
Low Power Optimization Techniques for
BDD Mapped Circuits Using

Temporal Correlation

Rolf Drechsler Mikael Kerttu Per Lindgren Mitch Thornton

Computer Science EISLAB/Computer Engineering Computer Engineering

Univeristy of Bremen Luleå University of Technology Mississippi State University

28359 Bremen, Germany Luleå, Sweden Mississippi State, MS, USA

drechsle@informatik.uni-bremen.de {kerttu,pln}@sm.luth.se mitch@ece.msstate.edu

Abstract

We address the problem of switching activity op-
timization under temporal correlation. We pro-
pose a novel BDD based approximative method for
switching activity estimation. Experimental results
on a set of MCNC benchmarks show the estimated
potential power dissipation reduction by exploiting
temporal correlation using proposed method.

1 Introduction

The importance of low power optimization is em-
phasized with the increased use of battery-powered
embedded systems. In order to optimize for low
power dissipation we may exploit statistical in-
formation about the behavior of the system. The
switching activity of a circuit node in a CMOS dig-
ital circuit directly contributes to the overall power
dissipation. Temporal correlation on the occurring
signals can have significant effect on the switch-
ing activity and hence the power consumption [12].
Binary Decision Diagrams (BDDs) [3, 4, 13] offer
efficient means for solving many of the problems
occurring in VLSI CAD. A promising approach
for low power synthesis of BDD mapped circuits
utilizes switching activity estimation for circuit op-

timization [11]. The approach combines logic syn-
thesis, area minimization and low power optimiza-
tion together with mapping in a single pass. This
approach surpasses the need for circuit extraction
and back annotation common to traditional syn-
thesis methods. However, the activity estimation
method used lacks the ability to exploit temporal
correlation information. This may severely mis-
lead optimization in cases where strong temporal
correlation is present.

In this paper we address the problem of switch-
ing activity minimization using temporal correla-
tion information. We propose a novel BDD based
approximative method and show how it can be ap-
plied to low power synthesis of BDD mapped cir-
cuits. The power dissipation estimate for a mapped
BDD node is based on its switching activity and
fanout (capacitive load). The chosen model corre-
sponds to a Pass Transistor Logic (PTL) circuits
obtained by mapping BDD nodes to PTL mul-
tiplexers [15]. The proposed estimation method
has been validated by transistor level simulations,
showing that the power dissipation due to switching
is dominated by the switching of the multiplexor
outputs and (as our model assumes) the contribu-
tion from internal switching in the multiplexors can
be neglected.

To be able to calculate the power dissipation
we also need to estimate the capacitive load of all
nodes. We approach this problem by using the
inherent structure of BDD mapped circuits. This
allows us to devise a computationally efficient cost
function for low power optimization.

Our synthesis technique utilizes statistical prop-
erties of the primary inputs. These can be obtained
by efficient functional simulation. We describe an
analytic method for extracting statistical properties
for next state signals of FSM circuits. In this way,
the need for computationally expansive gate level
simulation is surpassed, while signal statistics are
utilized for low power synthesis.

2 Switching Activity Estimation

In this section we give a review and introduction to
signal switching activity estimation. We refer the
interested reader to [14] for an excellent in-depth
elaboration on the subject. In the following we as-
sume the input signals to be mutually independent
(spatially uncorrelated) and that the signals can be
modeled as strict-sense stationary (SSS) and mean-
ergodic with zero delays [14]. That is, all switching
is carried out simultaneously and that signal prob-
ability and switching activity does not vary over
time. P (f) denotes the probability of f being 1,
i.e. the output probability of f . a(f) denotes the
activity for f , i.e., the probability of f changing
value from one cycle to the next.

In order to devise an improved low power syn-
thesis method for BDD mapped circuits we seek
accurate and computationally efficient switching
activity estimation methods able to utilize tempo-
ral correlation information.

In order to avoid the computational complexity
of the exact method [14], we assume that there is no
spatial correlation between the cofactors (succes-
sors). Thus, our approximation renders the exact
result for the case that the cofactors are spatially
uncorrelated. In the case where cofactors are pos-
itively correlated we obtain an overestimate, as a

top variable switching is less prone to cause a true
switching of the node’s output. The opposite holds
for negatively correlated cofactors.

This allows us to apply Theorem 3.1 from [14].
The multiplexor model gives the following derived
formula for a single BDD node.

a (y) =

(
(P (f0) + P (f1) − 2P (f0)P (f1))

1 − (a (f0) + a (f1) − a (f0)a (f1))

−
1
2

(a (f0) + a (f1) − a (f0)a (f1))

1 − (a (f0) + a (f1) − a (f0) a (f1))

)

×a (v) (1 − a (f0)) (1 − a (f1))

+
(1 − P (v)) − a (v) /2

1 − a (v)

×a (f0) (1 − a (v)) (1 − a (f1))

+
P (v) − a (v) /2

1 − a (v)

×a (f1) (1 − a (v)) (1 − a (f0))

+
1

2
× a (v)a (f0) (1 − a (f1))

+
1

2
× a (v)a (f1) (1 − a (f0))

+a (f0) a (f1) (1 − a (v))

+
1

2
a (v)a (f0)a (f1) (1)

3 BDD Mapped Circuits

A BDD can be directly mapped to a multiplexor
based circuit as described in [1], to a “timed” circuit
as described in [10] or to a “pass-transistor” based
circuit as described in [2, 5, 11, 15]. In all cases, the
resulting circuit can be considered to be one that
is obtained by replacing BDD vertices with small
sub-circuits and BDD edges with wires.

It is known that the diagram size (and therefore
the circuit complexity) is sensitive to the ordering
of the function variables (which represent circuit
input signals), and may vary from linear to expo-
nential under different orderings for some func-
tions. Both exact and heuristic methods have been

f f f f

ff

f f f f

1

0 1

b b

a

10

00 1110 0100 1001

0

11

b

a

Figure 1: BDD mapped to Multiplexor net-list

developed to tackle this problem. However, in this
paper we are not only concerned with the complex-
ity of the circuit resulting from a BDD, but to an
even greater extent, the power dissipation.

3.1 Complemented Edges

The use of complemented edges has shown both to
reduce BDD complexity and improve performance
of operations, [13, 3]. The statements above apply
for BDDs using complemented edges by making
the following observations:

1. The output probability P [f] of f is equal to
1 − P [f].

2. The switching activity a[f] of f is equal to
a[f].

We can utilize these properties to compute local
switching probabilities during variable exchange
operations on BDDs with complemented edges.

4 Low Power Synthesis

A method for low power synthesis of BDD mapped
circuits was first introduced in [11]. The power
dissipation of each node was computed by the es-
timated switching activity and the node’s fanout

(capacitive load). The variable order of the under-
lying BDD was shown to influence not only the area
(number of nodes) but also the internal switching
activity. An optimization algorithm based on local
variable exchange (sifting) was devised. Since the
switching activity estimate, and therefore the cost
function, could be implemented solely by local op-
erations on the diagram, the method was shown
to be computaionally effective. However, the esti-
mate does not consider any temporal signal correla-
tion, which may severely mislead the optimization
into suboptimal circuits.

4.1 Power Dissipation Modeling

We define the cost model based on the total cir-
cuit switching activity under a given set of depen-
dent variable output probabilities. In the following
we denote the dependent variables as support vari-
ables. We attempt to minimize the sum of all in-
ternal switching probabilities at each BDD vertex.

This model has some assumptions. We assume
that the input signals to the resultant circuit are
statistically independent. This assumption allows
us to use the switching probability computed in the
BDD representation as an estimate for the actual
switching activity of a circuit.

The approach from [11] is based on the the map-
ping of each BDD node into a PTL multiplexor
circuit, see Figure 2 (the number of driver stages
increases with fanout (b) as to balance the speed of
the circuit).

We estimate the power dissipation for the
mapped node as:

PDn = a(n) ∗ driver(fanout(n)) + leakage(n) (2)

To validate the above formula we have con-
ducted transistor level simulations using models
from a commercially available CMOS process.
Our results show that the power dissipation of ex-
ternal switching (driving the fanout load capaci-
tance) dominates over the internal switching in the

fff f

f

ff

f

(a) (b)

a

a

a

a

0 10 1

VDD VDDVSS VSS

Stage 1Stage 1

Stage 2

Stage m

Figure 2: BDD node mapping into PTL multi-
plexor circuits

multiplexor by a factor of over a 100 to 1 under
unity load (a single fanout). Thus, the effect of
internal switching can be disregarded.

Power
switch x, f0 = 0, f1 = 1 18827
switch x, f0, f1(f = stable) 14
x=0, switch f0, f1 = 0 10688
x=0,f0 = 0, switchf1 22

Capacitive load and leakage parameters are
strongly process dependent. In the following, we
have assumed 0 leakage and driver power dissipa-
tion to be linear with the fanout (capacitive load).
We do not consider any parasitic capacitances due
to routing.

4.2 CMOS PTL Mapping

As mentioned in Section ?? a circuit can be de-
rived from a structural mapping of the BDD. In
order to verify our minimization method we have
developed a simple mapping tool for PTL based
CMOS circuits. Each BDD node is mapped to a
sub-circuit shown in Figure 2. The select signal
(input) is present in both polarities a and a. f
and f are always computed (no optimization is ap-
plied). The driver is chosen according to the total

fan-out of the node. The number of inverter stages
ranges from 2 (as shown in Figure 2) (a) and up-
wards (b) in Figure. The transistor sizings for each
inverter stage are given in nominal values for the
process, p for P-transistors and n for N-transistors.
Values are chosen to ensure balanced rise and fall
times. Edges in the diagram are implemented as
mere interconnections (without parasitics).

4.3 Approximation Characteristics

The algorithm for low power synthesis of BDD
mapped circuits from [11] is based on local vari-
able exchange of the underlying BDD. In Section
2, a number of switching activity estimation meth-
ods were discussed. In the following we further
analyze their properties and show how they can be
applied to low power synthesis for BDD mapped
circuits. The total power dissipation of the mapped
circuit is computed as:

PDtot =
∑
∀n

a(n) × driver(fanout(n)) + leakage(n) (3)

Let us consider the EXOR function f =
x1 ⊕ x2 given the input probabilities P (x1) =
1/2, P (x2) = 1/2 and the switching activities
a(x1) = 2/3, a(x2) = 3/4, Figure 3 (a). The
table below shows the estimated switching activ-
ity for each BDD node f , f0 and f1 and the total
estimated power dissipation Power. As shown in
the table, Probabilistic [11] leads to an underesti-
mation, while the proposed local and mux based
approximations come closer to the exact result.

a (f) a (f0) a (f1) Power
Over Est. [14] (3.6) ∼ 1.42 ∼ 0.75 ∼ 0.75 2.92
Exact Est. [14] (3.2) ∼ 0.67 ∼ 0.75 ∼ 0.75 2.17
Probabilistic [11] 0.5 0.5 0.5 1.5
MUX Approx. 0.58 0.75 0.75 2.08

Let us now change the underlying variable order,
Figure 3 (b). (In this example that leads only swap-
ping the input switching activities.) The overall
power dissipation for the exact method is reduced

x2

0

1x
10

10

f

0

10

10

f

x

x

2

1

(a) (b)

Figure 3: Variable Swap

to 2. Also the other approximative methods indi-
cate a reduction (except for the Probabilistic ap-
proach which is unable to utilize the signal activity
information).

a (f) a (f0) a (f1) Power
Over Est. [14] (3.6) ∼ 1.42 ∼ 0.67 ∼ 0.67 2.75
Exact Est. [14] (3.2) ∼ 0.67 ∼ 0.67 ∼ 0.67 2
Probabilistic [11] 0.5 0.5 0.5 1.5
MUX Approx. 0.54 0.67 0.67 1.88

The switching estimate from section [11] was
shown to be computed solely by local operations
on the BDD. However, the mux approximation pro-
posed also considers the approximated switching
activity of the node’s successors the local condi-
tion no longer holds. This implies that after a lo-
cal variable exchange, switching activity estimates
need to be propagated towards preceding levels in
the diagram. However, as shown in the experimen-
tal results, CPU times are reasonable for the set of
benchmark function applied.

4.4 Heuristic Minimization Algorithm

The proposed heuristic minimization algorithm, it-
eratively seeks a variable order reducing the cir-
cuit’s switching activity weighted by the fan-out
cost for each node. We outline the procedure in
Figure 4.

The sifting and re-calculation of output proba-
bilities and switching activities is performed solely

D min() {
1 compute Dsw[total]
2 for each variable {
3 sift to position minimizing Dsw[total]
4 } repeat until no further improvement
}

Figure 4: Minimization of Power Dissipation.

through local operations on the BDD representa-
tion. The total estimated power dissipation due to
switching (Dsw[total]) can also be updated by lo-
cal operations on the two levels sifted (upper and
lower) and nodes connecting to the sifted levels
(below). By maintaining reference counters (i.e.,
the number of incoming edges) for each node, the
effect of fan-out changes for nodes below in the dia-
gram can be handled. Figure 5 shows how the total
switching probability is updated during sifting. In
line 1, we subtract the contribution of the two lev-
els to be sifted (Dsw[upper]+Dsw[lower]) and
the contribution of fan-outs from connecting nodes
(Dsw[below]). The number of references for con-
necting nodes are updated (line 2) before applying
the sifting (line 3). After the variable exchange
is performed, we update the reference counters of
the connecting nodes (line 4) and compute the to-
tal estimated power dissipation in line 5. Due to
the variable exchange, switching activities and ref-
erence counters may change, hence also the esti-
mated power dissipation Dsw[total] .

Example 1 Figure 6 (a) shows a portion of a BDD
before sifting. The number at each node denote the
number of incoming edges, (i.e, the fan-out in a
MUX based mapping). Before sifting we need to
determine fan-out changes of the lower levels in
the BDD, given as (b) in the Figure 6. Note that
only nodes connecting to the “upper” and “lower”
levels are updated. After sifting is performed, the
new fan-out values (reference counters) of the con-
necting nodes are computed, as shown in part (c)
of Figure 6.

D sift(upper, lower) {
1 Dsw[total] -= (Dsw[upper]

+ Dsw[lower] + Dsw[below])
2 ref remove edges to(upper,lower)
3 perform local variable exchange
4 ref add edges to(upper,lower)
5 Dsw[total] += (Dsw[upper]

+ Dsw[lower] + Dsw[below])
}
Figure 5: Updating Power Dissipation During Sift-
ing.

1

24

1 2

1

1
upper

lower

below

1

1

1 42 21

0

5

4

3

(b) (c)(a)

e

b

e

c

e

d

b

a

b

c

dd

c

a

Figure 6: Reference Count Update During Sifting.

5 FSM Analysis

The signal properties for the next state vector is
defined from the FSM transition relation together
with the properties of the primary input signals. In
this section we describe a method to extract this
information by modeling the FSM behavior as a
Markov chain [9]. There are several approaches
for efficient FSM spanning [6]. We have chosen
to implement the spanning function in a straight
forward way by a depth-first recursive algorithm,
which also calculates the transition probability ma-
trix represented by an ADD in the same pass. In [8]
and [7] Algebraic Decision Diagram (ADD) were
used as the transition probability matrix and the
steady state probabilities were calculated in an ef-
ficient way. We have implemented our calculations
on the ADD in an iterative way, which is sufficient

for our purpose of signal activity extraction.
Throughout this section we will give an cook

book description of how to do this analysis and also
demonstrate it with an example. We have used a
set of ISCAS89 benchmarks to test our method.

5.1 Building a BDD

The building is done in two steps. The first part
is non-recursive and it builds up small BDD frag-
ments representing the function of a row. The sec-
ond part is based on a recursive algorithm that starts
from the outputs and composes the fragments into
a single BDD.

The first part of building the BDD is done by
translating each line of the circuit description to
a BDD with pseudo variables (wire names). The
pseudo variables are referring to some output from
an other BDD or an input variable. In Figure 7 you
can see the BDD fragment generated from the last
line of the example.

0

G11

0 1

G5

G0

Figure 7: Fragment of the function {G11 =
AND(G0,G5)}

When we have a generated BDDs of all the lines
we have to compose a single BDD for each output.
This is done recursively starting from each output
BDD fragment (primary and next state outputs).
The recursion terminates when reaching primary
inputs or register outputs. When the recursion
unfolds the actual function substitutes the pseudo
variables and the composed BDD is returned.

10

1 0

0

(G0)

(G2)

(G10) (G11)

(G3)

0

0 0

0

0

1
1

1

1

1

(G1)
NS[0:0] NS[1:1]O[0:0]

I[0:0]

CS[0:0]

CS[1:1]

Figure 8: The complete function

5.2 Span FSM states

The completed BDD is used to span the FSM. Start-
ing from the reset state each possible new state is
recursively visited (depth first) until reaching an
already visited state. During the recursion a transi-
tion probability matrix is constructed. The usually
sparse matrix is efficiently represented by an ADD
(Algebraic Decision Diagram) [7][8]. This matrix
is addressed with the Current State as the columns
and Next State as the rows. The value in each entry
in the matrix (ADD leaf) represents the probability
to go from the Current State to the Next State.

S

S S

1
0

S

1

1

0

0

00 01

10 11

Figure 9: FSM states

Example 2 When we calculate the transition
probabilities the matrix starts empty and a new en-
tries are added during the recursion. We assume
that the probability of input I is equal to one is 1/4
(P(I)=1/4).

CS00 CS01 CS10 CS11

NS00 0 0 0 0
NS01 0 0 0 0
NS10 0 0 0 0
NS11 0 0 0 0

Here we go from state 00 to state 01 and add the
probability of P(I) to row 01 and column 00.

CS00 CS01 CS10 CS11

NS00 0 0 0 0
NS01 1/4 0 0 0
NS10 0 0 0 0
NS11 0 0 0 0

Finally after we have spanned all reachable
states we got the complete matrix.

CS00 CS01 CS10 CS11

NS00 3/4 3/4 3/4 0
NS01 1/4 0 1/4 0
NS10 0 1/4 0 0
NS11 0 0 0 0

5.3 Calculation of State Probabilities

The ADD obtained by spanning the FSM is used
to calculate the steady state probabilities for each
state. The FSM can be seen as a Markov chain
[7, 8] and this is used in the calculation of the state
probabilities. The ADD is multiplied with an ini-
tial state probability vector, this represents a matrix
multiplication. The initial state vector should have
the sum of the entries equal to one and each column
should have the sum equal to one.

Ax̄ = x̄′ (4)

,where A is the matrix represented by the ADD,
x̄ and x̄′ are the steady state probability vectors

after the iterations. The iteration terminates when
x̄ and x̄′ are within the specified tolerance from
each other. The resulting x̄′ contains the resulting
steady state probability vector.

Example 3 The state probability vector is initial-
ized such that each state entry takes on the value

1
nrreachablestates

except for the unreachable state
entries, which takes on the value 0. The total prob-
ability in each column of Matrix A is one.


3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


×




1/3
1/3
1/3
0


=




3/4
1/6
1/12

0







3/4 3/4 3/4 0
1/4 0 1/4 0
0 1/4 0 0
0 0 0 0


×




3/4
1/5
1/20

0


=




3/4
1/5
1/20

0




The steady state probabilities(PSS) are shown below:
PSS(S[1 : 0] = 00) = PSS(00) = 3/4
PSS(S[1 : 0] = 01) = PSS(01) = 1/5
PSS(S[1 : 0] = 10) = PSS(10) = 1/20
PSS(S[1 : 0] = 11) = PSS(11) = 0

6 Extracting Signal Statistics

The transition probability matrix and the steady
state probability vector can be used to calculate the
bit probability and the switching activity of the next
state bits.

6.1 Calculation of Bit Probabilities

The state probabilities are used to calculate the bit
probabilities for each register. The bit probabilities
is calculated by traversing the ADD and utilizing
equation 5.

(∀i)P (NS[i : i]) =
∑

∀S[N−1:0]εS[i:i]=1

PSS(S[N − 1 : 0])

(5)

Example 4 For next state bit zero we add all
Steady State probabilities, which has one on bit

zero. In a similar way we do this for bit one. The
computations are shown in equation 6.

P (NS[0 : 0]) = PSS(01) + PSS(11) = 1/5
P (NS[1 : 1]) = PSS(10) + PSS(11) = 1/20

(6)

6.2 Calculation of Bit Activities

To calculate the activity for each bit we use the
ADD with the state transition probabilities and
the steady state probabilities calculated earlier.
PSS(n) denotes the steady state probability for
state n, n[i:i] is the i:th bit of the vector n, A is the
Matrix containing the state transition probabilities
(A[NSk][CSn] = P (NSk|CSn)) , a(NS[i : i])
is the activity for the next state bit i and is derived
by the following formula.

(∀i)a(NS[i : i]) =
∑
∀n

PSS(n) ×
∑

∀kε(k[i:i] �=n[i:i])

P (NSk|CSn)

(7)

Example 5 The equation 7 is used to calculate the
next state activities in the following example.

a(NS[0 : 0]) = PSS(00) × P (NS01|CS00)
+ PSS(01) × (P (NS00|CS01)
+ P (NS10|CS01))
+ PSS(10) × P (NS01|CS10)
= 3/4 × 1/4 + 1/5 × (3/4 + 1/4)
+ 1/20 × 1/4 = 2/5

a(NS[1 : 1]) = PSS(00) × 0
+ PSS(01) × P (NS10|CS01)
+ PSS(10) × (P (NS01|CS10)
+ P (NS00|CS10))
= 0 + 1/5 × 1/4
+ 1/20 × (1/4 + 3/4) = 1/10

(8)

7 Experimental Results

In [11] the basic low power optimizing method is
shown to reduce estimated power dissipation for

Area Optimized Low Power Optimized
name in/out Prob Local Mux Prob Local Mux
5xp1 7/10 32.2 36.3 40.4 30.2 27.7 25.1
add6 12/ 7 23.0 21.9 20.3 23.0 21.9 20.3
apex7 49/37 175.6 191.8 209.8 158.4 161.3 165.1
bc0 26/11 320.0 311.2 330.8 310.3 264.1 229.7
chkn 29/7 132.0 140.4 151.1 84.8 110.1 33.2
duke2 22/29 106.9 114.3 129.2 103.8 111.6 75.9
exp 8/18 79.5 78.9 81.5 61.6 60.7 42.4
in2 19/10 115.5 113.4 115.5 95.5 88.4 67.5
in7 26/10 21.9 22.1 23.5 20.1 18.1 16.8
inc 7/ 9 45.4 52.1 54.4 45.3 37.4 24.6
intb 15/ 7 349.3 336.9 313.8 305.4 284.1 256.6
misex3 14/14 223.9 219.4 234.9 223.9 206.8 203.8
sao2 10/ 4 35.8 36.3 37.2 34.2 32.0 16.6
tial 14/ 8 422.6 438.3 453.2 422.6 430.6 362.9
vg2 25/ 8 50.0 47.2 46.9 50.0 45.3 46.3
x6dn 39/ 5 143.1 124.0 115.2 124.5 110.0 96.0
Sum 2276.8 2284.5 2357.7 2093.6 2009.3 1682.8

Table 1: Area Optimized circuits compared with Low
Power Optimized circuits

uncorrelated input signals. The average power es-
timate reduction was 20 percent with over 50 per-
cent in some benchmarks. The spice simulations
using commercial CMOS transistor models also in-
dicates that our model is applicable. We get further
potential power reductions by incorporating tem-
poral signal correlation in our synthesis algorithm.
As shown in Table 1 the average power estimate
reduction for our synthesis tool is 30 percent to
the area optimized circuit. This is done with a
large activity deviation (P = 0.5 and alternating
ai = 0.1, 0.9, 0.1, ...), for which the method in [11]
only manage to reduce the power estimate by 8.3
percent compared to the area optimizer.

Furthermore we have analyzed the finite state
machines as described in section 5 on a set of IS-
CAS89 benchmarks and extracted statistical infor-
mation as in in section 6 and applied that informa-
tion on our synthesis tool. As seen in Table 2 the
results show an average power estimate reduction
of 43 percent by the new proposed method com-
pared to the area optimized method. The power
estimate reductions range from 0 percent to 95 per-
cent, The majority of the tests show a significant
power estimate reduction for the FSM optimized
circuits compared with the area optimized circuits.
The results also show that the power optimized cir-
cuits have an increased area of 51 percent on aver-
age over the area optimized circuit. In two cases

Area opt NonFSM opt FSM opt Percent Change
name Size ˆP D Size ˆP D Size ˆPD Size ˆP D

s208.1 40 25 40 25 64 19 60 -24
s27 9 4.1 9 4.1 9 4.1 0 0
s298 73 4.3 74 4.2 77 2.9 5.4 -33
s344 103 12 108 19 148 3.4 44 72
s349 103 12 108 19 127 3.3 23 -73
s382 120 2.1 122 2.1 120 2.1 0 0
s386 113 44 114 41 114 39 0 -11
s400 120 2.1 122 2.1 120 2.1 0 0
s444 150 43 161 19 156 2.1 4 -95
s510 163 118 168 81 153 61 -6.1 -48
s526 137 8.4 139 8.1 136 4.6 -0.7 -55
s641 398 81 384 77 1149 15 289 -81
s713 398 81 384 77 1149 15 289 -81
s820 219 172 261 149 280 108 28 -37
s832 219 174 261 148 294 103 34 -41

Table 2: ISCAS89 benchmarks

the power optimizer have smaller circuits than the
area optimizer. This is due to the heuristic algo-
rithm that the area optimizer utilizes, which may
cause it to find a local minimum.

8 Conclusions

The results show that using the information about
the temporal correlation when we optimizing the
circuit gives good results. Further work should
be done with spatial correlation to see if we get a
further improvements in the power consumption.

References

[1] S.B. Akers. Binary decision diagrams. IEEE
Trans. on Comp., 27:509–516, 1978.

[2] V. Bertacco, S. Minato, P. Verplaetse,
L. Benini, and G. De Micheli. Decision dia-
grams and pass transistor logic synthesis. In
Int’l Workshop on Logic Synth., 1997.

[3] K.S. Brace, R.L. Rudell, and R.E. Bryant.
Efficient implementation of a BDD package.
In Design Automation Conf., pages 40–45,
1990.

[4] R.E. Bryant. Graph - based algorithms for
Boolean function manipulation. IEEE Trans.
on Comp., 35(8):677–691, 1986.

[5] P. Buch, A. Narayan, A.R. Newton, and A.L.
Sangiovanni-Vincentelli. Logic synthesis for
large pass transistor circuits. In Int’l Conf. on
CAD, pages 663–670, 1997.

[6] G. Cabodi, P. Camurati, and S. Quer. Improv-
ing symbolic reachability analysis by means
of activity profiles. IEEE Trans. on Comp.,
19(9):1065–1075, 2000.

[7] G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Markovian analysis of large fi-
nite state machines. IEEE Trans. on Comp.,
15(12):1479–1493, 1996.

[8] G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Probabilistic analysis of large
finite state machines. In Design Automation
Conf., pages 270–275, 1994.

[9] G.D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Markovian analysis of large fi-
nite state machines. IEEE Trans. on Comp.,
15(12):1479–1493, 1996.

[10] L. Lavagno, P. McGeer, A. Saldanha, and
A.L. Sangiovanni-Vincentelli. Timed shan-
non circuits: A power-efficient design style
and synthesis tool. In Design Automation
Conf., pages 254–260, 1995.

[11] P. Lindgren, M. Kerttu, M. Thornton, and
R. Drechsler. Low power optimization tech-
nique for BDD mapped circuits. In ASP De-
sign Automation Conf., pages 615–621,2001.

[12] R. Marculescu D. Marculescu and M. Pe-
dram. Efficient power estimation for highly
correlated input streams. In Design Automa-
tion Conf., 1995.

[13] S. Minato, N. Ishiura, and S. Yajima. Shared
binary decision diagrams with attributed
edges for efficient Boolean function manip-
ulation. In Design Automation Conf., pages
52–57, 1990.

[14] K. Roy and S. Prasad. Low-Power CMOS
VLSI Circuit Design. Wiley Interscience,
2000.

[15] C. Scholl and B. Becker. On the generation of
multiplexer circuits for pass transistor logic.
In Design, Automation and Test in Europe,
2000.

