0 ]

0 on|n—l

We hypothesize that (K")~! = -B". From Equation
14 thisis clearly true when n = 1. Induction on n as-
sumes K" ~1B"~! = [27~11"~!] substituted into Equation
14yieldsK"B" = [2"1"]. Hence (K")~! = 5-B" and the
theorem is proven. O



For n = 3 for example, theinverseis

rT 1 2 0 4 0 0 07
1 1 2 0 —4 0 0 0
1 1 -2 0 0 4 0 0
K¥! = 111 1 -2 o 0o -4 0 o0
211 -1 0 2 0 0 4 0
1 -1 0 2 0 0 —4 0
1 -1 0 -2 0 0 0 4

L1 -1 0 -2 0 0 0 —4 ]

Asisapparent from theabove example, (K™)~! isthetrans-
pose of K" with scaling factors applied to certain columns.
From the recursive structure of Equation 14, one can ver-
ify that the appropriate scaling factor is 2 ~* where k isthe
log, (p) and p is the number of non-zero entries in the col-
umn. It is clear from the definition of K”that p is aways a
power of 2 so k isaways a positive integer.

4 Transform Procedures

The above spectra can be directly computed by appropri-
atematrix multiplication, however the computational cost of
thisapproach isgenerally prohibitivefor functionsof signif-
icant size. Fortunately, more efficient alternative techniques
exist. In this section, we present fast transform techniques
which follow directly from the recursive definitions of the
transforms. These fast transforms are quitewell known and
documented in the literature. Our purpose hereisto present
them in a unified manner for those less familiar with this
area, and to present their computational sequences pictori-
ally so they can be compared to the sequences for transfor-
mations between spectral domains.

41 Fast Walsh-Hadamard Transform

For example, the recursive definition of the Hadamard-
ordered Walsh transform is the basis for a fast Hadamard
transform (FHT) method analogous to a fast Fourier trans-
form (FFT) over discrete data. Observe that

R _ Wn—l Wn—l YO
- Wn—l _Wn—l Yl

where Y° and Y! represents a partitioning of Y into two
equal sized subvectors. It followsthat

Wn—1Y0+Wn—1Y1
R = |: Wn—lYO _ Wn—lYl (15)
Wn—l YO +Y1
= [ W”_ngo _ Yl; (16)

Theabove showsthat thecomputation of the n'” order trans-
form involvesthe application of (n — 1)*" order transforms

totwo subvectorsof Y followed by the addition and subtrac-
tion of the results. Alternatively, the transform can be com-
puted as the addition and subtraction of two subvectors of
Y followed by the application of two (n — 1)*" order trans-
forms to the resultant subvectors.

The resulting computational sequence is illustrated in
Figure 1 for the case of n = 3. For clarity, we show the
computation as creating new vectors but note again that the
computation can in fact be donein place. The interpretation
of the butterfly signal flowgraphsin Figure 1isas shownin
Figure 2.

The FHT method represents a substantial improvement
over computing the spectrum by matrix multiplication but
it is gtill prohibitive for large functions due to its exponen-
tial complexity. A major importance of thisapproach isthat
it forms the basis for very efficient decision diagram ap-
proaches.

Figure 1. Example of Fast Transform Compu-
tation of Walsh Spectrum

A+B

B A-B
Figure 2. Interpretation of a “Butterfly” Signal
Flowgraph for the Walsh Transform

4.2 Fast Reed-Muller Transform

A similar approachispossiblefor developing afast Reed-
Muller transform since M " has a similar recursive structure
tothat of W”. Thesituationfor n = 3 isillustratedin Figure
3 where the interpretation of the signal flow subgraph is as



showninFigure4. The computationsfor afast Reed-Muller
transform are of course over GF'(2).

0 0 0\ 0
1 1 1 1
1 1 1§\ 1
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 1
1 1 1 1

Figure 3. Example of Fast Transform Compu-
tation of Reed-Muller Spectrum

B A+B ( mod 2)

Figure 4. Interpretation of a Signal Flow Sub-
graph for the Reed-Muller Transform

4.3 Fast Arithmetic Transform

The arithmetic transform situation is analogous to the
Walsh and Reed-Muller cases and thus not explicitly shown
here.

4.4 Fast Haar Transform

The signa flowgraph for a fast normalized Haar trans-
form can beidentified directly from the recursive definition
of K™ givenin Theorem 12. The case for n = 3 is depicted
in Figure 5. The “butterfly” structures are as defined in the
Walsh case, Figure 2.

Figure 5 depicts the normalized Haar transform. For the
unnormalized transform defined by Equation 11 the struc-
ture isthe same but appropriate multipliers must be applied
in the computations.

The inverse transform has the reverse structure and once
again appropriate multipliers must be applied, thistime in

2 3
1 1
0 0
-1 -1
-1
1
0
-1

Figure 5. Example of Fast Transform Compu-
tation of Haar Spectrum

both the normalized and unnormallzed cases. Figure 6 de-
picts the situation for the inverse normalized transform us-
ing the same example as in Figure 5. A value passing
through a phase without going through a “butterfly” is mul-
tiplied by 2 (the heavier lines in the figure). The result is
scaled by 23.

3

!

N o o N

Figure 6. Example of Fast Transform Compu-
tation of Inverse Haar Transform

The Haar transform considered thus far and particularly
the fast transform illustrated in Figure 5 is in sequency or-
der. A drawback isthat it can not be doneinplace since asis
apparent from the flow diagram, pairs of elements are com-
bined and, except for thefirst and last element in each trans-
form phase, the results go to other positions. An aternative
istorearrange the computationsinto natural (Hadamard) or-
der which does allow for in-place computation.

The natural (Hadamard) order Haar transform can be de-
fined as follows (we use H" to distinguish this transform
from the sequency ordered Haar transform K™):

H" = B"+D"



n _ 1 1 n—1
D™ = [0 0]®D
n _ 1 0 n—1 0 n—1
o = [y 1 ]ees]) V]e0
D" = [1],B" = 0] (17)
For example, for n = 3 the above yields:
[ 1 1 1 1 1 1 1 1]
1 -1t 0 0 0 0 0 O
1 1 -1 -1 0 0 0 0
03 _ o 0o 1 -1 0o 0 0 0
1 1 1 1 -1 -1 -1 -1
o o 0 o0 1 -1 0 0
o o0 0o o0 1 1 -1 -1
o 0 0 0 0 0 1 -1 |

Numbering the rows of K* from 0to 7, the rows of H® ad-
here to the permutation [0,4,2,5,1,6,3,7]. Hence, the spec-
tral coefficients determined using H™ in place of K™ will be
similarly permuted.

We first show that the formulation given generates the
Haar functions and then consider the related inverse trans-
form. Note that equation 17 was stated in [14] but without
proof and the inverse transform was not considered in that
work.

Theorem 4.1 Equation 17 generates the complete set of
Haar functionsin natural order.

Proof: Two initial observations for all n: D™ is of order
(2™ x 2™) and consists of atop row of al 1'swith 0’s every-
whereelse; B" isof order (2" x 2™) and hasatop row of all
Os.

Itisapparent fromthedefinitionof H™ that it can bewrit-
ten

_ Bn—1+Dn—1 Dn—l

Hn - Dn—l Bn—l _ Dn—l (18)

Itisuseful tolet C™ bea(2” — 1 x 2") matrix which is B”
withitstop row removed. H" can then be written

cr! 0
H" =
117---1 -1 —1---—1
0 Cn—l

where 0 denotesa (27! — 1 x 27~ 1) matrix of O's.
Thetoprow of H” consistsof 2 1'sandis H. Therow
atthetop of H" is2"~! 1’sfollowed by 27 ~! -1's, whichis
HY. Itisimportant to note from Equation 13 that these are
the only two Haar functionsthat are non-zeroin both halves

of the definition space. We must next show that the remain-
ing Haar functionsare also generated which we do by induc-

tion.
!
H _[1 ~1

Clearly

AssumeH" ! includesall the (n—1)*" order Haar functions
whichmeansC" ™' includesthem all except 7). Thisispre-
cisely what isrequired since a review of Equation 13 show
the second and higher order Haar functions generated for
n are two occurrences of the second and higher order Haar
functionsgenerated for the case of n—1 oneinthelower half
of the definition space and the second in the higher half. It
followsthat H" includesall Haar functions. O

It is aso clear from the construction that H" orders the
Haar function in natural order, that is earliest zero-crossing
first.

A fast transform technique for the naturally ordered Haar
transformiseasily developed from therecursive structurein
Equation 17. Figure 7 illustratesthe situationfor n = 3. It
is interesting to observe that the structure is essentially the
structure from the Walsh case with certain “butterflies’ re-
moved. The number of computationsis the same as for the
sequency ordered Haar transform, namely 2" — 2 but thesig-
nificant advantage is the computations can be done in place
since each butterfly combines two elements and places the
results in the same locations.

-1

Figure 7. Example of Fast Transform Compu-
tation of Haar Spectrum in Natural Order

We next consider the inverse of H”.
Theorem 4.2 H" ™' = ;L.G" where

G" = C'+FE"

E" = “ 8]®E”‘1



no 2 0 -1 0 1 ne1
I P L P

[1],C° = [0] (19)
Proof: From Equations 17 and 19 we have

H*'G" = (B"+D")(C"+E")
= B"C"+B"E"+D"C" +D"E"

E" =

From theprevioustheorem we know therowsof B™ are Haar
functions (with the exception of H) each with an equal
number of +1'sand -1's, so the sum across each row of B"
is0. Hence, B'E" = 0 where 0 denotes the matrix of all
Os.

C" isconstructed as the transpose of B” with multipliers
applied to certain columns. Hence each column of C* sums
t0o0,so D"C" = 0 and

D"E" yieldsamatrix with 2" in the top left corner and 0's

everywhere else.

Now

ne~n 10 n—1 0 0 1
e = ([ V|ese [} Y ]er)

(L s Jeee6 ot ]oe)

Multiplying this through, applying the Kronecker mixed
product rule and multiplying the constant matrices we have

2 0

B"C" = 9

:| ® Bn—lcn—l 4

1 :| ®Bn—1En—1+

| 0

[0

0 -1

-0 0 n—1,~n—1
E _2]®D c 4+
-00 n—1lpgn—1

02]®D E

Asabove, B"'E"" ! =D""'C""' =00

2 0 0 0

BCI[OQ 0 2

:|®Bn—1cn—1+|: :|®Dn—1En—1
We hypothesize that B"C"is a diagonal matrix witha 0 in
thetop left entry and 2™ for every other diagonal entry. Itis
readily verified that thisisthe case for n = 1. Assuming, it
istruefor n — 1 and substitutingwe find it istrue for n since
D" 'E"~! isamatrix with 27~ in the top left corner and
0'selsewhere. Substitutingthisresult back wefindH”G" =
271" and the theorem is proven. O

Figure 8 illustrates the fast reverse transform procedure
forn = 3. Asinthe sequency case, a value which passes
through a phase without going through a“ butterfly” must be
multiplied by 2.

3 4 4 0
-1 -2 -4 8
0 Q A 4 8
1 2 4 0
VR : :
0 0 0 0
1 2 A 4 0
-1 -2 -4 8

Figure 8. Example of Fast Transform Compu-
tation of Inverse Haar Transform in Natural
Order

5 Relationships Amongst the Transforms

Since each of thetransformsdiscussed has aninverseitis
clearly possible to create a transform from one spectra do-
main to another in the worst case by simply passing through
the Boolean functional domain. Theissueiswhether such a
transformation can be done more efficiently.

For example, as identified in [20], if Sis the arithmetic
spectrum of afunction, its Wal sh spectrum R in R-encoding
isgivenby R = W"(A")~!S. (A")~!S transforms the
arithmetic spectrum to the functional domain after which
the multiplication by W" yields the Walsh spectrum. It is
more efficient of course to treat W™ (A™)~! asasingle ma-
trix which we can write as

(@) (@)

By the properties of the Kronecker product this can be writ-

ten as n
Rw! (AH ™
i=1

So the transform from the arithmetic to the Walsh domain
can be accomplished using the transform matrix

S N |
T:@[0—1]

which can be used as the basis for afast transform approach.
Thisisillustratedfor n = 3 in Figure 9. Followingasimilar
approach, we can show that



Figure 9. Example of Direct Fast Transform
from the Arithmetic to Walsh Spectrum

isadirect transform from the Walsh to the arithmetic spec-
tral domain. Thisresult wasidentifiedby S. L. Hurst [17] in
the context of spectral-based digital circuit testing.

Transforming to and from the Haar domain is also pos-
sible. We here consider Walsh to Haar and Haar to Walsh
transforms. arithmetic to Haar and Haar to arithmetic trans-
formscan be developedin asimilar fashion (see for example
[8] and [9]). We consider the natural order Haar spectrum.
Related work based on other orders can be found in the lit-
erature (e.g. [10]).

Theorem 5.1 The Walsh-Hadamard spectrum of a function
can be transformed to the natural order Haar spectrum us-
ing the transform

1

T = (P QY)
Pn — |:1 _}:|®Pn—1+|:8 g:|®Qn—1
Qn — |: g 8 :| ®Qn—1

P’ = [0] Q" =[]

Proof: We need to transform from the Wal sh to the function
domain and then to the Haar domain. The transform isthus

given by
1
()
Employing Equation 17 we have
1 1

By substitution and applying the Kronecker mixed product
rule we have

[V Vi 10 1 1 n—1 n—1
B"W" = [0 1][1 _1]®B W

0 0 1 1 n—Iywmn—1
] e

and
NN __ 1 1 1 1 n—Iyzmn—1
DW_[OO][1—1]®D w
Defining P* = B"W" and Q" = D"W" we have
n o 1 1 n—1 0 0 n—1
P_[1_1]®P +[0 2]®Q
and

W 20 e
Q—[O 0]®Q '
an

Substitution shows P° = [0] and Q° = [1] and the theorem
is proven. O

Theorem 5.2 The natural order Haar spectrum of a func-
tion can be transformed to the Wal sh-Hadamard spectrum
using the transform

1

T = (P Q)
Pn — |:§ _§:|®Pn—1+|:8 g:|®Qn—1
Qn — |:§ 8:|®Qn—1

P = [0] Q"=[1]

Proof: The proof isanalogousto the proof of Theorem 5.1.
O

These two theorems are the basis for fast transform pro-
cedures asillustrated in Figures 10 and 11. Note that while
the structure of the transform is the same in each case, the
butterfliesin the Haar to Walsh direction are all scaled by a
factor of 2. The structure is similar to the Walsh butterfly
diagram presented earlier except the first butterfly in each
group is replaced by the straight through passage of the two
data values scaled by 2.

The above approach of combining transformsto go from
one spectral domain to another can not be used when the
Reed-Muller is involved because it is carried out over
G'F(2) while the others are carried out over the integers.
However, it was shown in [20] that the Reed-Muller spec-
tral coefficients can be found by taking the modulo-2 of the
absolute values of the arithmetic coefficients, aresult that is
not unexpected given the similar nature of thetwo transform
matrices. Hence, itispossibleto expressthetransform from
a domain to the Reed-Muller domain as a matrix multipli-
cation followed by the taking of the modulo-2 of the abso-
lute values of the result. For the domains considered here,
the matrix multiplication can beimplemented as afast trans-
form. The case of Walsh to Reed-Muller was considered by
Stankovicin [26].



Figure 10. Example of Fast Transform from
Walsh to Haar Spectrum

Figure 11. Example of Fast Transform from
Haar to Walsh Spectrum

6 Decision Diagram I mplementation

We assume the reader is familiar with decision diagram
(DD) terminology and refer any who are not to the litera-
ture. Bryant’sseminal paper [4] on decisiondiagramsisstill
the best place to start. There are also now a number of good
books on the subject. Our purpose hereis not to review the
extensive work on DD even for the case of spectral tech-
niques, but rather to give an indication that the transforma-
tions discussed above, and similar ones, can be readily im-
plemented directly on DD.

Figure 12 outlinesa DD based Walsh transform adapted
from an early work on this subject by Miller [12]. The ap-
proach is readily adapted to any transformation expressed
in terms of Kronecker products, i.e. with a similar form of
recursive structure. The complication that arises is house-
keeping in terms of when butterfly structures are committed
and when scaling factors are required.

7 Concluding Remarks

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains has been consid-
ered. It has been shown that fast transform techniques
are possible with the exception of transformation from the
Reed-Muller domain. Implementation using decision dia-
gram methods has been outlined.

Current work involves devel oping efficient generic uni-
versal program code for transforming from one domain to
another. We are also considering how the transforms pre-
sented can be used to map spectral conditions, e.g. symme-
try conditions, from one domain to another.
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Wl sh_BDD_Tr ansform (f)
if(f is atermnal) return
if(f has already been transforned)
return
Wal sh_BDD_Tr ansf or n{ Low(f))
Wal sh_BDD_Tr ansf orn{ H gh(f))
low tenp = BDD Add(Low(f), H gh(f))

Hi gh(f) = BDD_Sub(Low(f), Hi gh(f))
Low(f) = low_tenp
BDD_Add( g, h)

if(g and h are termnals)
return(New_Term nal (Val ue(g) +Val ue(h))
i f (Label (g)=Label (h))
ret urn( New_Nont er m nal (Label (g),
BDD_Add( Low(g), Low(h)),
BDD_Add( H gh(g), High(h))))
el se if(Label (g)<Label (h))
ret urn( New_Nont er m nal (Label (g),
BDD_Add( Low(g), Twi ce(h)),
H gh(9))
el se return(New_Nonterni nal (Label (h),
BDD_Add( Low( h), twice(g)),
H gh(h))

BDD_Sub( g, h)
if(g and h are termnals)
return(New_Term nal (Val ue(g) - Val ue(h))
i f (Label (g)=Label (h))
ret urn( New_Nont er m nal (Label (g),
BDD_Sub(Low(g), Lowm( H)),
BDD_Sub(H gh(g), High(h))))
el se if(Label (g)<Label (h))
ret urn( New_Nont er m nal (Label (g),
BDD_Sub( Low(g), Twi ce(h)),
H gh(9))
el se return(New_Nonterni nal (Label (h),
BDD_Sub( Low( h), Twi ce(qg)),
H gh(h))

Figure 12. Pseudo-code for BDD-based Walsh
Transformation



