
 

ABSTRACT 
A method for computing the Disjoint-Sum-Of-Products (DSOP) 
form of Boolean functions is described. The algorithm exploits 
the property of the most binate variable in a set of cubes to 
compute a DSOP form. The technique uses a minimized Sum-Of-
Products (SOP) cube list as input.  Experimental results 
comparing the size of the DSOP cube list produced by this 
algorithm and those produced by other methods demonstrate the 
efficiency of this technique and show that superior results occur 
in many cases for a set of benchmark functions. 
 
 Index Terms - Binate Function Variables, Cube List 
Representations Disjoint-sum-of-products, Unate Function 
Variables 

I. INTRODUCTION 

Representing a Boolean function in the form of a Disjoint-
Sum-Of-Products (DSOP) cube list has many advantages in 
Computer Aided Design (CAD) tools. DSOPs can be used to 
efficiently compute the spectra of Boolean functions [3,4,8], 
in the minimization of Exclusive-OR-Sum-of-Products 
(ESOPs) [5,9,10,11] and to quickly find the complement of 
Boolean functions [6]. This fact has encouraged researchers 
to invent new algorithms [1,2] to generate the DSOP forms of 
Boolean functions efficiently.  

Given a logic function in the form of a minimized Sum-Of-
Products  (SOP) cube list, the algorithm presented here 
computes the corresponding DSOP form by splitting the SOP 
cube list according to the variable that occurs most often in 
both the complemented and uncomplemented form. The two 
resulting cube lists represent Shannon cofactor functions 
about the splitting variable.   The motivating paradigm of this 
technique is to attempt to produce cofactor cube lists that 
contain roughly an equal number of supporting minterms.   

Choosing the variable that exists in complemented and 
uncomplemented forms equally in a minimized SOP cube list 
corresponds to choosing the “most binate” variable of  the 
subfunction.  By choosing such a variable about which to 
decompose the function is likely to yield cofactor functions of 
approximately equally complex functions in terms of 
supporting minterm counts.       
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Section 2 gives the definitions of various terms used in the 
paper. Section 3 describes the methodology used to compute 
the DSOP. Section 4 contains experimental results and, 
finally Section 5 gives the conclusions and ideas for future 
refinements and applications of these results.  

II. DEFINITIONS 

Definition 1: Boolean expressions: A Boolean expression is 
an algebraic clause representing a relationship among a set 
of Boolean valued literals.  A Boolean function can be 
represented by an equation containing Boolean expressions. 
e.g.:  f = x’ • y’ • z’ + z 
 
Definition 2: Product/Cube: A Boolean expression containing 
a set of  literals conjuncted together (i.e. ANDed).  
e.g.: f = x’ • y’ • z’ 
 
Definition 3: Disjunctive Sum: The inclusive OR function in 
Boolean algebra. 
e.g.:  f = x’ + z 
 
Definition 4: Sum-of-products (SOP): Two or more AND 
functions are ORed together to form a Sum-of-products 
expression. In this form, the product terms may or may not 
cover a common minterm.  Figure 1 represents an SOP form 
of an example Boolean function using a Karnaugh map. 
e.g. f = w•y’ + x + y•z 

 
Figure 1.  Example for Sum-of-products 

 
Definition 5: Disjoint-Sum-of-Products (DSOP): If no two 
product terms cover a common minterm, they are called a 
disjoint-sum-of-products.  Figure 2 represents a DSOP form 
of the example Boolean function using a Karnaugh map. 
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e.g. f = w•y’ + w•x’•y’ + x•y•z’ + y•z 
 

 
Figure 2.  Example for Disjoint-sum-of-products 

 
Definition 6: Unate functions: A function is “ Unate” if it 
can be represented in simplest SOP form with each literal 
being complemented or uncomplented, but not both.  
 
Definition 7: Binate functions: A function is “Binate” if it 
can be represented in simplest SOP form with each literal 
being present in both complemented and uncomplemented 
form.  

 
Examples of  Unate, Binate functions are shown below. 

 
f (x,y,z) = xy + yz   -Unate funtion 
g(x,y,z) = x’y + y’z   -Unate in variables X and Z 
          -Binate in variable Y 

Figure 3.  Unate and Binate functions. 
 
Definition 8: Disjoint cubes: Two cubes are said to be 
disjoint if their intersection of the set of minterms is null.  
The intersection is the operation of conjunction (i.e. the 
Boolean AND operation). 
 

For example, consider the two functions shown below. 
 

 f(w,x,y,z) = w’x  
                               g(w,x,y,z) = x’z   
 

The two cubes ‘f’ and ‘g’ are disjoint since the intersection 
of ‘f’ and ‘g’ is null. 

 
Definition 9: Unate Variable: A Boolean function is said to 
be unate in a variable if and only if the variable is present in 
complemented or uncomplemented form, but not both, in a 
minimized SOP form of the function.  
 
Definition 10: Binate Variable: A Boolean function is said to 
be binate in a variable if and only if the variable is present in 
both complemented and uncomplemented form in a 
minimized SOP form of the function.  
 

III. METHODOLOGY 

The algorithm presented here generates the DSOP form of 
a function given an SOP cube list representing it.  The cube 
lists are read from netlist files in a .pla format [7].  This 
netlist represents a function as a set of cubes that cover all 
minterms of the function.  This algorithm initially reduces the 
number of covering cubes by running espresso [7] and then 
splitting the cubes into two lists representing Shannon 
cofactors about the apparently most binate variable. Thus, the 
algorithm proceeds by building a binary tree of buffers 
containing cofactor cube lists. The algorithm is described in 
pseudocode form as shown in Figure 4. 
 

DSOP Cube List Generation Algorithm: 
 
step  I: Read the pla file, run ESPRESSO 
 
step II: Map input variables from Boolean domain to     
     integer domain 
   Boolean ‘0’ Å Integer ‘+1’ 
   Boolean ‘1’ Å Integer ‘-1’ 
          
step III: Compute column sums 
 
step IV: Find the most binate variable 
 case 1: If the column sums include zero 

a. if one of the column sum is zero 
    binate variable => variable whose column 
sum             equals to zero 
b. if more than one column sum is zero 
    binate variable => any of the variable 
whose                column sum  
equals to                    zero 
 

 case 2: If the column sums does not include zero 
 

a. if there is no tie in the column sums  
binate variable => variable whose magnitude  
           of  the column sum is close 
            to zero 

b. if there is no tie in the column sums 
      binate variable => any of the variable whose  
                   column sum  equals to   
              zero 
 
step V: Divide the cubes according to the most binate 
variable 
 
  if ( binate variable of the cube == 0 ) 
   then write the cube to buffer A 
  else if ( binate variable of the cube == 1 ) 
   then write the cube to buffer B 
  else if ( binate variable of the cube == - ) 



 

   replace the don’t care with ‘0’ and write to buffer A 
   replace the don’t care with ‘1’ and write to buffer B 
 
step VI: Repeat steps I, II, III, IV, V for files A and B, 
recurse until single cubes are obtained.  
 
step VII: Write the single cubes obtained to a separate output 
file. 
  

Figure 4.  Algorithm 
 
 The output file thus contains an array of DSOP cubes. 
Figure 5 illustrates the flow of the algorithm. 
 

 
Figure 5.  Steps of execution 

 
The number of buffers at each level and the buffer 

operations is shown in Figure 5. At a given point of time only 
the buffers in the kth level and in the (k+1)th level are present 
(shown as the solid boxes in Figure 5) and the other buffers 
will be deleted as soon as possible to preserve memory. At 
any given instance of time only three buffers (shown inside 
the circle in Figure 5) and an output buffer being written to 
collects the  DSOP cubes will be used. Among the buffers 
present inside the circle, one buffer in the kth level is being 
read from and two buffers in the (k+1)th are written into. 
Thus, there will be a sweeping operation of the buffers one at 
a time in the kth level to create two new buffers in the (k+1)th 
level. Figure 6 shows the creation of new buffers in the 
(k+1)th level from the kth level buffer. 
 

 
 

Figure 6.  Dynamic Creation of  Buffers 
 

The algorithm is implemented in the ‘C’ programming 
language and its pseudocode presentation is given below.  A 
legend containing the identifiers and their meaning as used in 
the pseudocode is given below and the pseudocode is 
explained in Figure 7. 
 

Identifier Legend: 
 
k     :  represents the kth level 
in.pla   :  input pla 
Aj.pla  :  jth buffer generated at kth level 
Bj.pla  :  jth buffer generated at ( 2 * k )th stage 
Si    :  represents the column sum of the ith column 
Aflag  :  Aflag  = 1, represent that buffers of kth level are  
      present 
Bflag  : Bflag = 1, represent that buffers of  ( 2 * k )th 

level    are present 
binVar  : position of the most binate Variable 
incols  : number of input variables 
outcols  : number of input variables 
rows   : number of product terms/cubes 
array[ ][ ] :   array used to compute the column sums 
min   : variable to store the minimum column sum 
notfound : flag to count the number of buffers not present 
 

Algorithm Pseudocode: 
 
step 1: initialize 
 

 Aflag Ä 0 
   Bflag Ä 1 
 
step 2: read the input.pla file 
      run espresso on the input file 
             store them in an array of size rows * incols    

min Ä S[ 0 ] 
 for ( i = 0; i < inputcols; i++ ) 
   S[ i ] Ä 0 ;  

 
 
step 3: mapping 
   for each variable in the cube set do 



 

   if Boolean ‘0’ Å Integer ‘+1’ 
   if Boolean ‘1’ Å Integer ‘-1’ 
    
step 4: Compute column sums 
 
  for(m =0; m < rows; m++ ) 
           for(j =0; i < incols; i++) 
              S[m] Ä S[ m ] + array[ m ][ j ] ; 
             
step 5: find the most binate variable 
 
  for (i = 0; i < incols ; i ++ ) 
            if ( S[ i ] == 0 ) 
       binVar Ä i ; 
       break; 
    else  if ( | S[ i ] | <  min ) 
                    min Ä  | S [ i ] |; 
       binVar Ä i ; 
                  
step 6: split the cubes according to the most binate variable 
 
  if (array [ i ][ binVar ] == ‘0’) 
    write the cube to buffer A0.pla ; 
         else if (array [ i ][ binVar ] == ‘0’) 
    write the cube to buffer A1.pla ; 
  else if (array [ i ][ binVar ] == ‘-’) 
  { 
    write the cube to buffer A0.pla   
   with array[ i ][binVar] Ä ‘0’; 
    write the cube to buffer A1.pla   
   with array[ i ][binVar] Ä ‘1’; 
  } 
  if ( singlecube )  
   write to outputfile; 
   exit;  
 
  Aflag Ä 1 ; 
 
 
 
Step 7: loop until you get single cubes 
    
  for ( j = 0 ;       ;  j++ ) 
    for( i = 0 ; i < pow (2, j) ; i ++) 
    notfound Ä 0 ; 
    if(Aflag == 1 ) 
      input.pla Ä Ai.pla ; 
    else if(Bflag == 1 ) 
      input.pla Ä Bi.pla ; 
    
    if (input.pla == NULL) 
      notfound Ä notfound++ ; 
    
    if ( notfound == 0 ) 
     if (single cube) 
      do step 2; 
      write the cube to the output.pla 

      continue; 
     else 
      do step 2; 
      do step 3; 
      do step 4; 
      do step 5; 
      if (array [ i ][ binVar ] == ‘0’) 
       if (Bflag == 1 ) 
       write the cube to buffer A(2 * i).pla ; 
              if (Aflag == 1 ) 
       write the cube to buffer B(2 * i).pla ;  
    else if (array [ i ][ binVar ] == ‘0’ ) 
       if (Bflag == 1 ) 
       write the cube to buffer A(2 * i  + 1).pla ; 
              if (Aflag == 1 ) 
       write the cube to buffer B(2 * i  + 1).pla ;   
    else if (array [ i ][ binVar ] == ‘-’) 
       if (Bflag == 1 ) 
         write the cube to buffer A(2 *i).pla  with  
       array[ i ][binVar] Ä ‘0’; 
        write the cube to buffer A(2 *i  + 1).pla  
with  
       array[ i ][binVar] Ä ‘1’; 
    
   if (notfound == pow( 2,j ) ) 
    exit; 
   end of ‘i’ loop 
  complement Aflag and Bflag; 
  end of ‘j’ loop 
   

Figure 7.  DSOP Pseudocode 

IV. EXPERIMENTAL RESULTS 

  Table I reports the results of the algorithm described 
here and compares them with other methods. The table 
contains the name of the benchmark .pla file in the first 
column. The second column gives the size of cube list (in 
terms of the number of product terms) after minimizing it 
using espresso. The third column gives the number of product 
terms after finding the DSOP cube list using the new 
algorithm. The fourth column gives the number of DSOPs 
produced using espresso algorithm with the –Ddisjoint 
flag. The –Ddisjoint flag instructs espresso to 
heuristically determine a DSOP form instead of the normal 
reduced SOP form.  The fifth column contains the results of a 
program (DJ) that generates a DSOP form that is described in 
[9] and was originally developed as a preprocessor for the 
MINT ESOP algorithm [5].   

This algorithm was also compared to technique presented 
in [2] for one of the single output functions, 9sym.pla, and 
it was found that the number of DSOP forms obtained using 
the new algorithm (148) is lesser than those obtained in [2] 
(166). 



 

Table 1: Comparison of results produced by the new 
algorithm, espresso -Ddisjoint and DJ 

Name Size DSOP 
Espresso 
-Ddisjoint 

DJ 

xor5.pla 16 16 16 16 
co14.pla 14 14 14 14 

majority.pla 5 5 10 5 
sym10.pla 210 240 367 378 
9sym.pla 86 148 209 200 
z9sym.pla 86 148 190 186 
t481.pla 481 25040 2139 2714 

 

V. CONCLUSION   

  These results are encouraging since they show that the 
number of DSOPs generated from the algorithm described 
here are better in most of the cases than compared to the 
earlier algorithms used to compute the DSOP cube list 
representations of single output Boolean functions.  

Future work will focus on refinements and extensions of 
this technique for multi-output functions.  Applications 
include the use of this method form computing various types 
of spectral coefficients of Boolean functions and as a 
preprocessor for various ESOP minimization algorithms. 
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