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Abstract

Direct transformations amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains are considered.
Matrix based techniques are given and it is shown how these
can be implemented as fast in-place transforms. It is also
suggested how these transforms can be implemented directly
on decision diagram representations.

1 Introduction

Transformations between the Boolean and various spec-
tral domains have been extensively studied, for example
[1, 2, 16, 18, 19]. In this paper, a set of fast transform tech-
niques are presented for direct transformation amongst cer-
tain spectral domains, i.e. transforms from one spectral do-
main to another that do not pass through the Boolean do-
main. These fast transform techniques can be directly im-
plemented on decision diagram representations. Their po-
tential utility is that the various spectral domains provide
different views of function properties so that being able to
transform directly from one domain to another may make
the exploration of a function more efficient.

This paper develops the desired transformations from
a matrix perspective making considerable use of the Kro-
necker matrix product. The approach is quite simple and
leads to mathematical structures that are consistent across
the transformations and which map very easily to decision
diagrams. The paper is not meant as a comprehensive re-
view of all previous approaches to this problem. The inter-
ested reader should consult the literature.

The paper is organized as follows. Section 2 provides the
necessary mathematical background. Section 3 introduces
the spectral domains considered. Fast transform techniques

are discussed in Section 4. Direct transforms amongst the
spectral domains are discussed in Section 5. Section 6
briefly outlines the use of decision diagram techniques to
implement the fast transforms. The paper concludes with
suggestions for ongoing research.

2 Background

An n-input completely-specified Boolean function f can
be represented by Y = fm0;m1;m2 : : :m2n�1gt a col-
umn vector with 2

n entries each giving the functional value
for the corresponding minterm. f represented by Y can be
transformed from the Boolean to a spectral domain as fol-
lows:

R = TnY (1)

where Tn is a 2
n by 2

n transform matrix the precise spec-
ification of which defines the spectral domain in question.
In many cases, the matrix has a simple recursive structure
which can be used to significant computational advantage as
will be shown.

We restrict our interest to invertible transforms, hence:

Y = (Tn
)
�1R

The consequence is that the transforms between the Boolean
and spectral domains fully preserve information, but, as is
well known, the spectral domains make certain properties
easier to consider than in the Boolean domain, and different
spectral domains illuminate different functional properties.

Often, the transform matrix can be expressed as a se-
quence of Kronecker products of a single base matrix. We
here provide a brief summary of the properties of the Kro-
necker product. More detail can be found in [11].

Given a matrix A of order (m � n) with the element in
the ith row and j

th column denoted aij and a matrix B of



order (r � s), the Kronecker product A
 B is given by

A
 B =

2
6664

a11B a12B � � � a1nB
a21B a22B � � � a2nB

...
...

...
am1B am2B � � � amnB

3
7775

The product matrix has order (mr � ns). Note that unlike
the normal matrix product, the Kronecker product is defined
for any matrix orders.

For matrices A, B, C and D and a scalar �, the following
properties hold

(�A)
 B = �(A
 B)

A
 (�B) = �(A
 B)

(A + B)
C = A
C + B
C
A 
 (B +C) = A
 B + A
C
A 
 (B
C) = (A
 B) 
C

(A
 B)
t

= At 
 Bt

(A
 B)(C 
D) = AC
 BD (2)

(A
 B)
�1

= A�1 
 B�1

Equation 2 is only valid when the matrices are of appro-
priate dimension for the normal matrix products.

Some simple observations are useful for the presentation
below. The Kronecker product of two symmetric matrices
is itself a symmetric matrix. Since the Kronecker product
is an associative operation, the order of application of a se-
quence of Kronecker products does not matter. The Kro-
necker product can be applied over the field GF (2), a fact
that will be useful in the consideration of the Reed-Muller
transform. Finally, given a square invertible matrix A, we
note that "

nO
i=1

A

#
�1

=

nO
i=1

A�1

This follows by the iterative application of the identity (A

B)�1 = A�1 
 B�1 and the associativity of the Kronecker
product.

3 Spectral Transforms

In this section, we present four particular spectral trans-
forms that have been extensively studied in the literature:
the Walsh, the Reed-Muller, the Arithmetic, and the Haar
transforms.

3.1 Walsh Transform

Perhaps the most well known and most widely studied
spectral transforms are based on a set of orthogonal func-
tions defined by J. L. Walsh in 1923 [29] which are an ex-
tension of a set of functions defined by H. Rademacher [22]

a year earlier. The transform itself is a form of Hadamard
matrix [28].

The Walsh transform matrix Wn in Hadamard order can
be defined as

W0
= [ 1 ] Wn

=

�
Wn�1 Wn�1

Wn�1 �Wn�1

�

An equivalent definition using the Kronecker product is par-
ticularly useful here

W1
=

�
1 1

1 �1

�

and
Wn

= W1 
 Wn�1

Since the Kronecker product is associative, this may be writ-
ten as

Wn
=

nO
i=1

W1

The rows of Wnare the 2
n
n-variable Walsh functions of

which the n-variable Rademacher functions are a subset.
In addition to the Hadamard (Walsh-Hadamard), the Walsh
(Walsh-Kaczmarz), the Paley-Walsh, and the Rademacher-
Walsh orderings have been studied [3][18] . The Hadamard
ordering has seen most use since the simple recursive struc-
ture of the transform matrix allows for ‘fast transform’
methods [6] [25]. The Hadamard, Walsh and Walsh-Paley
orderings share the very useful property that the transform
matrix is its own inverse up to a scaling factor of 1

2n
. The

practical importance of this is that the same computational
procedure can be used for transforming between the func-
tion and spectral domains with the simple adjustment of
scaling.

The Walsh spectrum R of f is given by

R = WnY

where the matrix multiplication is carried out over the inte-
gers, i.e. logic 0(1) is treated as the integer 0(1).

An alternate formulation represents the function by the
vector Z in which logic 0 is coded as +1 and logic 1 is coded
as �1. In this case the spectrum is given by

S = WnZ

The information content under these alternate codings is
clearly the same.

Theorem 3.1 (Wn
)
�1

=
1

2n
Wn.

Proof: The proof follows from the fact (W1
)
�1

=
1

2
W1

and properties of the Kronecker product. 2



3.2 Reed-Muller Transform

The Reed-Muller transform is generally considered to
have been motivated by the work in 1954 of I.S. Reed [23]
and R.E. Muller [21] which led to considerable interest in
the Reed-Muller (AND-XOR) expansion of Boolean func-
tions. (Note: The Reed-Muller transform is reported [24] to
have been earlier presented in Russian by I.I. Zhegalkin in
1927 but that work is accessible to very few readers.)

The transform matrix Mn is defined by

M0
= [ 1 ] Mn

=

�
Mn�1

0

Mn�1 Mn�1

�
(3)

and the spectrum R is given by

R = MnY (4)

In this case, the matrix multiplicationis over the fieldGF (2)

i.e. integer addition is replaced with summation modulo-2.
Mn can be expressed using the Kronecker product as

M1
=

�
1 0

1 1

�

Mn
=

nO
i=1

M1 (5)

Theorem 3.2 (Mn
)
�1

= Mn over GF (2).

Proof: The proof follows from the fact (M1
)
�1

= M1 over
GF (2). 2

From this theorem we have:

Y = MnR (6)

The above shows that Y is a linear combination (over
GF (2)) of the columns of Mn for which the relevant co-
efficient in R is 1. Each column of Mn represents a func-
tion which is the logical AND of a subset of x1; x2; : : : ; xn.
The leftmost column is the constant function 1 which corre-
sponds to the AND of no variables. Hence the Reed-Muller
spectrum identifies a representation of a Boolean function as
a sum over GF (2) of a collection of products of variables.
To be precise,

Y =

2
n

�1X
i=0

riM
n
i (7)

where Mn
i is the ith column of Mn.

3.3 Arithmetic Transform

Arithmetic operations for representing Boolean functions
date back to Boole in 1854 and were used by Aiken in 1951.
A very comprehensive treatment of the development of the

arithmetic transform, including its development in Eastern
Europe, can be found in [7]. Other work on the arithmetic
transform may be found in [15] and [20], in [27] where it is
termed the probability transform and in [5] where it is called
the inverse integer Reed-Muller transform.

The transform matrix has a recursive structure analogous
to that of the Walsh and Reed-Muller transforms and is given
by

A0
= [ 1 ] An

=

�
An�1

0

�An�1 An�1

�
(8)

or alternatively

A1
=

�
1 0

�1 1

�

An
=

nO
i=1

A1 (9)

As before, we define the spectrum as

R = AnY (10)

Theorem 3.3

(An
)
�1

=

nO
i=1

�
1 0

1 1

�

Proof: The proof follows from the fact (A1
)
�1

=�
1 0

1 1

�
. 2

Note that while (A1
)
�1 = M1, their use is quite differ-

ent since the arithmetic spectrum is computed over the in-
tegers whereas the Reed-Muller spectrum is computed over
GF (2). It is for this reason the arithmetic transform was
termed the inverse integer Reed-Muller transform in [5].

3.4 Haar Transform

The orthogonal Haar functions presented by A. Haar in
1910 [13] form a set of 2n continuous orthogonal functions
over the interval [0,1]. They can be defined as follows where
k is over the continuous interval 0 to 1:

H
0

0
(k) = +1:0

H
q

i (k) = (

p
2)

i�1
(+1:0); for

q

2i�1
� k <

q +
1

2

2i�1

= (

p
2)

i�1
(�1:0); for

q +
1

2

2i�1
� k <

q + 1

2i�1

= 0; at all other points (11)

where i = 1; 2; : : : ; n and q = 0; 1; : : :; 2
i�1 � 1.



Discrete sampling of the set of Haar functions gives a
2
n � 2

n orthogonal matrix Tn. For n = 3,

T3
=

2
6666666664

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1p
2

p
2 �

p
2 �

p
2 0 0 0 0

0 0 0 0

p
2

p
2 �

p
2 �

p
2

2 �2 0 0 0 0 0 0

0 0 2 �2 0 0 0 0

0 0 0 0 2 �2 0 0

0 0 0 0 0 0 2 �2

3
7777777775

Tnis a complete, orthogonal matrix with �
2
n

�1

k=0
tiktjk = 2

n

if i = j and 0 otherwise. Hence, [Tn
]
�1

=
1

2n
[Tn

]
t. Note

that Tn is not symmetric so the transpose is needed for the
inverse.

A computationallymore practical normalized Haar trans-
form Kn is derived from Tn by setting the nonzero entries of
Tn to the values +1 and -1 yielding for n = 3 for example:

K3
=

2
664

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 0 0 0 0

0 0 0 0 1 1 �1 �1

1 �1 0 0 0 0 0 0

0 0 1 �1 0 0 0 0

0 0 0 0 1 �1 0 0

0 0 0 0 0 0 1 �1

3
775

Theorem 3.4 The normalized Haar transform can be ex-
pressed as

K0
= [ 1 ] Kn

=

�
Kn�1 
 � 1 1

�
In�1 
 � 1 �1

� � (12)

Note: This representation of the Haar transform is known
(e.g. [10]. We present the following proof primarily as ex-
position to the reader and as background to later develop-
ments.

Proof: For the modified normalized Haar transform,
Equation 11 becomes:

H
0

0
(k) = +1

H
q

i (k) = +1; for
q

2i�1
� k <

q +
1

2

2i�1

= �1; for
q +

1

2

2i�1
� k <

q + 1

2i�1

= 0; at all other points (13)

where i = 1; 2; : : : ; n and q = 0; 1; : : : ; 2
i�1 � 1.

For i = n, 2
n�1 Haar functions are defined, each

sampled at 2
n points which are q and q +

1

2
for q =

0; 1; : : : ; 2
n�1 � 1. The first of these functions, H0

n(k) is
a 1, followed by a -1, followed by 2

n � 2 0’s. The second,
H

1

n(k), is two 0’s, followed by a 1, followed by -1 followed
by 2

n � 4 0’s. The ongoing pattern should be apparent and
is illustrated above for the case of n = 3. These functions
in order are the bottom 2

n�1 rows of Kn. They can be ex-
pressed in matrix form as In�1 
 [1 � 1].

For i = 1; 2; : : : ; n� 1, the Haar functions defined pre-
ceded byH0

0
(k) are precisely those that compose Kn�1 and

it is these functions that comprise the upper half of Kn. The
difference is that to correspond to the lower half of Kn, these
functions must be sampled twice as often. This corresponds
to duplicating the values across the function which can be
expressed in matrix form as Kn�1 
 [1 1].

Concatenating the two matrix expressions yields Equa-
tion 12. 2

For the normalized Haar transform matrix, the rows
maintain pairwise orthogonality but the resultant values are
not the same. The inverse of Knis given by the following
theorem.

Theorem 3.5 (K0
)
�1

= [1]

(Kn
)
�1

=
1

2n

�
(Kn�1

)
�1 


�
1

1

�
; In�1 


�
2
n�1

�2
n�1

��

Proof: Let

Bn
=

�
(Bn�1

)

�

1

1

�
; In�1 


�
2
n�1

�2
n�1

��

and consider KnBn. This yields

KnBn
=

�
Q00;Q01

Q10;Q11

�

where

Q00 =

�
Kn�1 
 [1 1]

��
Bn�1 


�
1

1

��

Q01 =
�
Kn�1 
 [1 1]

��
In�1 


�
2
n�1

�2
n�1

��

Q10 =

�
In�1 
 [1 � 1]

��
Bn�1 


�
1

1

��

Q11 =

�
In�1 
 [1 � 1]

��
In�1 


�
2
n�1

�2
n�1

��

Applying the mixed product rule (A 
 B)(C 
 D) =

AC
BD and then reducing, the above becomes

KnBn
=

�
2Kn�1Bn�1

0

0 2
nIn�1

�
(14)

We hypothesize that (Kn
)
�1

=
1

2n
Bn. From Equation

14 this is clearly true when n = 1. Induction on n as-
sumes Kn�1Bn�1

= [2
n�1In�1] substituted into Equation

14 yields KnBn
= [2

nIn]. Hence (Kn
)
�1

=
1

2n
Bn and the

theorem is proven. 2



For n = 3 for example, the inverse is

[K3
]
�1

=
1

23

2
666666664

1 1 2 0 4 0 0 0

1 1 2 0 �4 0 0 0

1 1 �2 0 0 4 0 0

1 1 �2 0 0 �4 0 0

1 �1 0 2 0 0 4 0

1 �1 0 2 0 0 �4 0

1 �1 0 �2 0 0 0 4

1 �1 0 �2 0 0 0 �4

3
777777775

As is apparent from the above example, (Kn
)
�1 is the trans-

pose of Knwith scaling factors applied to certain columns.
From the recursive structure of Equation 14, one can ver-
ify that the appropriate scaling factor is 2n�k where k is the
log

2
(p) and p is the number of non-zero entries in the col-

umn. It is clear from the definition of Knthat p is always a
power of 2 so k is always a positive integer.

4 Transform Procedures

The above spectra can be directly computed by appropri-
ate matrix multiplication,however the computationalcost of
this approach is generally prohibitive for functions of signif-
icant size. Fortunately, more efficient alternative techniques
exist. In this section, we present fast transform techniques
which follow directly from the recursive definitions of the
transforms. These fast transforms are quite well known and
documented in the literature. Our purpose here is to present
them in a unified manner for those less familiar with this
area, and to present their computational sequences pictori-
ally so they can be compared to the sequences for transfor-
mations between spectral domains.

4.1 Fast Walsh-Hadamard Transform

For example, the recursive definition of the Hadamard-
ordered Walsh transform is the basis for a fast Hadamard
transform (FHT) method analogous to a fast Fourier trans-
form (FFT) over discrete data. Observe that

R =

�
Wn�1 Wn�1

Wn�1 �Wn�1

�
Y0

Y1

�

where Y0 and Y1 represents a partitioning of Y into two
equal sized subvectors. It follows that

R =

�
Wn�1Y0

+ Wn�1Y1

Wn�1Y0 � Wn�1Y1

�
(15)

=

�
Wn�1

(Y0
+ Y1

)

Wn�1
(Y0 � Y1

)

�
(16)

The above shows that the computation of thenth order trans-
form involves the application of (n� 1)

th order transforms

to two subvectors of Y followed by the addition and subtrac-
tion of the results. Alternatively, the transform can be com-
puted as the addition and subtraction of two subvectors of
Y followed by the application of two (n� 1)

th order trans-
forms to the resultant subvectors.

The resulting computational sequence is illustrated in
Figure 1 for the case of n = 3. For clarity, we show the
computation as creating new vectors but note again that the
computation can in fact be done in place. The interpretation
of the butterfly signal flowgraphs in Figure 1 is as shown in
Figure 2.

The FHT method represents a substantial improvement
over computing the spectrum by matrix multiplication but
it is still prohibitive for large functions due to its exponen-
tial complexity. A major importance of this approach is that
it forms the basis for very efficient decision diagram ap-
proaches.
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Figure 1. Example of Fast Transform Compu-
tation of Walsh Spectrum
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Figure 2. Interpretation of a “Butterfly” Signal
Flowgraph for the Walsh Transform

4.2 Fast Reed-Muller Transform

A similar approach is possible for developing a fast Reed-
Muller transform since Mnhas a similar recursive structure
to that of Wn. The situation forn = 3 is illustrated in Figure
3 where the interpretation of the signal flow subgraph is as



shown in Figure 4. The computations for a fast Reed-Muller
transform are of course over GF (2).
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Figure 3. Example of Fast Transform Compu-
tation of Reed-Muller Spectrum
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Figure 4. Interpretation of a Signal Flow Sub-
graph for the Reed-Muller Transform

4.3 Fast Arithmetic Transform

The arithmetic transform situation is analogous to the
Walsh and Reed-Muller cases and thus not explicitly shown
here.

4.4 Fast Haar Transform

The signal flowgraph for a fast normalized Haar trans-
form can be identified directly from the recursive definition
of Kn given in Theorem 12. The case for n = 3 is depicted
in Figure 5. The “butterfly” structures are as defined in the
Walsh case, Figure 2.

Figure 5 depicts the normalized Haar transform. For the
unnormalized transform defined by Equation 11 the struc-
ture is the same but appropriate multipliers must be applied
in the computations.

The inverse transform has the reverse structure and once
again appropriate multipliers must be applied, this time in
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Figure 5. Example of Fast Transform Compu-
tation of Haar Spectrum

both the normalized and unnormallzed cases. Figure 6 de-
picts the situation for the inverse normalized transform us-
ing the same example as in Figure 5. A value passing
through a phase without going through a “butterfly” is mul-
tiplied by 2 (the heavier lines in the figure). The result is
scaled by 2

3.
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Figure 6. Example of Fast Transform Compu-
tation of Inverse Haar Transform

The Haar transform considered thus far and particularly
the fast transform illustrated in Figure 5 is in sequency or-
der. A drawback is that it can not be done in place since as is
apparent from the flow diagram, pairs of elements are com-
bined and, except for the first and last element in each trans-
form phase, the results go to other positions. An alternative
is to rearrange the computations into natural (Hadamard) or-
der which does allow for in-place computation.

The natural (Hadamard) order Haar transform can be de-
fined as follows (we use Hn to distinguish this transform
from the sequency ordered Haar transform Kn):

Hn
= Bn

+ Dn



Dn
=

�
1 1

0 0

�

Dn�1

Bn
=

�
1 0

0 1

�

 Bn�1

+

�
0 0

1 �1

�

 Dn�1

D0
= [1];B0

= [0] (17)

For example, for n = 3 the above yields:

H3
=

2
66666666664

1 1 1 1 1 1 1 1

1 �1 0 0 0 0 0 0

1 1 �1 �1 0 0 0 0

0 0 1 �1 0 0 0 0

1 1 1 1 �1 �1 �1 �1

0 0 0 0 1 �1 0 0

0 0 0 0 1 1 �1 �1

0 0 0 0 0 0 1 �1

3
77777777775

Numbering the rows of K3 from 0 to 7, the rows of H3 ad-
here to the permutation [0,4,2,5,1,6,3,7]. Hence, the spec-
tral coefficients determined using Hn in place of Kn will be
similarly permuted.

We first show that the formulation given generates the
Haar functions and then consider the related inverse trans-
form. Note that equation 17 was stated in [14] but without
proof and the inverse transform was not considered in that
work.

Theorem 4.1 Equation 17 generates the complete set of
Haar functions in natural order.

Proof: Two initial observations for all n: Dn is of order
(2n�2

n) and consists of a top row of all 1’s with 0’s every-
where else; Bn is of order (2n�2

n) and has a top row of all
0’s.

It is apparent from the definition of Hn that it can be writ-
ten

Hn
=

�
Bn�1

+ Dn�1 Dn�1

Dn�1 Bn�1 � Dn�1

�
(18)

It is useful to let Cn be a (2n � 1� 2
n) matrix which is Bn

with its top row removed. Hn can then be written

Hn
=

2
66664

1 1 � � �1 1 1 � � �1
Cn�1 0

1 1 � � �1 �1 � 1 � � � � 1

0 Cn�1

3
77775

where 0 denotes a (2n�1 � 1� 2
n�1) matrix of 0’s.

The top row of Hn consists of 2n 1’s and isH 0

0
. The row

at the top of Hn is 2n�1 1’s followed by 2
n�1 -1’s, which is

H
0

1
. It is important to note from Equation 13 that these are

the only two Haar functions that are non-zero in both halves

of the definition space. We must next show that the remain-
ing Haar functions are also generated which we do by induc-
tion.

Clearly

H1
=

�
1 1

1 �1

�

Assume Hn�1 includes all the (n�1)
th order Haar functions

which means Cn�1 includes them all exceptH 0

0
. This is pre-

cisely what is required since a review of Equation 13 show
the second and higher order Haar functions generated for
n are two occurrences of the second and higher order Haar
functions generated for the case ofn�1 one in the lower half
of the definition space and the second in the higher half. It
follows that Hn includes all Haar functions. 2

It is also clear from the construction that Hn orders the
Haar function in natural order, that is earliest zero-crossing
first.

A fast transform technique for the naturally ordered Haar
transform is easily developed from the recursive structure in
Equation 17. Figure 7 illustrates the situation for n = 3. It
is interesting to observe that the structure is essentially the
structure from the Walsh case with certain “butterflies” re-
moved. The number of computations is the same as for the
sequency ordered Haar transform, namely 2

n�2 but the sig-
nificant advantage is the computations can be done in place
since each butterfly combines two elements and places the
results in the same locations.
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Figure 7. Example of Fast Transform Compu-
tation of Haar Spectrum in Natural Order

We next consider the inverse of Hn.

Theorem 4.2 Hn�1
=

1

2n
Gn where

Gn
= Cn

+ En

En
=

�
1 0

1 0

�

 En�1



Cn
=

�
2 0

0 2

�

 Cn�1

+

�
0 1

0 �1

�

 En�1

E0
= [1];C0

= [0] (19)

Proof: From Equations 17 and 19 we have

HnGn
= (Bn

+ Dn
) (Cn

+ En
)

= BnCn
+ BnEn

+ DnCn
+ DnEn

From the previous theorem we know the rows of Bn are Haar
functions (with the exception of H 0

0
) each with an equal

number of +1’s and -1’s, so the sum across each row of Bn

is 0. Hence, BnEn
= 0 where 0 denotes the matrix of all

0’s.
Cn is constructed as the transpose of Bn with multipliers

applied to certain columns. Hence each column of Cn sums
to 0, so DnCn

= 0 and

HnGn
= BnCn

+ DnEn

DnEn yields a matrix with 2
n in the top left corner and 0’s

everywhere else.
Now

BnCn
=

��
1 0

0 1

�

 Bn�1

+

�
0 0

1 �1

�

Dn�1

�
��

2 0

0 2

�

 Cn�1

+

�
0 1

0 �1

�

 En�1

�

Multiplying this through, applying the Kronecker mixed
product rule and multiplying the constant matrices we have

BnCn
=

�
2 0

0 2

�

 Bn�1Cn�1

+�
0 1

0 �1

�

 Bn�1En�1

+�
0 0

2 �2

�

Dn�1Cn�1

+�
0 0

0 2

�

Dn�1En�1

As above, Bn�1En�1
= Dn�1Cn�1

= 0 so

BnCn
=

�
2 0

0 2

�

Bn�1Cn�1

+

�
0 0

0 2

�

Dn�1En�1

We hypothesize that BnCnis a diagonal matrix with a 0 in
the top left entry and 2

n for every other diagonal entry. It is
readily verified that this is the case for n = 1. Assuming, it
is true for n�1 and substitutingwe find it is true for n since
Dn�1En�1 is a matrix with 2

n�1 in the top left corner and
0’s elsewhere. Substitutingthis result back we find HnGn

=

2
nIn and the theorem is proven. 2

Figure 8 illustrates the fast reverse transform procedure
for n = 3. As in the sequency case, a value which passes
through a phase without going through a “butterfly” must be
multiplied by 2.
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Figure 8. Example of Fast Transform Compu-
tation of Inverse Haar Transform in Natural
Order

5 Relationships Amongst the Transforms

Since each of the transforms discussed has an inverse it is
clearly possible to create a transform from one spectral do-
main to another in the worst case by simply passing through
the Boolean functional domain. The issue is whether such a
transformation can be done more efficiently.

For example, as identified in [20], if S is the arithmetic
spectrum of a function, its Walsh spectrum R in R-encoding
is given by R = Wn

(An
)
�1S. (An

)
�1S transforms the

arithmetic spectrum to the functional domain after which
the multiplication by Wn yields the Walsh spectrum. It is
more efficient of course to treat Wn

(An
)
�1 as a single ma-

trix which we can write as 
nO
i=1

W1

! 
nO
i=1

�
A1
�
�1

!

By the properties of the Kronecker product this can be writ-
ten as

nO
i=1

W1
�
A1
�
�1

So the transform from the arithmetic to the Walsh domain
can be accomplished using the transform matrix

Tn
=

nO
i=1

�
2 1

0 �1

�

which can be used as the basis for a fast transform approach.
This is illustrated for n = 3 in Figure 9. Following a similar
approach, we can show that

Tn
=

1

2n

 
nO
i=1

�
1 1

0 �2

�!
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Figure 9. Example of Direct Fast Transform
from the Arithmetic to Walsh Spectrum

is a direct transform from the Walsh to the arithmetic spec-
tral domain. This result was identified by S. L. Hurst [17] in
the context of spectral-based digital circuit testing.

Transforming to and from the Haar domain is also pos-
sible. We here consider Walsh to Haar and Haar to Walsh
transforms. arithmetic to Haar and Haar to arithmetic trans-
forms can be developed in a similar fashion (see for example
[8] and [9]). We consider the natural order Haar spectrum.
Related work based on other orders can be found in the lit-
erature (e.g. [10]).

Theorem 5.1 The Walsh-Hadamard spectrum of a function
can be transformed to the natural order Haar spectrum us-
ing the transform

Tn
=

1

2n
(Pn

+ Qn
)

Pn
=

�
1 1

1 �1

�

 Pn�1

+

�
0 0

0 2

�

Qn�1

Qn
=

�
2 0

0 0

�

 Qn�1

P0
= [0] Q0

= [1]

Proof: We need to transform from the Walsh to the function
domain and then to the Haar domain. The transform is thus
given by

Tn
= Hn

�
1

2n
Wn

�
Employing Equation 17 we have

Hn

�
1

2n
Wn

�
=

1

2n
(BnWn

+ DnWn
)

By substitution and applying the Kronecker mixed product
rule we have

BnWn
=

�
1 0

0 1

� �
1 1

1 �1

�

 Bn�1Wn�1

+

�
0 0

1 �1

� �
1 1

1 �1

�

 Dn�1Wn�1

and

DnWn
=

�
1 1

0 0

� �
1 1

1 �1

�

 Dn�1Wn�1

Defining Pn
= BnWn and Qn

= DnWn we have

Pn
=

�
1 1

1 �1

�

 Pn�1

+

�
0 0

0 2

�

 Qn�1

and

Qn
=

�
2 0

0 0

�

Qn�1

Substitution shows P0
= [0] and Q0

= [1] and the theorem
is proven. 2

Theorem 5.2 The natural order Haar spectrum of a func-
tion can be transformed to the Walsh-Hadamard spectrum
using the transform

Tn
=

1

2n
(Pn

+ Qn
)

Pn
=

�
2 2

2 �2

�

 Pn�1

+

�
0 0

0 2

�

Qn�1

Qn
=

�
2 0

0 0

�

 Qn�1

P0
= [0] Q0

= [1]

Proof: The proof is analogous to the proof of Theorem 5.1.
2

These two theorems are the basis for fast transform pro-
cedures as illustrated in Figures 10 and 11. Note that while
the structure of the transform is the same in each case, the
butterflies in the Haar to Walsh direction are all scaled by a
factor of 2. The structure is similar to the Walsh butterfly
diagram presented earlier except the first butterfly in each
group is replaced by the straight through passage of the two
data values scaled by 2.

The above approach of combining transforms to go from
one spectral domain to another can not be used when the
Reed-Muller is involved because it is carried out over
GF (2) while the others are carried out over the integers.
However, it was shown in [20] that the Reed-Muller spec-
tral coefficients can be found by taking the modulo-2 of the
absolute values of the arithmetic coefficients, a result that is
not unexpected given the similar nature of the two transform
matrices. Hence, it is possible to express the transform from
a domain to the Reed-Muller domain as a matrix multipli-
cation followed by the taking of the modulo-2 of the abso-
lute values of the result. For the domains considered here,
the matrix multiplicationcan be implemented as a fast trans-
form. The case of Walsh to Reed-Muller was considered by
Stankovic in [26].
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Walsh to Haar Spectrum
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Haar to Walsh Spectrum

6 Decision Diagram Implementation

We assume the reader is familiar with decision diagram
(DD) terminology and refer any who are not to the litera-
ture. Bryant’s seminal paper [4] on decision diagrams is still
the best place to start. There are also now a number of good
books on the subject. Our purpose here is not to review the
extensive work on DD even for the case of spectral tech-
niques, but rather to give an indication that the transforma-
tions discussed above, and similar ones, can be readily im-
plemented directly on DD.

Figure 12 outlines a DD based Walsh transform adapted
from an early work on this subject by Miller [12]. The ap-
proach is readily adapted to any transformation expressed
in terms of Kronecker products, i.e. with a similar form of
recursive structure. The complication that arises is house-
keeping in terms of when butterfly structures are committed
and when scaling factors are required.

7 Concluding Remarks

Direct transformation amongst the Walsh, Haar, Arith-
metic and Reed-Muller spectral domains has been consid-
ered. It has been shown that fast transform techniques
are possible with the exception of transformation from the
Reed-Muller domain. Implementation using decision dia-
gram methods has been outlined.

Current work involves developing efficient generic uni-
versal program code for transforming from one domain to
another. We are also considering how the transforms pre-
sented can be used to map spectral conditions, e.g. symme-
try conditions, from one domain to another.
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Walsh_BDD_Transform (f)
if(f is a terminal) return
if(f has already been transformed)
return

Walsh_BDD_Transform(Low(f))
Walsh_BDD_Transform(High(f))
low_temp = BDD_Add(Low(f),High(f))
High(f) = BDD_Sub(Low(f),High(f))
Low(f) = low_temp

BDD_Add(g,h)
if(g and h are terminals)
return(New_Terminal(Value(g)+Value(h))

if(Label(g)=Label(h))
return(New_Nonterminal(Label(g),

BDD_Add(Low(g),Low(h)),
BDD_Add(High(g),High(h))))

else if(Label(g)<Label(h))
return(New_Nonterminal(Label(g),

BDD_Add(Low(g),Twice(h)),
High(g))

else return(New_Nonterminal(Label(h),
BDD_Add(Low(h),twice(g)),

High(h))

BDD_Sub(g,h)
if(g and h are terminals)
return(New_Terminal(Value(g)-Value(h))

if(Label(g)=Label(h))
return(New_Nonterminal(Label(g),

BDD_Sub(Low(g),Low(H)),
BDD_Sub(High(g),High(h))))

else if(Label(g)<Label(h))
return(New_Nonterminal(Label(g),

BDD_Sub(Low(g),Twice(h)),
High(g))

else return(New_Nonterminal(Label(h),
BDD_Sub(Low(h),Twice(g)),

High(h))

Figure 12. Pseudo-code for BDD-based Walsh
Transformation


