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Abstract

A modeling approach based upon the notions of thread
spawning and maximum length probability density
functions is presented.  By using a data dependence
graph, or alternatively, an available parallelism profile,
probability density functions may be derived and used as
input to a queuing system model that can predict required
resources.. The accuracy of the model is measured by
validation using parallelism profiles under different
halting criteria.  The result of this work is the
establishment of a modeling framework that can later be
used to estimate the effects of  non-zero interprocessor
latencies and limitations due to a finite number of
processing elements.

1 Introduction

Parallelism profiles have been used in the past to
evaluate the available parallelism contained within an
application program.  These parallelism profiles show the
number of parallel operations available at each step of
program execution. This paper presents a model derived
from parallelism profiles for analyzing the overhead
associated with the creation and completion of parallel
operations.  The model presents a method for determining
the overhead associated with executing the program.
This information can be used to determine the granularity
of parallel operations within a program, partitioning, and
load balancing, or determining optimal thread sizes for
multithreaded architectures.

Unfortunately, parallelism profiles only give the upper
bound in achievable parallelism for a given architecture.
Multiprocessor designers typically must specify a system
and simulate different programs to determine the behavior
of the architecture which is then compared against the
ideal case given in the parallelism plot.  In this work, we
define several parameters that are directly measurable
from the parallelism plots and develop a statistical
queuing model for execution of the program.  Since the

model can be used to generate ideal cases, it is validated
by comparing it against the original ideal data.

Most queuing models for multiprocessor systems only
predict steady state responses by ignoring start-up and
shut-down transients since they are typically too hard to
model.  In this work, we include the transients in the
model through the notions of maximal thread length and
thread spawning probability density functions (pdf).  The
pdfs are generated directly from the available parallelism
curves and are used to pseudo-randomly generate random
variables that represent the initiation and duration of
maximal length computation threads.

The halting criteria proved to be a major parameter with
regard to the accuracy of the model.  We report the results
of three different halting criteria.  We have determined
that the best halting criteria is to equate the amount of
work present in the available parallelism curve to that
predicted by the simulation.  When the maximum work
criteria is used, acceptable estimates of total runtime and
maximum required processing elements are predicted
when compared to the ideal case.  This validates the
approach for estimating the results of non-zero latencies
or restricting the number of available processing elements
in other experiments using the model.

The next section contains a review of the available
parallelism plots and provides a brief explanation of their
significance and origin.  In section 3 we define various
parameters that are computed from the available
parallelism plots and used as inputs to the statistical
model.  Section 2 contains a description of the model and
experimental results using several benchmark cases.
Finally, the results of this work and areas of future related
effort are outlined in the conclusion section.

2 Parallelism Profiles

Parallelism profiles present  a graphical representation
of the parallel operations available for execution at each
time step in a program.  A typical parallelism profile is



shown in Figure 1.  This parallelism profile taken from
Loop 11 of the Livermore Loops [1] [5] shows the number
of parallel operations available for execution at each time
step in the program.   The parallelism profile shows that a
variable number of operations are available for execution
in parallel throughout the lifetime of the program.  The
shape of the parallelism curve is characteristic of the form
of the source code shown below.

The source code is developed in the SISAL language
[2], and has been modified from the original iterative
FORTRAN source code.  The modification uses recursive
doubling and is more efficient for parallel execution than
the original FORTRAN source code.  The modified code
is shown in Figure 2.  This transformation executes  in
O(log n) in time, and O(n log n) in number of operations
[1].

% Loop 11  -  First Sum
%
function Loop11(n:integer;
   Y:OneDim; returns OneDim)
for initial
i   := 1;
X  := Y

while i < n repeat
i   := 2*old i;
X  := array_adjust(old X, 1,

           old i) ||
   for j in old i+1, n returns

array of old X[j] + old X[j -
                    old i]

end for
returns value of X
end for

end function %Loop11

Figure 2. SISAL Code for Livermore Loop 11

The envelope of the curve is determined by the inner
parallel For construct, and the number of spikes shown in
Figure 1 is determined by the outer while loop.  For a
detailed discussion of the Livermore Loops, see [1].  The
parallelism profile provides insight into the architectural
characteristics of the machine type best suited for
executing the program.   The maximum number of
processors required in order to exploit the parallelism can
easily be determined by analysis of the profile graph.  The
maximum number of parallel operations and hence, the
maximum number of processors required for this profile is
250.  The area under the parallelism profile represents the
total work required to execute this program.

3 Source/Sink Thread Overhead

One factor that will affect the execution time of the
program is the overhead associated with task creation,
completion, data copying, synchronization, etc., as well as
resource contentions associated with the initialization and
termination of the parallel operations.  The effects of this
overhead is not apparent by the data displayed in the
parallelism profile.  The parallelism profile is based on a
data dependence  ordering of operations by level.  The
parallelism profile shows the cumulative number of
operations at each level, but does not show actual
execution times.
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Figure 1.  Parallelism Profile for Livermore Loop 11.



A model can be developed based on the parallelism
profile to aid in the understanding of the overhead of
creating and executing  these parallel operations.  The
model is based on the following definitions:

Maximal Process Thread:
All Instructions are executed on a single processing

element.

Maximal Source Overhead:
The overhead associated with starting execution of a

new maximal thread .

Maximal Sink Overhead:
The overhead associated with terminating a maximal

thread.

Average Maximal Thread Length:
The average number of operations  executed in all

maximal threads.

The first graph in Figure 3 shows a data dependence
graphical representation of a single thread.  The data
graph provides  a strict ordering of operations  represented
by the data dependencies between the operations in the
graph.  The single thread shown in Figure 3 contains a
single sequential ordering of operations.  The second
graph in Figure 3 shows three new threads sourced from
the top most node.  Overhead will be introduced when
these three threads are sourced.  This overhead can be
attributed to operating system scheduling, resource de-
allocation and contention, or transfer of data.  The third
graph in Figure 3 shows three threads that will be
terminated by transferring data into the thread that
contains the bottom node. Overhead will also be
introduced when these three threads are sinked.

It is apparent  from the second and third graphs  shown
in Figure 3 that exactly three threads are sourced, and
three are sinked.  This level of detail cannot be accurately
obtained from a parallelism profile.  Each time step shown
in a profile shows the net number of parallel operations
existing at that level.  Consider  the parallelism profile

shown in Figure 1.  The profile shows approximately 120
parallel operations  exist at time step three, and 250
parallel operations  exist at time step four.   A net of 130
new parallel operations were sourced between time step
three and four.  However,  the profile does  not provide
enough information to determine if 130 new operations
were sourced, or if the 120 operations in time step three
were sinked, while 250 new operations were sourced.
This information is available from the source program, or
the data dependence graph, but not the parallelism profile.
The following definitions are required to continue
definition of a model based on the parallelism profile.

Let N(t) � number of processors  required at  time t in
the parallelism profile.  Enumerate  PEi = i  � i �  [1,n]
where n is the maximum number of processors  required
throughout  the program execution.  For the parallelism
profile illustrated in Figure 1, the value of n =  250.

If N(t) = k, then PE1, PE2, . . . PEk are executing, and
PEk+1 . . . PEn are idle.  If N(t+1) > N(t), then we assume
processors   PEN(t+1) . . .  PEN(t)+1  initiate execution.
Processors PE1 . . . PEN(t) continue execution, assuming
N(t) � n.  If N(t+1) < N(t), then we assume processors
PEN(t+1)+1 . . . PEN(t)  terminate execution.  Processors PE1 . . .
PEN(t+1) continue execution.

A maximal process thread  is defined  to operate  on
processor PEk over the time interval [�,�], with length � �
�, such that k � N(t)  � t � [�,�].  The following two
observations are a direct  result of this Lemma:

Lemma 1: The maximal process thread of PEi � PEi+1.

PROOF:
The maximal process thread of PE1 is exactly equal to the
critical path, and hence, the overall depth of the data
dependence graph.  This corresponds to  the overall
execution time of the program.

QED
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 Figure 3.  Thread Definitions

3.1 Source/Sink Definitions

We define  �N(t )  as:
� fN(t ) = N(t + 1) � N(t )       �bN(t) = N( t) � N(t �1)

where � fN(t ) is a first order forward difference equation,
and � bN(t) is a first order backward difference equation
[3]. � fN(t )represents the net number of maximal threads
spawned, and  � bN(t)  represents the net number of
maximal threads sinked  at time t.  Define Src(t) and Snk(t)
as:

Src(t) =
1
2

[| �bN(t) | +�bN(t )]

Snk( t) =
1
2

[| �fN (t) | ��fN(t )]

Src(t) represents the number of maximal threads sourced,
and Snk(t) represents the number of maximal threads
sinked at time t. For any program
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The number of maximal length threads sourced must
equal the number sinked, otherwise, the program would
not terminate.  Based on the definitions for Src(t) and Snk(t),
several observations can be made regarding the programs’
overhead behavior.

 0 �  Src(t) � max |� fN(t )|
0 �  Snk(t) � max |� bN(t) | ,
max |� fN(t )| ,  max |� bN(t) |    �    max | N(t) |

The graph shown in Figure 4 illustrates the Src(t)  curve
for the parallelism profile shown in Figure 1.

3.3 Probability Density and Distributions

Define two random variables X and Y.  We can define
the event Ax to the subset of Src consisting of all sample
points Src(t) to which the random variable X assigns the
value x, and the event By to the subset of Snk consisting of
all sample points Snk(t) to which the random variable Y
assigns the value y [6]:

Ax = {Src(t ) � Src | X(Src(t)) = x }
By = {Snk(t) � Snk | Y(Snk(t )) = y }

Using these definitions,

P(Ax)  =  P([X = x])
P(BY)  =  P([Y = y])  =  P({Src(t) | X(Src(t)) = x}) =
P({Snk(t) | Y(Snk(t)) = y})

=  P(Src(t ))
X (Src (t )) = x

�
=  P(Snk(t ))

Y (Snk( t )) = y
�



We define these functions as the spawning and sinking
probability density functions (pdf), respectively.  The
following properties  hold:

0 � p(Src(t)) � 1         0 � p(Snk(t )) �1
P(Src(t))

x�Src

�  = 1        P(Snk(t))
y�Snk

�   =  1

and the cumulative spawning and sinking distribution
functions FX(x) and FY(y) as

FX(x)  =  P{X < x }  =   �fX(xi) 
FY(y)  =  P{Y < y }  =   �fY(yi)

The spawning mass function represents the probability
of spawning Src(t) new maximal threads  during the
execution of the program.  The sinking mass function
represents the
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Figure 4.  Src(t) Graph for Loop 11.

probability of sinking Snk(t) maximal threads during the
execution of the program.   The spawning and sinking
probability mass functions for the parallelism profile
shown in Figure 1 are shown below in Figure 5.

The cumulative normalized spawning density function
shows that threads are spawned fairly uniformly
throughout the life of the program.  The cumulative
normalized sinks density function shows that threads are
terminated fairly uniformly throughout the life of the
program. The distribution functions show the normalized
number of spawns and sinks during execution.   The
distribution functions in Figure 6 show the number of
spawns and sinks are fairly constant throughout the
program.

3.4 Thread Length Density / Distributions

The spawning and sinking density functions provide a
technique to model the frequency of maximal thread
creation and completion.  This provides a measure of how
active the program is during execution, and how the
overhead of creation and completion is distributed

throughout the program.  This cost of the overhead can be
modeled by density and distribution functions of the
length of the maximal threads.  For long threads, the
overhead cost  is easily amortized over the length of the
thread.  This is typical of MIMD operation, where the
length of the thread is long.  For short threads, the
overhead cost is not readily available, and can represent a
significant delay in the thread execution.  Short thread
lengths are characteristic of SIMD operations.

We define the random variable Z that maps the length of
the maximal length threads to the real numbers.   We
define the event Ax to the subset of Src consisting of all
sample points Src(t) to which the random variable X
assigns the value x, and the event By to the subset of Snk

consisting of all sample points Snk(t) to which the random
variable Y assigns the value y:

Ax = {Src(t ) � Src | X(Src(t)) = x }
By = {Snk(t) � Snk | Y(Snk(t )) = y }
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Figure 5.  Density Functions

3.5 Overhead Granularity

The parallelism profile in Figure 1 shows a large
degree of parallelism is available periodically throughout
the program.  A total of 9000 threads are spawned during
the programs execution.  The average thread length is an
important characteristic of the program, and can be
determined by:

threadlength =
1

# threads
ti

i
�

where ti is the length of thread I.  The thread length can
also be computed by dividing the total area under the
parallelism profile curve by the total number of threads.
The average thread length for Figure  1 is 3.6.  This
implies only 3.6 instructions are executed on average in
each thread.

4 Model Formulation

To investigate the validity of using spawning and
thread length distribution density functions for
characterizing exploitable parallelism in a given
computer architecture, a statistical model was developed
and run using the SIMSCRIPT simulation language [4].
The model consisted of a set of resources representing
maximal length threads and two main processes; a
GENERATOR and PE process.  The GENERATOR
process is responsible for randomly determining if and
how many maximal length threads are spawned at each
CPU clock cycle.  The PE process represents a single
processing element upon which a maximal length thread
will execute.  The PE process pseudo-randomly generates
the length of a maximal thread by using a user defined
probability density function.  Likewise, the
GENERATOR process determines the number of
maximal length threads to spawn at a given time based
upon another user defined probability density function.



The model also has the capability to add additional
parameters such as latencies due to processing element
overhead, and, to limit the number of available
processing elements to some finite number.
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Figure 6.  Distribution Functions

4.1Model Validation

The accuracy of the model was tested by performing a
series of runs using maximal thread spawn and length pdfs
derived from the Livermore Loops and by using an
unlimited number of processing elements with zero
latency incurred.  These parameters match the
deterministic parallelism curves given in [1].  One
additional parameter which is very important and crucial
to the outcome of the model results is the number of
initial threads executing.  Upon examination of the
deterministic data in [1], code segments such as the one
represented by loop 10 begin with a small number of
threads (less than 10) and at time 1 spawn several
thousand threads (over 5500).  We experimented with
three different criteria for ending the simulation:

1. Halting when the absence of executing or queued
threads is detected.
2. Halting when the amount of simulation execution time
equals the total required time in the available parallelism
plot.
3. Halting when the amount of work (measured in PE CPU
cycles) in the simulation equals that in the available
parallelism profile.

4.2 Experimental Results

Table 1 contains results when the model halted as soon
as no threads were executing, or waiting to be executed.
Not surprisingly, the runtimes between the statistical



model and the parallelism profiles indicated no
correlation.

This is due to the fact that the threads are “spawned”
randomly and in many cases the small initial number of
threads finished execution before more threads were

generated.  However, resource estimates were
encouraging for several cases with the percent error less
than 10%.  Table 2 contains the comparison of the
predicted resources versus the actual data derived from
parallelism plots when the simulation was run for an
amount of time equivalent to that in the profiles.

Table 1: Model Validation Results Using the Idle PEs Halting Criteria

Loop Execution Time Average Number of PEs Maximum Number of PEs
Model Actual % Error Model Actual % Error Model Actual % Error

1 22 8 175% 1316.0 1493.8 12% 2903 2950 2%
2 28 109  74% 7.9 15.0 47% 35 200 83%
3 11 4 175% 1167.2 1250.0 7% 1930 2000 4%
4 21 19 11% 6.2 7.2 14% 15 30 100%
5 57 78 27% 122.0 117.3 4% 374 500 25%
6 21 635 97% 18.0 26.2 31% 58 190 69%
8 190 18 955% 706.9 822.0 14% 2955 2975 1%
9 41 14 193% 117.5 189.5 38% 702 1000 30%

10 41 12 242% 1493.2 2228.3 33% 5352 5500 3%
11 72 65 11% 42.7 71.5 40% 129 254 49%
12 13 6 117% 1019.2 1000.2 2% 1877 2000 6%
15 523 25 199% 1062.8 1126.0 6% 3881 3290 18%
16 478 45 962% 104.3 156.3 33% 794 900 12%
22 149 12 114% 102.5 116.9 12% 237 200 16%
23 167 2030 112% 130.9 23.5 457% 710 700 1%

Table 3 contains the results when the halting criteria is
set to equivalent amounts of work in the stochastic
simulation and the available parallelism profiles.

The best results are those that use the total work halting
criteria.  In roughly half of the benchmark cases the
percent error is less than or equal to 5% in terms of
resource estimation (required number of processing
elements) and is greater than 15% in only 3 of the above
15 cases.  Since the pdfs may be derived from data
dependency graphs as well as available parallelism curves,
the model may be used to estimate the required number of
processing elements for a given data dependency graph.

5 Conclusion

We have developed a statistical model that can be used
to predict needed resources for a parallel architecture
based upon the notions of maximal length thread
spawning and length probability density functions.  This
information is easily obtainable from available parallelism
profiles or, data dependence graphs.   The model was
validated through comparisons to actual data and several
different halting criteria were evaluated.



Table 2: Model Validation Results Using the Constant Run Time Halting Criteria

Loop Average Number of PEs Maximum Number of PEs
Model Actual % Error Model Actual % Error

1 1373.3 1493.8 8% 2471 2950 16%
2 2.6 15.0 83% 33.2 200 83%
3 1321.2 1250.0 6% 1839 2000 8%
4 4.8 7.2 33% 15 30 50%
5 57.0 117.3 51% 366 500 27%
6 1.1 26.2 96% 60 190 68%
8 675.4 822.0 18% 2031 2975 32%
9 122.1 189.5 36% 510 1000 49%

10 1580.3 2228.3 29% 3836 5500 30%
11 24.0 71.5 66% 122.1 254 52%
12 1103.4 1000.2 10% 1768 2000 12%
15 1146.6 1126.0 2% 2996 3290 9%
16 85.1 156.3 46% 447 900 50%
22 100.5 116.9 14% 189 200 6%
23 5.7 23.5 76% 708 700 1%

Table 3: Model Validation Results Using the Total Work Halting Criteria

Loop Execution Time Average Number of PEs Maximum Number of PEs
Model Actual % Error Model Actual % Error Model Actual % Error

1 11 8 38% 1740.2 1493.8 16% 3158 2950 7%
2 110 109 1% 22.4 15.0 49% 165 200 18%
3 6 4 50% 1467.1 1250.0 17% 2080 2000 4%
4 22 19 16% 10.1 7.2 40% 24 30 20%
5 107 78 37% 136.4 117.3 16% 486 500 3%
6 967 635 52% 27.0 26.2 31% 168 190 12%
8 30 18 67% 837.8 822.0 2% 2584 2975 13%
9 26 14 86% 255.2 189.5 35% 1103 1000 10%

10 18 12 50% 2718.7 2228.3 22% 6716 5500 22%
11 94 65 45% 78.2 71.5 9% 254 254 0%
12 8 6 33% 1380.6 1000.2 38% 2091 2000 5%
15 35 25 40% 1206.8 1126.0 7% 3173 3290 4%
16 74 45 64% 149.1 156.3 5% 883 900 2%
22 21 12 75% 110.4 116.9 6% 210 200 5%
23 1969 2030 3% 28.1 23.5 19% 776 700 11%

The utility of this approach lies in the fact that
parameters such as processor latencies and finite resources
may be varied and the corresponding characteristics of a
parallel architecture may be observed before high level
design occurs.  Thus, this tool can be valuable for the
system designer in the specification phase of the processor
architecture.  Since the pdfs can be computed directly
from a data dependency graph produced by a compiler,
this model can be used to predict the required number of
processing elements before the program is actually
executed.
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