

ABSTRACT
A method for computing the Disjoint-Sum-Of-Products (DSOP)
form of Boolean functions is described. The algorithm exploits
the property of the most binate variable in a set of cubes to
compute a DSOP form. The technique uses a minimized Sum-Of-
Products (SOP) cube list as input. Experimental results
comparing the size of the DSOP cube list produced by this
algorithm and those produced by other methods demonstrate the
efficiency of this technique and show that superior results occur
in many cases for a set of benchmark functions.

 Index Terms - Binate Function Variables, Cube List
Representations Disjoint-sum-of-products, Unate Function
Variables

I. INTRODUCTION

Representing a Boolean function in the form of a Disjoint-
Sum-Of-Products (DSOP) cube list has many advantages in
Computer Aided Design (CAD) tools. DSOPs can be used to
efficiently compute the spectra of Boolean functions [3,4,8],
in the minimization of Exclusive-OR-Sum-of-Products
(ESOPs) [5,9,10,11] and to quickly find the complement of
Boolean functions [6]. This fact has encouraged researchers
to invent new algorithms [1,2] to generate the DSOP forms of
Boolean functions efficiently.

Given a logic function in the form of a minimized Sum-Of-
Products (SOP) cube list, the algorithm presented here
computes the corresponding DSOP form by splitting the SOP
cube list according to the variable that occurs most often in
both the complemented and uncomplemented form. The two
resulting cube lists represent Shannon cofactor functions
about the splitting variable. The motivating paradigm of this
technique is to attempt to produce cofactor cube lists that
contain roughly an equal number of supporting minterms.

Choosing the variable that exists in complemented and
uncomplemented forms equally in a minimized SOP cube list
corresponds to choosing the “most binate” variable of the
subfunction. By choosing such a variable about which to
decompose the function is likely to yield cofactor functions of
approximately equally complex functions in terms of
supporting minterm counts.

∗ This research was supported in part by National Science Foundation grants

CCR-0000891 and CCR-0097246.

Section 2 gives the definitions of various terms used in the
paper. Section 3 describes the methodology used to compute
the DSOP. Section 4 contains experimental results and,
finally Section 5 gives the conclusions and ideas for future
refinements and applications of these results.

II. DEFINITIONS

Definition 1: Boolean expressions: A Boolean expression is
an algebraic clause representing a relationship among a set
of Boolean valued literals. A Boolean function can be
represented by an equation containing Boolean expressions.
e.g.: f = x’ • y’ • z’ + z

Definition 2: Product/Cube: A Boolean expression containing
a set of literals conjuncted together (i.e. ANDed).
e.g.: f = x’ • y’ • z’

Definition 3: Disjunctive Sum: The inclusive OR function in
Boolean algebra.
e.g.: f = x’ + z

Definition 4: Sum-of-products (SOP): Two or more AND
functions are ORed together to form a Sum-of-products
expression. In this form, the product terms may or may not
cover a common minterm. Figure 1 represents an SOP form
of an example Boolean function using a Karnaugh map.
e.g. f = w•y’ + x + y•z

Figure 1. Example for Sum-of-products

Definition 5: Disjoint-Sum-of-Products (DSOP): If no two
product terms cover a common minterm, they are called a
disjoint-sum-of-products. Figure 2 represents a DSOP form
of the example Boolean function using a Karnaugh map.

Lokesh Shivakumaraiah and Mitchell A. Thornton
Department of Electrical and Computer Engineering

Mississippi State University
{ls1,mitch}@ece.msstate.edu

Computation of Disjoint Cube Representations
Using a Maximal Binate Variable Heuristic∗

e.g. f = w•y’ + w•x’•y’ + x•y•z’ + y•z

Figure 2. Example for Disjoint-sum-of-products

Definition 6: Unate functions: A function is “ Unate” if it
can be represented in simplest SOP form with each literal
being complemented or uncomplented, but not both.

Definition 7: Binate functions: A function is “Binate” if it
can be represented in simplest SOP form with each literal
being present in both complemented and uncomplemented
form.

Examples of Unate, Binate functions are shown below.

f (x,y,z) = xy + yz -Unate funtion
g(x,y,z) = x’y + y’z -Unate in variables X and Z
 -Binate in variable Y

Figure 3. Unate and Binate functions.

Definition 8: Disjoint cubes: Two cubes are said to be
disjoint if their intersection of the set of minterms is null.
The intersection is the operation of conjunction (i.e. the
Boolean AND operation).

For example, consider the two functions shown below.

 f(w,x,y,z) = w’x
 g(w,x,y,z) = x’z

The two cubes ‘f’ and ‘g’ are disjoint since the intersection
of ‘f’ and ‘g’ is null.

Definition 9: Unate Variable: A Boolean function is said to
be unate in a variable if and only if the variable is present in
complemented or uncomplemented form, but not both, in a
minimized SOP form of the function.

Definition 10: Binate Variable: A Boolean function is said to
be binate in a variable if and only if the variable is present in
both complemented and uncomplemented form in a
minimized SOP form of the function.

III. METHODOLOGY

The algorithm presented here generates the DSOP form of
a function given an SOP cube list representing it. The cube
lists are read from netlist files in a .pla format [7]. This
netlist represents a function as a set of cubes that cover all
minterms of the function. This algorithm initially reduces the
number of covering cubes by running espresso [7] and then
splitting the cubes into two lists representing Shannon
cofactors about the apparently most binate variable. Thus, the
algorithm proceeds by building a binary tree of buffers
containing cofactor cube lists. The algorithm is described in
pseudocode form as shown in Figure 4.

DSOP Cube List Generation Algorithm:

step I: Read the pla file, run ESPRESSO

step II: Map input variables from Boolean domain to
 integer domain
 Boolean ‘0’ Å Integer ‘+1’
 Boolean ‘1’ Å Integer ‘-1’

step III: Compute column sums

step IV: Find the most binate variable
 case 1: If the column sums include zero

a. if one of the column sum is zero
 binate variable => variable whose column
sum equals to zero
b. if more than one column sum is zero
 binate variable => any of the variable
whose column sum
equals to zero

 case 2: If the column sums does not include zero

a. if there is no tie in the column sums
binate variable => variable whose magnitude
 of the column sum is close
 to zero

b. if there is no tie in the column sums
 binate variable => any of the variable whose
 column sum equals to
 zero

step V: Divide the cubes according to the most binate
variable

 if (binate variable of the cube == 0)
 then write the cube to buffer A
 else if (binate variable of the cube == 1)
 then write the cube to buffer B
 else if (binate variable of the cube == -)

 replace the don’t care with ‘0’ and write to buffer A
 replace the don’t care with ‘1’ and write to buffer B

step VI: Repeat steps I, II, III, IV, V for files A and B,
recurse until single cubes are obtained.

step VII: Write the single cubes obtained to a separate output
file.

Figure 4. Algorithm

 The output file thus contains an array of DSOP cubes.
Figure 5 illustrates the flow of the algorithm.

Figure 5. Steps of execution

The number of buffers at each level and the buffer

operations is shown in Figure 5. At a given point of time only
the buffers in the kth level and in the (k+1)th level are present
(shown as the solid boxes in Figure 5) and the other buffers
will be deleted as soon as possible to preserve memory. At
any given instance of time only three buffers (shown inside
the circle in Figure 5) and an output buffer being written to
collects the DSOP cubes will be used. Among the buffers
present inside the circle, one buffer in the kth level is being
read from and two buffers in the (k+1)th are written into.
Thus, there will be a sweeping operation of the buffers one at
a time in the kth level to create two new buffers in the (k+1)th
level. Figure 6 shows the creation of new buffers in the
(k+1)th level from the kth level buffer.

Figure 6. Dynamic Creation of Buffers

The algorithm is implemented in the ‘C’ programming
language and its pseudocode presentation is given below. A
legend containing the identifiers and their meaning as used in
the pseudocode is given below and the pseudocode is
explained in Figure 7.

Identifier Legend:

k : represents the kth level
in.pla : input pla
Aj.pla : jth buffer generated at kth level
Bj.pla : jth buffer generated at (2 * k)th stage
Si : represents the column sum of the ith column
Aflag : Aflag = 1, represent that buffers of kth level are
 present
Bflag : Bflag = 1, represent that buffers of (2 * k)th

level are present
binVar : position of the most binate Variable
incols : number of input variables
outcols : number of input variables
rows : number of product terms/cubes
array[][] : array used to compute the column sums
min : variable to store the minimum column sum
notfound : flag to count the number of buffers not present

Algorithm Pseudocode:

step 1: initialize

 Aflag Ä 0
 Bflag Ä 1

step 2: read the input.pla file
 run espresso on the input file
 store them in an array of size rows * incols

min Ä S[0]
 for (i = 0; i < inputcols; i++)
 S[i] Ä 0 ;

step 3: mapping
 for each variable in the cube set do

 if Boolean ‘0’ Å Integer ‘+1’
 if Boolean ‘1’ Å Integer ‘-1’

step 4: Compute column sums

 for(m =0; m < rows; m++)
 for(j =0; i < incols; i++)
 S[m] Ä S[m] + array[m][j] ;

step 5: find the most binate variable

 for (i = 0; i < incols ; i ++)
 if (S[i] == 0)
 binVar Ä i ;
 break;
 else if (| S[i] | < min)
 min Ä | S [i] |;
 binVar Ä i ;

step 6: split the cubes according to the most binate variable

 if (array [i][binVar] == ‘0’)
 write the cube to buffer A0.pla ;
 else if (array [i][binVar] == ‘0’)
 write the cube to buffer A1.pla ;
 else if (array [i][binVar] == ‘-’)
 {
 write the cube to buffer A0.pla
 with array[i][binVar] Ä ‘0’;
 write the cube to buffer A1.pla
 with array[i][binVar] Ä ‘1’;
 }
 if (singlecube)
 write to outputfile;
 exit;

 Aflag Ä 1 ;

Step 7: loop until you get single cubes

 for (j = 0 ; ; j++)
 for(i = 0 ; i < pow (2, j) ; i ++)
 notfound Ä 0 ;
 if(Aflag == 1)
 input.pla Ä Ai.pla ;
 else if(Bflag == 1)
 input.pla Ä Bi.pla ;

 if (input.pla == NULL)
 notfound Ä notfound++ ;

 if (notfound == 0)
 if (single cube)
 do step 2;
 write the cube to the output.pla

 continue;
 else
 do step 2;
 do step 3;
 do step 4;
 do step 5;
 if (array [i][binVar] == ‘0’)
 if (Bflag == 1)
 write the cube to buffer A(2 * i).pla ;
 if (Aflag == 1)
 write the cube to buffer B(2 * i).pla ;
 else if (array [i][binVar] == ‘0’)
 if (Bflag == 1)
 write the cube to buffer A(2 * i + 1).pla ;
 if (Aflag == 1)
 write the cube to buffer B(2 * i + 1).pla ;
 else if (array [i][binVar] == ‘-’)
 if (Bflag == 1)
 write the cube to buffer A(2 *i).pla with
 array[i][binVar] Ä ‘0’;
 write the cube to buffer A(2 *i + 1).pla
with
 array[i][binVar] Ä ‘1’;

 if (notfound == pow(2,j))
 exit;
 end of ‘i’ loop
 complement Aflag and Bflag;
 end of ‘j’ loop

Figure 7. DSOP Pseudocode

IV. EXPERIMENTAL RESULTS

 Table I reports the results of the algorithm described
here and compares them with other methods. The table
contains the name of the benchmark .pla file in the first
column. The second column gives the size of cube list (in
terms of the number of product terms) after minimizing it
using espresso. The third column gives the number of product
terms after finding the DSOP cube list using the new
algorithm. The fourth column gives the number of DSOPs
produced using espresso algorithm with the –Ddisjoint
flag. The –Ddisjoint flag instructs espresso to
heuristically determine a DSOP form instead of the normal
reduced SOP form. The fifth column contains the results of a
program (DJ) that generates a DSOP form that is described in
[9] and was originally developed as a preprocessor for the
MINT ESOP algorithm [5].

This algorithm was also compared to technique presented
in [2] for one of the single output functions, 9sym.pla, and
it was found that the number of DSOP forms obtained using
the new algorithm (148) is lesser than those obtained in [2]
(166).

Table 1: Comparison of results produced by the new
algorithm, espresso -Ddisjoint and DJ

Name Size DSOP
Espresso
-Ddisjoint

DJ

xor5.pla 16 16 16 16
co14.pla 14 14 14 14

majority.pla 5 5 10 5
sym10.pla 210 240 367 378
9sym.pla 86 148 209 200
z9sym.pla 86 148 190 186
t481.pla 481 25040 2139 2714

V. CONCLUSION

 These results are encouraging since they show that the
number of DSOPs generated from the algorithm described
here are better in most of the cases than compared to the
earlier algorithms used to compute the DSOP cube list
representations of single output Boolean functions.

Future work will focus on refinements and extensions of
this technique for multi-output functions. Applications
include the use of this method form computing various types
of spectral coefficients of Boolean functions and as a
preprocessor for various ESOP minimization algorithms.

VI. REFERENCES
[1] B. J. Falkowski, I. Schafer, M. A. Perkowski, “ A fast computer algorithm

for the generation of disjoint cubes for completely and incompletely
specified Boolean functions,” Proceedings of 33rd Midwest Symposium on
Circuits & Systems, Calgary, Alberta, August 1990, pp. 1119-1122.

[2] B. J. Falkowski, I. Schafer, C. H. Chang, “An effective computer algorithm
for the calculation of disjoint cube representation of Boolean functions,”,
1993., Proceedings of the 36th IEEE Midwest Symposium on Circuits
and Systems, Detroit, MI, USA, August 1993, pp. 1308-1311.

[3] Bogdan J. Falkowski, “Calculation of Rademacher-Walsh Spectral
coefficients for systems of completely and incompletely specified Boolean
functions,” IEEE International Symposium on Circuits and Systems,
Chicago, IL, USA, May 1993, pp. 1698-1701.

[4] B. J. Falkowski and C. H. Chang, “Paired Haar spectra computation
through operations on disjoint cubes,” IEE Proceedings on Circuits,
Devices and Systems, June 1999, pp. 117-123.

[5] T. Kozlowski, E. L. Dagless, Jonathan M. Saul, “An enhanced algorithm
for the minimization of exclusive-OR-sum-of-products for incompletely
specified functions,” Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers and Processors, Austin, TX, USA,
October 1995, pp. 224-249.

[6] S.L. Hurst, D.M. Miller, J.C. Muzio, Spectral Techniques in Digital
Logic, London, U.K., Academic Press, 1985.

[7] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Boston, MA: Kluwer Academic Publishers, 1984.

[8] M. A. Thornton, R. Drechsler and D. M. Miller, Spectral Techniques in
VLSI CAD, Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.

[9] T. Kozlowski, Application of exclusive-OR logic in technology
independent logic optimization, Ph.D. Dissertation, University of Bristol,
January 1996.

[10] T. Sasao, Exmin2: A simplification algorithm for exclusive-or sum-of-
products expressions for multiple-valued input two-valued-output
functions, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 12(5), pp. 621-632, 1993.

[11] N. Song and M. Perkowski, EXORCISM-MV-2: Minimization and
exclusive sum of products expressions for multiple-valued input
incompletely specified functions, Proceedings of the International
Symposium on Multi-valued Logic, pp. 132-137, May 1993.

[12] A. Mishchenko and M. Perkowski, Fast heuristic minimization of
exclusive-sums-of-products, Proceedings of the International Workshop on
Reed-Muller expansions in circuit design, pp. 242-249, August 2001.

