
 
 

1

  

Abstract--Decision diagrams provide compact representations 
for discrete functions. There are some functions for which 
binary decision diagrams reach exponential size. Presented here 
is a method of representing Boolean functions as multiple 
partial decision diagrams. 
 

Index Terms-- binary decision diagrams, partial binary 
decision diagrams 

I. INTRODUCTION 

inary decision diagrams provide compact representation 
for discrete functions. [3, 5]  For this reason, these 

diagrams have seen extensive use in VLSI CAD. For some 
functions however, the binary decision diagram 
representation grows exponentially large with respect to the 
number of inputs.  
 Partial binary decision diagrams have been studied in other 
works as a method of determining an efficient variable 
ordering for binary decision diagram construction [6,8,7]. 
Presented here is a technique for partitioning a binary 
decision diagram into multiple binary decision diagrams each 
representing a subset of the information contained by the 
complete binary decision diagram for the function.  
 The organization of this paper is as follows. Part II 
discusses background information pertaining to the 
construction and implementation of binary decision diagrams. 
Part III explains and illustrates partial binary decision 
diagrams. Part IV presents experimental results for 
benchmark circuits represented as multiple partial binary 
decision diagrams. Part V provides concluding remarks on 
the work presented and discusses future work.   

II. BACKGROUND 

A binary decision diagram (BDD) is a directed acyclic 
graph, G = (V, E). Every BDD has two different types of 
vertices, terminal vertices and non-terminal vertices. The 
terminal vertices represent the Boolean values, 0 and 1, while 
the non-terminal vertices represent variables of the function 
represented by the BDD. Each non-terminal vertex has 
exactly two outgoing edges, one of which is labeled by the 
Boolean constant 1 (or then) and the other by the Boolean 
constant 0 (or else). The graph begins at a single non-
terminal node, known as the root, which has no incoming 
edges. Two very important properties that a BDD may have 

 
This work was supported in part by the NSF under grant CCR-0000891.  
 

are to be ordered and to be reduced. These properties allow a 
BDD representation to be canonical for a given variable 
ordering. An ordered BDD is one in which each variable is 
encountered no more than once in any path and always in the 
same order along each path. A reduced BDD observes the 
following two properties. First, there are no redundant nodes 
in which both of the two edges leaving the node point to the 
same next node present within the graph. If such a node 
exists it is removed and the incoming edges redirected to the 
following node. Second, isomorphic subgraphs are shared, 
that is, if two nodes point to identical subgraphs, rather than 
repeat both subgraphs, the two nodes point to the same 
subgraph. A BDD that is both ordered and reduced is called a 
reduced ordered binary decision diagram (ROBDD). In this 
paper all references to BDDs shall imply ROBDDs. A BDD 
for the function, f = xy + z, is shown in Figure 1.  

 
Figure 1.  BDD example for function, f = xy + z 

 

 BDDs are produced by first creating individual BDDs for 
each variable of the function and then using the APPLY 
operation to build the BDD from the variable BDDs. The 
APPLY operation requires two BDDs and a Boolean 
operation to be performed. One efficient way to implement 
APPLY is to use the ITE operator (If-Then-Else). [1] The ITE 
operation is a recursive form of the Shannon decomposition 
theorem given below.  
 

                f x f x f= ⊕
1 0 1 1

        (1) 

 
If f = Z, x = f, f0 = h, and f1 = g, then the Shannon 
decomposition shown in Equation 1 can be expressed as the 
following ITE in which, if (f = 1), then (g), else (h).  
 

Partial Binary Decision Diagrams 
Whitney J. Townsend and Mitchell A. Thornton 

Mississippi State University  
Mississippi State, MS 

wjt1@ece.msstate.edu and mitch@ece.msstate.edu 

B 



 
 

2

Z ite f g h= ( , , )              (2) 

 
The terminal cases of this recursion are as follows.  
 

f ite f g ite g f ite f= = =( , , ) ( , , ) ( , , )1 0 1 0   (3) 

 
The complement of a BDD is formed by the following ITE 
expression. 

ite f f( , , )0 1 =           (4) 

 
All two variable Boolean operators can be implemented as an 
ITE expression as shown in Table 1. An example of pseudo-
code for ITE is shown in Figure 2. 

 While BDDs are compact representations for many 
functions, they can reach exponential size in regard to the 
number of inputs for some functions. There are several 
reasons why this occurs. One of the reasons is that a bad 
ordering was chosen for the variables when the BDD was 
created. Finding the best ordering for the variables during 
BDD creation has been proven to be NP-complete. [2] 
Therefore although heuristic techniques are used, exponential 
sizes can still occur. Another reason is that there exist 
circuits, such as multipliers, for which the BDD will always 
reach exponential size. [4] 

 
TABLE 1.  ITE FORMS 
 

 Expression ITE  Expression 

0000 0  0  

0001 f g•  ite f g( , , )0  

0010 f g•  ite f g( , , )0  

0011 f  f  

0100 f g•  ite f g( , , )0  

0101 g  g  

0110 f g⊕  ite f g g( , , )  

0111 f g+  ite f g( , , )1  

1000 f g+  ite f g( , , )0  

1001 f g⊕  ite f g g( , , )  

1010 g  ite g( , , )0 1  

1011 f g+  ite f g( , , )1  

1100 f  ite f( , , )0 1  

1101 f g+  ite f g( , , )1  

1110 f g•  ite f g( , , )1  

1111 1 1 

 

III. METHODOLOGY 

A method for creating a partial binary decision diagram 
(pBDD) has been developed. This method is invoked during 

the creation of a BDD from a netlist description; therefore the 
entire BDD is never created. This method employs the notion  

ite (f, g, h) { 
    if (terminal) { 
       return result; 
    } else { 
       let x be the top variable of (f, g, h); 

         T ite f g hx x x= ( , , );  

       E ite f g h
x x x

= ( , , );  

    if T = E, return T; 
   R = newnode (x, T, E); 
       return (R); 
     } 
   } 

Figure 2. ITE algorithm 
 

of a third terminal node within the BDD that contains the 
unrepresented portion of the function, and is known as an 
unknown (U) terminal. An example of a function represented 
completely and then by two pBDDs is shown in Figure 3. 
Note that the multiple constant terminals shown were added 
to simplify the illustration. In the actual BDDs only two 
constant nodes are present.  

Generation of the pBDDs is achieved by modifying the 
code implementing the ITE function that is used during 
diagram creation and additionally by restricting the number 
of nodes created. By altering these modifications it is possible 
to create several pBDDs each representing a portion of the 
functionality of the circuit.  

IV. EXPERIMENTAL RESULTS 

Experimental results presented here have been computed 
on a SUN Ultra 10. The modifications to the ITE algorithm 
have been implemented using the Colorado University 
Decision Diagram (CUDD) package. [9] The CUDD ITE 
functions are highly optimized and six separate locations 
were chosen within the code at which to make the 
modifications, producing six distinct pBDDs for each circuit.  

In all over one hundred benchmark circuits were tested 
using the modified code. Table II. provides a summary of the 
results obtained for several benchmark circuits using the 
modified ITE code. These circuits were chosen for inclusion 
in Table II based upon the number of nodes in the complete 
BDD, selecting those circuits with over 500 nodes. The 
column labeled BDD shows the number of nodes resulting if 
the circuit was built completely, while each subsequent 
column shows the results from a different modification to the 
ITE algorithm during diagram creation.   

V. CONCLUSION 

A review of BDD construction and implementation 
techniques was presented. Two possible reasons why a BDD 
might reach exponential size were discussed as motivation for 



 
 

3

the present work. A method for creating pBDDs was 
described in which each pBDD created represents a portion of 
the functionality of a circuit. This method redirects a portion 
of the functionality of the circuit to a third terminal node, U. 
Experimental results were shown for several circuits 
represented as multiple pBDDs.  

Future work will involve improving the modifications to 
the ITE algorithm to decrease the overlap among the pBDDs 
and to prevent those occasions in which the altered ITE 
algorithm code actually generates a pBDD larger than the 
original complete BDD. The optimal solution would be to 
have a few small pBDDs that are capable of forming a 
disjoint set completely representing the functionality of the 
circuit.   

 
 

REFERENCES 
[1] K. S. Brace, R. L. Rudell, and R. E. Bryant, "Efficient implementation of a 

BDD package", in Design Automation Conf., 40-45, 1990. 
[2] B. Bollig and I. Wegener, "Improving the variable ordering of obdds is np-

complete", IEEE Trans. on Comp., 45:993-1002, 1996. 
[3] R. E. Bryant, "Graph-based algorithms for boolean function manipulation", 

IEEE Trans. on Comp., 35(8):677-691, 1986.  
[4] R. E. Bryant, "On the complexity of vlsi implementations and graph 

representations of boolean functions with application to integer 
multiplication", IEEE Trans. on Comp., 40:205-213, 1991. 

[5] R. Drechsler and B. Becker. Binary Decision Diagrams - Theory and 
Implementation. Kluwer Academic Publishers, 1998. 

[6] S. Friedman and K. Supowit, "Finding the optimal variable ordering for 
binary decision diagrams", in Design Automation Conf., 348-356, 1987. 

[7] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli , "Efficient 
variable ordering and partial representation algorithms", in Int’l. Conf. on 
VLSI Design, 81-86, 1995. 

[8] D. E. Ross, K. M. Butler, R. Kapur, and R. M. Mercer, "Fast function 
evaluation of candidate obdd variable orderings", in European Conference 
of Design Automation, 4-10, 1991. 

[9] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0., 
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html, University of 
Colorado at Boulder, 1998. 

 
 
 
 

 
 
 
 

 
 
 
 

Figure 3. Completely Represented Function , Then As Two pBDDS  



 
 

4

 
TABLE II. RESULTS 
 

Circuit BDD pBDD1 pBDD2 pBDD3 pBDD4 pBDD5 pBDD6 
alu4 933 83 294 81 73 271 87 
apex1 1305 523 317 234 471 372 360 
apex2 570 174 125 54 80 94 100 
apex3 962 481 72 130 431 62 172 
apex4 972 110 252 65 151 260 89 
apex5 1095 115 369 224 234 442 200 
apex6 744 405 89 320 410 61 301 
bc0 587 44 113 58 30 101 47 
cps 1096 471 519 396 349 454 438 
dalu 1176 313 206 81 275 174 109 
ex1010 1432 110 115 31 66 120 37 
ex4 515 158 229 205 146 272 215 
frg2 1396 405 211 226 462 212 260 
intb 730 90 150 70 48 112 106 
misex3 666 167 150 87 215 140 73 
seq 1319 523 96 137 229 86 111 
table3 786 72 430 168 117 404 112 
table5 714 82 480 184 103 468 197 
tial 929 77 205 105 101 205 101 
vda 544 409 330 375 370 305 384 
x1 626 288 437 352 197 452 348 
x4 543 399 525 429 283 567 356 

 


