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Abstract- A method for minimizing Fzclusive-
OR Sum of Product (ESOP) forms of Boolean
functions is described. ESOP forms have been
proven to be require fewer products than the
more common Sum of Products (SOP) forms
based on the inclusive-OR operator for many
classes of functions. Since finding the optimal
ESOP solution requires the solution of the well-
known set covering problem, a heuristic method
is developed. A prototype version of this tech-
nique has been implemented and the results are
compared to a more mature ESOP minimiza-
tion algorithm.

1 Introduction

A fundamental problem in the area of switching
theory is that of two-level minimization of Boolean ex-
pressions. In general, the two-level minimization prob-
lem consists of finding an equivalent expression with
exactly two algebraic operations allowed (in addition
to the use of the unary inversion operator) such that
the resulting expression satisfies some constraint. Two
well-known examples are finding the Sum of Prod-
ucts (SOP) and Product of Sums (POS) forms sub-
ject to the constraint that as few logic OR operations
as possible are present in the SOP form, or, as few
logic AND operations as possible occur in the POS
form. This subset of two-level minimization problems
is loosely referred to as “minimizing a Boolean func-
tion” by many logic designers.

Although many well known techniques have been
developed for minimizing SOP and POS forms [6] [7],
this problem is provably hard. It can be shown that
finding the exact solution to the two-level minimiza-
tion problem involves finding the solution to the sub-
problems commonly known as the set covering prob-
lem (for unate functions) and the minimum cost as-
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signment problem (for binate functions). These sub-
problems have been shown to be members of the class
of N P-complete problems. Thus, there are no known
deterministic algorithms available that run in less than
an exponential amount of time.

Despite the difficulty in finding the exact minimal
forms of the SOP and POS representations, there are
very good heuristic methods available that often find
the minimal, or at least, near-minimal solutions [1].
The existence of these techniques has enabled the de-
velopment and widespread use of logic synthesis tools
that are prevalent in modern design environments [3].

It has been shown that the Exclusive-OR Sum of
Products (ESOP) form can often represent functions
with fewer product terms than the more well-known
SOP form [11] [8]. The ESOP form expresses a func-
tion as a collection of product terms (or cubes) that
are combined with the XOR operator. Minimizing the
ESOP form also falls into the general class of set cover-
ing problems, however, there are not good generalized
heuristic minimization techniques available as is the
case for the SOP and POS forms. Many researchers
are currently investigating techniques for minimizing
ESOP forms. Other techniques have been proposed
recently, but they are still considered immature [10]
[5]. Since the discovery of such a method would have
important consequences with regard to the practical
problems of logic synthesis, logic verification, state
minimization and other digital logic problems, we are
motivated to develop alternative methods for solving
the problem.

A heuristic ESOP minimization technique is de-
scribed here. The method is derived by modifying the
tabulation method that is used for SOP minimization
[7]. The implementation of this technique is discussed
using a cube list representation and using Binary De-
cision Diagrams (BDD) [2].

The organization of the paper describes the the-
ory behind this approach in detail and compares it
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with another popular approach for minimizing ESOP
forms. Next, experimental results are presented
that compare this approach with another well-known
method. These results indicate that our technique
generates results that are similar to those produced
by the other method [10]. Finally, we present con-
clusions and discuss possible future extensions to this
approach.

2 Description of the Method

An ESOP minimization technique based on
odd/even cube covering is described here. This tech-
nique is based on two fundamental relations as given
in Equations 1 and 2.
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Where ¢ represents an instance of a specific product
term (cube or logical AND) of a set of literals, @ repre-
sents the exclusive-OR operation and m is some non-
negative integer. Equation 1 essentially states that
including a cube in a cover set for an even number of
times is equivalent to not including it at all. Likewise,
including a cube in a cover set an odd number of times
is equivalent to including it with an instance of one.
This gives a degree of freedom in finding a minimal
ESOP cover since the existence of an instance of a
cube in the cover set does not necessarily mean it is
in the overall on-set of the function being minimized.

As an  example, consider  the  func-
tion, F(w,z,y,z) =>.(0,1,4,10,11, 13, 14). Figure 1
shows two Karnaugh maps. The map on the left con-
tains circles that result in the minimized SOP form,
F=wzy+wyz+weryz+wzyz +wyz + wTy.
The SOP form requires 6 AND gates and the overall
expression is comprised of 9 literals. The Karnaugh
map on the right contains circles that obey Equations
1 and 2 since all 0 values are circled an even number
of times and all 1 values are circled for an odd num-
ber. Thus, the 0 values cancel out due to the XOR
relation in Equation 1 and the logic-1 values remain.
This results in the expression, F' = Wy ® 2z @ wy
which only requires 3 AND gates and is comprised of
6 literals.

While the Karnaugh map example is useful for illus-
trating the theory behind our approach, it is impracti-
cal for even moderately sized Boolean functions which
are commonly encountered in typical designs. For this
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Figure 1: Karnaugh Map Illustrating SOP Versus
ESOP Forms

reason, we developed an experimental computer pro-
gram that operates over a structure similar to the
cover table used in the tabular (or Quine-McCluskey)
approach [7] for SOP minimization. This technique is
described using two different types of function repre-
sentations, cube lists and Binary Decision Diagrams
(BDDs).

2.1 Cube List Approach

A cube list is a symbolic representation of a col-
lection of product terms that provide a cover for a
function, in our case an ESOP cover. The cube list
approach is very similar to the well-known tabulation
method where a set of minterms describing the func-
tion to be minimized is used as the initial input. It is
summarized in the following three steps:

1. Pairs of minterms are examined to determine if
they differ by only a single literal. If they do, a
new cube is added to the list that has a “don’t
care” in place of the literal. This process is then
applied to the new set of cubes and is continued
until no new product terms may be added.

2. The list of cubes resulting from step 1 is reduced
in size by eliminating redundant product terms.
This is the step where a solution to the cover
problem is found through the use of heuristics.

3. The reduced cube list is further optimized by
searching for pairs that satisfy particular alge-
braic properties. When such a pair is found, they
may be replaced by another pair containing more
“don’t care” values, or, they may be “merged”
into a single term.

With the exception of step 3, the method outlined
above could be interpreted as a high-level description
of the tabulation method for SOP circuits. However,
due to the different properties of the inclusive-OR, ver-
sus the exclusive-OR operation, each step must be im-
plemented in a slightly different manner.

In step 1, after new cubes are added to the list,
the pair of terms that produced each new cube cannot



automatically be deleted as is the case with the SOP
tabulation method. Rather, a count of the total num-
ber of cubes in the new list must be made that cover
the original set. Only if the count is an odd number,
{1,3,5,...}, may the original cube be deleted. This
is due to the relationships in Equations 1 and 2. Fur-
thermore, when a new cube is created, it is added to
the list only if it does not exist there already. This is
important since the occurrence of two identical cubes
would cause a cancellation since z & x = 0. For the
SOP formulation, this is not a problem since z+z = .

The second phase of the process involves the cre-
ation of a cover table followed by solving the cover
problem. This is also done in a similar manner to
the SOP tabulation method where “essential prod-
ucts” are chosen for the final list. However, as was
the case in step 1, care must be taken to ensure that
all minterms are covered an odd number of times, thus
the odd/even counting process is also integrated into
this procedure.

In the event that the essential cubes do not cover
all minterms, a situation occurs that is referred to as
a “cyclic cover”. This is a case where there is no clear
choice in which product term to add to the final list
because none of the candidates are essential and it
is an instance of the cover problem. The heuristic
we employ is to chose the product term that covers
the fewest minterms. This is just the opposite of
a common heuristic used in the related SOP tabula-
tion method where implicants are chosen that cover
the most minterms. However, our heuristic was based
on the fact that each time an implicant is added to
the final list, the odd/even counting process must be
invoked. If a product was added that covered many
minterms that were covered previously, an even count
would occur for these resulting in adding yet another
product term for each to make the count become odd.
By adding implicants that cover the fewest minterms,
we minimize the number of additional products that
must be added to maintain an odd minterm cover
count.

After step 2, an ESOP is represented by the result-
ing cube list that is guaranteed to cover each minterm
of f an odd number of times and each minterm of f
exactly zero times. However, as was shown in the
Karnaugh map example, it is permissible to cover
minterms of f an even number of times, since these
function zeros will cancel due to the XOR, operation.
Furthermore, it is often desirable to include this in the
resultant ESOP since it can help to produce a smaller
list of larger cubes. For these reasons, the third step
is included in our technique.

Step 3 makes use of two algebraic properties, Ty @
2y = z®y and zHT = 1. Each pair of cubes in the list
produced in step 2 is examined for common factors. If
a non-null common factor is found, the corresponding
non-common factors of the two cubes are checked to
determine if they satisfy the algebraic properties. The
first property causes each cube to expand its’ cover set
resulting in the replacement of the current two cubes
with two larger ones. The second property allows the
two cubes to be merged into a single term.

2.2 BDD Based Approach

As is well-known, each Boolean function f : B® —
B can be represented by a Binary Decision Diagram
(BDD) [2], i-e. a directed acyclic graph where a Shan-
non decomposition is carried out in each node. For
functions represented by reduced, ordered BDDs, effi-
cient manipulations are possible. BDDs are the state-
of-the-art data structure in VLSI CAD and have been
used in many applications [4].

BDDs representing Boolean functions can be di-
rectly interpreted as a two-level form, if the 1-paths,
i.e. the paths from the root of the graph to the ter-
minal 1 node, are interpreted as cubes. The resul-
tant cube lists may be considered to be either SOP
or ESOP since the decomposition carried out in each
node of the BDD is disjoint. Unfortunately, for some
functions, the number of 1-paths might be very large,
even though the ESOP is small (see e.g. function
f=x1®...®x,). This occurs because the disjoint
cube list does not cover a single minterm more than
once. This restricts the size of the resulting cubes.
Furthermore, in the case of ESOP, the disjoint cube
list does not contain any even-numbered coverings of
minterms for f. Although these restrictions exist, the
disjoint cube list obtained from the BDD will be a bet-
ter initial starting point since the cube based method
discussed above relies on an initial list of minterms
(i.e. 0 — cubes) which are not only disjoint, but the
smallest possible cube as well.

The transformations discussed for cube lists above
can be carried out on BDDs based on synthesis op-
erations. Since the variable ordering of BDDs plays
an important role not only for the size, but also for
the number of 1-paths, the reordering algorithms have
to be assimilated. An alternative proposed in [12] is
to give up the strict BDD structure and also allow
e.g. more than two outgoing edges per node.

A different approach is to formulate the covering
problem as a SAT instance and build the BDD for the
resulting problem [9]. This technique is mainly limited
by the size of the graph and can only be applied to
functions with up to 5 variables.



3 Implementation

An experimental version of this technique has been
implemented based on the use of cube lists. The initial
input is a list of covering minterms in the PLA format
used by ESPRESSO. Presently, the implementation
only supports single-output functions, although it can
be easily extended to handle multiple-output functions
by utilizing multiple-valued logic concepts.

During the occurrence of a cyclic cover, the very
simple heuristic of choosing the product term that cov-
ers the least number of minterms was used. Also, the
process of examining pairs of cubes needed in steps 1
and 3 of the technique were implemented by maintain-
ing the cubes lists in an order of increasing Hamming
weight and forming pairs by beginning with the cubes
of lower weight first. Altering the order in which the
cube pairs are examined can affect the outcome of the
ESOP result.

4 Experimental Results

This program was run using standard benchmark
circuits and the results were compared to the ESOP
minimizer EXMIN2 [10]. Table 1 contains results
when a 5-bit arithmetic squaring circuit was mini-
mized using our approach versus EXMIN2. The left-
most column indicates the function output as given in
the order present in the PLA input file. The other two
columns contain the number of product terms in the
ESOP form for each output resulting from each tech-
nique. While the overall number of products is the
same, it should be noted that EXMIN2 optimized for
the multi-output circuit in one pass while our experi-
mental version optimized each output independently.
Of the 34 product terms produced by EXMIN2, 14 are
shared, thus only 21 distinct product terms were pro-
duced. In the case of our technique, only 4 product
terms were shared, and this occurred by coincidence,
thus we produced 30 distinct product terms.

5 Conclusion

A technique for determining an ESOP form for a
Boolean function has been developed based on the
primitive operation of odd/even cube covering. This
technique has been implemented and the results have
been compared to other ESOP heuristic minimizers.
Methods for implementing this technique using both
cube lists and BDDs have been described. Experimen-
tal results indicate that this approach yields roughly
equal results to more mature ESOP minimization
techniques. This result is encouraging since our cur-
rent implementation is based on very simple heuristics.

In the future, we plan to incorporate multi-output
function capabilities for this method and to implement

Table 1: Results of Finding ESOP Forms for a 5-bit
Squaring Circuit

Output | Odd/Even Cube Covering | EXMIN2
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it based on BDDs rather than cube lists. We also plan
to investigate the use of other heuristics for solution of
the cover table problem and the order in which pairs
of product terms are selected.
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