
 1

Early Evaluation for Performance Enhancement in Phased Logic

Authors:

Robert B. Reese, Mississippi State University (reese@ece.msstate.edu)
Mitchell A. Thornton, Southern Methodist University (mitch@engr.smu.edu)
Cherrice Traver, Union College (traverc@union.edu)
David Hemmendinger, Union College (hemmendd@union.edu)

 2

Early Evaluation for Performance Enhancement in Phased Logic

Abstract

Data-dependent completion time is a well-known advantage of self-timed circuits, one

that allows them to operate at average rather than worst-case execution rates. A technique

called early evaluation that extends this advantage by allowing self-timed modules to

produce results before all of their inputs have arrived is described here. The technique

can be applied to any combinational function and is integrated into the phased logic

design methodology that accepts synchronous design entry and produces delay-

insensitive self-timed circuits. We describe an algorithm that ensures that the resulting

delay-insensitive circuits are safe, and develop a generalized method for inserting early

evaluation gates into any phased logic netlist. We give performance results that compare

several benchmark circuits, including a 5-stage pipelined CPU and a microprogrammed

floating point unit, using early evaluation with non-early evaluation phased logic circuits

and with clocked circuits. Simulation results show a clear performance benefit for PL

circuits that use early evaluation.

I. Introduction

The ITRS-2001 Roadmap on Design refers throughout to the synchronization and global

signaling challenges facing System-On-a-Chip designers up to and beyond 2007. It

envisions the common use of hybrid synchronous and asynchronous modules and

methods for efficient and predictable implementation of such systems. As a step toward

that goal, we describe enhancements to a self-timed design technique that bridges the

synchronous and asynchronous worlds. In [1] a two-wire data encoding technique known

 3

as level-encoded dual-rail (LEDR) was introduced and applied to self-timed pipelines

with compute blocks. Linder and Harden used marked graph theory [6] to generalize this

technique in [2][3] to synthesize a safe and live self-timed, delay-insensitive circuit

automatically from a netlist of D flip-flops and combinational logic driven by a global

clock. They called this self-timed design technique Phased Logic (henceforth: PL). This

paper describes a new technique, early evaluation (EE), for improving the performance

of PL systems. This technique uses special PL gates that can sometimes evaluate their

outputs before all of their inputs have been defined, thus increasing the computation rate.

We present a new algorithm to ensure circuit safety with early evaluation gates and a

method for automated insertion of early evaluation PL gates into arbitrary netlists [9]. We

apply the technique to standard benchmark circuits and to a processor design and

compare the results with clocked and non-early evaluation implementations.

In the remainder of this paper, Section II includes an overview of PL, its relationship to

marked graphs, and a discussion of the transformation of clocked systems to PL systems.

Section III compares the PL approach with similar work. Section IV introduces new

work on Phased Logic concerning the definition of an early evaluation gate, a marked

graph model of an early evaluation gate, and an algorithm for feedback signal insertion

that ensures safety and liveness in the presence of early evaluation. Section V describes a

general method for inserting early evaluation PL gates into any PL netlist and two

approaches for extracting trigger functions. Section VI discusses other factors that affect

the performance of PL systems, and presents a performance-oriented algorithm for

 4

feedback insertion. Section VII presents performance results for synthesized PL circuits

using early evaluation, and section VIII contains a summary and conclusions.

II. Phased Logic Background

A. Phased Logic

The term “phased logic” was coined by Linder [2] [3] to describe a methodology and

logic style that uses an abstraction of signal and gate “phase” to describe circuit behavior.

The goal of the work was to produce a digital design methodology that eliminates global

clocks, yet keeps the synchronous design paradigm. The methodology allows the use of

familiar synchronous design and synthesis tools to produce a clocked netlist of D flip-

flops and combinational logic that is then translated to a delay-insensitive PL netlist. A

PL netlist consists of PL gates, data signals, and feedback signals. A PL netlist can be

considered a Marked Graph (MG) with data tokens flowing throughout the graph. Each

data token has a phase that is either even or odd. The phase is implemented with a LEDR

encoding of data signals as illustrated in Figure 1a. Each LEDR signal is composed of a

value (V) and timing (T) wire, and the phase is defined by the parity of the combined

dual-rail signal. A PL gate also has an even or odd phase, and it fires whenever the phase

of all inputs matches the internal gate phase. When the gate fires, the internal phase and

the output signal’s phase toggles. A sample gate firing is illustrated in Figure 1b,c. A

useful property of LEDR signaling is that the V signal always reflects the current value, 0

or 1, of the signal, so this can be used directly in a computation block without decoding.

Another useful property is that the phase of a LEDR signal can be changed from even to

odd or vice-versa by inverting the T signal. In this way, a PL gate can have both even

and odd phase outputs by supplying a version of the LEDR output with the T signal

inverted.

 5

Some definitions are required before discussing the MG model of a PL circuit. The

following definitions are paraphrased from [5] as they are concise and complete.

Expanded definitions can be found in [4].

A Petri net (PN) is a triple PN = {T, P, F} where:

• T is a non-empty finite set of transitions

• P is a non-empty finite set of places, and

• F ⊆ (P × T) ∪ (T × P) is the flow relation between transitions and places.

A PN can be represented as a directed bipartite graph, where the arcs represent elements

in a flow relation. A PN marking is a function m : P → {0,1,2...}, where m(p) is called

the number of tokens in p under marking m. A transition t ∈ T is enabled at a marking m

if all its predecessor places are marked. An enabled transition t may fire, producing a

new marking m’ with one less token in each predecessor place and one more in each

successor place (denoted by m[t > m’).

A sequence of transitions and intermediate markings m[t1 > m1[t2 > ...m’ is called a firing

sequence from m. The set of markings reachable from marking m through a firing

sequence is denoted by [m>, the reachability set of a PN with initial marking m. A

marking m∈ [m> is called a reachable marking.

A PN marking is live if for each m’ ∈ [m for each transition t there exists a marking m’’∈

[m’> that enables t. Similarly, a transition t is live if for each m’∈ [m there exists a

marking m’’∈ [m’> that enables t. A marked PN is live if its initial marking is live. A

marked PN is k-bounded if there exists an integer k such that for each place p, for each

 6

reachable marking m, we have m(p) ≤ k. A marked PN is safe if it is 1-bounded (this ends

the definitions used from [5]).

A PN is a marked graph if every place has exactly one predecessor and one successor. A

shorthand graphical notation is usually adopted for MGs in which transitions are the

vertices of a graph G and arcs lie between transitions, with the intervening places

understood. We use this shorthand notation for MGs in our figures unless explicitly noted

otherwise. A Marked Graph G with an initial marking m0 is denoted (G, m0). In a MG

(G, m0), a directed circuit is a directed path that begins at a transition t and ends at the

same transition t. The sum of the tokens in the set of places contained in C for a marking

m is the token count of C, designated by m(C). Two important theorems [6] about the

liveness and safety of MGs are:

Theorem 1. A marked graph (G, m0) is live if and only if for all directed circuits C of G,

m0(C) > 0, i.e. m0 places at least one token on each directed circuit in G.

Theorem 2. A marked graph (G, m0) is safe if and only if every edge of G belongs to

some directed circuit C with m0(C) ≤1. As a corollary, a live marked graph is safe if and

only if every edge belongs to a directed circuit C with m0(C) = 1.

If a PL netlist is not live, then signal transitions do not occur (tokens do not circulate),

and thus there is no activity in the netlist. A PL netlist requires token circulation for

computation, so a dead PL circuit is not useful. If a PL netlist is unsafe, then a PL gate

 7

can fire and produce a second output value before a destination gate has consumed the

first output value, resulting in incorrect operation.

The MG model for a PL netlist allows representation of gates and LEDR signals with

transitions and tokens. Figure 2 shows the token abstraction given an odd or even input

signal and an odd or even gate phase using LEDR signaling. An input signal contains a

token if the input phase matches the gate phase. When a gate fires, the internal gate

phase toggles, thus consuming the input tokens. Figure 3 shows that a gate output signal

can be viewed as either having a token or not having a token, depending on the

destination(s). Because each fanout counts as a separate arc (place) in the MG

equivalent, this paper always uses individual signals for fanouts > 1 even though in the

physical circuit only two wires are used for an output, regardless of fanout. Figure 4

shows that the initial marking of the MG equivalent of a PL gate is a wiring choice. In the

implementation described here, all PL gates are reset to even phase at startup. PL gates

have both the normal and inverted phase versions of a signal available, accomplished by

inverting the internal T signal of the LEDR output. An initial token is placed on an input

signal by connecting the signal to the PL gate output whose phase is the same as the

internal gate phase.

B. The Transformation Process

The translation of clocked netlists to PL netlists distinguishes between sequential and

combinational functions in the clocked netlist. Sequential functions, such as flip-flops,

are mapped to barrier gates, while combinational functions are mapped to through gates.

 8

The terms barrier and through are used to distinguish these gates for the purpose of

initial token marking rules, which are specified later in this section. The logic function of

the data values of the LEDR inputs of barrier and through gates are the same as the logic

function in the original netlist (i.e., a barrier gate is simply a buffer function in the PL

netlist if it does not have any integrated combinational function in the clocked netlist).

The translation procedure may need to insert additional signals termed feedback signals

to make the resulting PL netlist live and safe (a more familiar term is acknowledgement

signals, but we will use the terminology developed in [2]). In the MG equivalent, a

feedback signal is the same as any other directed arc between transitions. However, in

the PL netlist, a feedback signal does not have any data associated with it, so a feedback

signal from a gate is a single rail signal that is the T wire of the LEDR output of the gate.

The translation algorithm that maps clocked netlists to PL netlists consists of the steps

that are outlined below. These steps are illustrated in Figure 5a-d. See [2] and [3] for

more details. These rules assume the PL netlist forms a closed system, i.e, that the global

reset is the only external input signal. The method for addressing external I/O signals is

discussed after the presentation of the translation rules.

Step 1. All sequential functions in the clocked netlist are mapped one-to-one to

barrier gates in the PL netlist. All combinational gates are mapped one-to-one to

through gates in the PL netlist. LEDR signals connect the PL gates to copy the

original topology of the clocked netlist, excluding the clock signal. The initial

token marking rules assume that inputs from barrier gates always have an initial

token on them. This means that a gate with an input from a barrier gate is

 9

connected to the barrier gate output whose phase matches the barrier gate’s

internal phase. The initial token marking rules require that any non-feedback

input signals from through gates do not have an initial token, so these input

signals are connected to the through gate output whose phase is opposite the

through gate’s internal phase. A global reset signal is used to reset all gates to

even phase at startup (the even reset choice is arbitrary, it is only necessary that

all gates be reset to the same phase value). Figure 5a,b illustrates this step.

Step 2. Extra gates termed splitter gates are inserted to break any direct connection

between barrier gates. Splitter gates are through gates that implement buffer

functions. Splitter gates are required so that the initial token marking rules and

feedback insertion rules can result in a live and safe MG. In Figure 5c, through

gate u7 is a splitter gate inserted between barrier gates u5 and u6.

Step 3. The network is traversed, and any signals that are part of a directed circuit C

where m0(C)=1 are marked as safe signals. At this point, only output signals from

barrier gates are marked with initial tokens, so a signal is safe iff it is in a directed

circuit that contains a single barrier gate. It is important to understand that each

fanout from an output counts as a separate signal for safety checking. If all signals

are safe, then the transformation process is finished, and the PL netlist is live and

safe.

Step 4. Single rail signals called feedbacks are now added to make the remaining

signals safe. A feedback signal is added from the output of a source gate to the

input of a destination gate to form a directed circuit C with m0(C)=1. Any

initially unsafe signals contained in this directed circuit are now safe. Any signals

 10

made safe by the addition of the feedback are covered by that feedback. The

directed circuit cannot include a barrier gate unless the barrier gate is either the

source or destination of the feedback. Figure 6 summarizes the rules for feedback

insertion and initial token marking. A feedback originating from a through gate

and terminating on a through gate has an initial token (this marking supplies the

token in the directed circuit since the non-feedback output of a through gate does

not have an initial token, see figure 6a). A feedback originating from a through

gate and terminating on a barrier gate does not have a token (the initial token on

the directed circuit is provided by the barrier gate, see Figure 6b). Any feedbacks

originating from barrier gates have initial tokens (i.e, all signals originating from

barrier gates have initial tokens, see Figure 6c). A feedback cannot both

originate from a barrier gate and also terminate on a barrier gate (the directed

circuit formed would be unsafe as it would have an initial token count > 1, see

Figure 6d). Figure 6e shows how this problem is solved by splitter gate insertion

to break barrier-to-barrier gate paths.

Safety is ensured if every signal is part of a directed circuit that contains a single token in

the initial marking. To select from multiple feedback signal placement options, a scoring

function is used. This scoring function takes into account the number of signals that are

covered (made safe), the number of feedback signals previously connected to a gate, and

the length of the feedback signal. A general form of the scoring function defined in [2] is

given below:

score = S – F/k – p*L (1)

where

 11

• S is the number of unsafe signals covered

• F is the number of feedbacks present at the destination, and k is a user-specified

constant. This term is a penalty term that encourages spreading of feedbacks among

different nodes. The k factor can be used to reduce this penalty if desired. Our

mapping code produces PL netlists that use 4-input Muller C-elements [11] for

feedback concentration at a node, so k=4 is used in the netlist mappings results in

Section VIII. High-fanout C-elements are built from trees of 4-input C-elements, so

spreading fanout among different gates can decrease the delay associated with a

feedback input by decreasing the depth of the C-element tree.

• L is the number of gate levels between destination and source gates (if the destination

is directly connected to the source, F= 1), and p is a user-specified constant. This

term is a penalty term that favors shorter feedbacks over longer feedbacks as shorter

feedbacks can improve the cycle time of the resulting circuit (the effect of feedback

length on performance will be discussed more in Section VI). The p constant is a

weighting factor for this penalty term; our results in Section VII use p= 0.1 .

Note that for k = ∞ and p = 0 the scoring function selects the feedback that covers the

largest number of signals. The algorithm [3] for selecting feedbacks using the above

scoring function is as follows:

While there are unsafe signals

o For each gate G1 do the following

 Perform a backward depth-first search starting at G1 along clear paths.

A clear path is one that excludes barrier gates and feedback signals

 12

except for barrier gates at the beginning or end of the path. This

prevents a feedback from forming a directed circuit that includes more

than one barrier gate, which would place more than one token on the

circuit, forming an unsafe directed circuit.

 For each gate G2 found in the backward depth-first search, determine

the number of signals covered if a feedback signal is added from G1 to

G2.

 Calculate the score for a feedback signal from G1 to G2.

 If the score is the best seen so far for any G1, save the feedback signal

as the current best.

o Add the best feedback signal seen to the netlist and mark as safe all the signals

that are covered by it.

The principle goal of this scoring function is to minimize the number of feedbacks

inserted into the PL netlist, and is thus area-oriented. In section VI, we discuss a

performance-oriented approach to feedback insertion.

Figure 5 illustrates the mapping of a clocked circuit to a PL circuit with k = ∞ and p = 0

used in the scoring function. It is evident from Figure 5(d) that multiple solutions exist to

feedback insertion for liveness and safety. For example, feedback f1 was inserted to

cover signals s3 and s10. Feedback f1 originates from gate u4 and terminates on gate u2,

where the inputs to u2 are two gate levels away tracing backwards from u4 inputs.

Feedback f1 is said to have a path length = 2. However, s3 could also be covered by a

feedback from u4 to u3 (a path length = 1), and s10 by a feedback from u3 to u2 (a path

 13

length = 1). The effect of maximum allowable feedback path length on the performance

of PL circuits and on the CPU time required for feedback insertion is discussed in

Sections VI and VII, respectively.

The clocked-to-PL translation algorithm has been proven to result in PL circuits that are

delay-insensitive, but display the same cyclic, synchronous, deterministic behavior as the

clocked netlist [3]. Many example circuits have been translated and compared to their

original clocked netlist implementations[7][8][10]. Section IV discusses modifications to

the feedback insertion rules to support early evaluation. The safety and liveness of

external inputs are handled at the VHDL testbench level during simulation; the PL netlist

provides a feedback output to the testbench for each input, and accepts a feedback input

from the testbench for each output. The same token marking rules are applied to these

feedbacks as are applied in the clocked-to-PL transformation process.

III. Related Work

Several types of delay-insensitive circuits that use LEDR signals have been proposed in

the literature. Dean, et al. propose PLA-based, domino logic, and series stack circuit

styles in [1]. The sequential behavior of these circuits differs slightly from phased logic

gates and they are applied only to pipeline structures. D. L. How describes a self-timed

FPGA based upon 3-input lookup tables and LEDR signaling in [13] and uses this cell in

the context of Sutherland’s micropipelines [16] and self-timed iterative rings [17]. That

work does not address the design methodology or EDA tools for the FPGA architecture.

McAuley implements wavefront array circuits with a sequential multiplexer cell in [26]

and compares their performance with that of clocked systolic arrays. Phased logic differs

 14

from all of these approaches by providing a formalization based on graph theory that

relates delay-insensitive phased logic circuits to general clocked circuits. Using this

formalization, general synchronous circuits can be transformed to phased logic circuits

automatically, preserving the synchronous behavior specified by the designer, using

commercial EDA tools and a netlist translation tool.

Automated translation of asynchronous designs from synchronous design specifications

using commercial synthesis tools has also been proposed in [18]. This asynchronous

design methodology, known as Null Convention Logic (NCL), differs from phased logic

in several ways. It uses a (NULL/DATA/NULL) signaling convention rather than LEDR

and has some delay sensitivity between NCL gates in the final implementation, requiring

a final timing analysis. The NCL circuit implementation uses m-of-n threshold gates.

Although both PL and NCL specifications can be written in VHDL RTL, the NCL

methodology is restricted to RTL that separates combinational logic and register

descriptions.

Performance enhancement techniques for self-timed circuits have been investigated by

other researchers under names such as Eager Evaluation, Speculative Execution, and

Early Completion [1][19][20][21][22]. In [1] an “eager” implementation is described for

LEDR signaling that is similar in concept to the early evaluation phased logic gates

described here. An example of an eager AND gate is given that computes its output value

without waiting for both inputs, if one of the inputs has a value of zero. Because the

phase of the output is computed from both inputs, for some cases the output phase does

 15

not change until both inputs arrive. This dependence limits the speedup to a subset of the

potential “eager” transitions that occur for the AND gate. The authors mention the

potential problem for eager circuits with feed-forward branches, but they do not provide a

solution since the focus of this work was on strict (non-eager) LEDR implementations.

Some speculative completion techniques are applicable only to addition sub-circuits[19].

In [19] a completion detection technique is described for carry-select adders. Another

speculative completion technique [20], which uses bundled data and a discrete set of

data-dependant matched delays, is a more general design style, but is applied in [20] only

to adder circuits. Other performance enhancement techniques that involve completion

differ from early evaluation by using optimizations that are unrelated to data

dependencies[21][22]. In [21] parallel circuits are used to reduce the delay caused by the

NULL part of the DATA/NULL/DATA cycle of NULL Convention Logic. In [22] a

technique for detecting completion of NCL circuits at the input of the register, rather than

the outputs is described. This optimization is called “early completion” but it is

independent of the value of the data inputs. The novelty in the early evaluation approach

described here is that it is not limited to addition circuits, it is easily automated, and it

takes advantage of data-dependencies in general combinational circuits.

It is also noted that similar methods referred to as “telescopic units” have been employed

to speed-up synchronous pipelines [23][24]. The telescopic unit approach considers the

early computation of combinational blocks in pipeline stages. The concept of controlling

 16

values is similar to the concept of early evaluation inputs that compute a trigger function

(explained in section IV).

IV. Early Evaluation in Phased Logic

Our extension to the PL methodology is the support for early evaluation (EE) within PL

netlists. The PL gates discussed in the previous section satisfy the firing rule, which

states: “A PL gate recalculates its output once all of its inputs have tokens. An input has

a token [or: an input has arrived] when the input phase matches the phase of the gate.”

An output update means that the phase portion of the output is toggled from even-to-odd

or vice-versa, and the value portion is updated by the gate compute function. In early

evaluation, we divide the set of input signals into two sets, early arriving signals EI =

{EI0,EI1...EIj} and late arriving signals LI = {LI0,LI1...LIk}. The firing rule for an early

evaluation gate (EEgate) is relaxed so that output update is allowed whenever the early

inputs EI arrive and the trigger function Tf= f(EI), a boolean function of the value bits of

the early arriving signals, evaluates to 1. The trigger function Tf is chosen so that the

value portion of the gate output is fully determined by the value bits of the early arriving

inputs. This technique can provide increased system performance if the signals that form

the early fire subset arrive substantially earlier than the remaining signals, as it allows

successor gates to begin firing before the remaining inputs arrive. An early firing of an

EEgate is defined as an output update after all of the early inputs have arrived, but before

all of the late inputs have arrived. A normal firing of an EEgate is defined as an output

update after all inputs EI ∪ LI have arrived. An EEgate has two internal gate phases, an

early phase and a normal phase, with a natural extension of the notion of arrival to

 17

characterize arrivals of early or late inputs in terms of the corresponding gate phase.

Arrival of all early inputs toggles the early phase; arrival of all inputs EI ∪ LI toggles the

normal phase. A feedback output from an EEgate is updated only after all inputs have

arrived (toggling of the normal phase implies toggling of the feedback output phase).

Feedback inputs to an EEgate are always inputs to the early phase.

A. Safety and Liveness in Marked Graphs with Early Evaluation

We intend to show that a PL netlist with EEgates can still be modeled as a marked graph,

and that only a few simple changes are required to the original feedback insertion rules to

produce a MG with EEgates that is live and safe. Figure 7 gives PN models Eg and Ng,

for the early and normal fire behavior, respectively, of an EEgate. Firing of the Et

transition corresponds to toggling of the early phase, while firing of the Nt transition

corresponds to toggling of the normal phase. Figure 8 shows Eg and Ng embedded in

PNs {Ge, m0} and {Gn, m0} respectively. It is evident that both {Ge, m0} and {Gn, m0}

are marked graphs, and that both are live and safe. Ge corresponds to trigger function Tf

= 1 (the EEgate always fires early), while Gn corresponds to trigger function Tf = 0 (the

EEgate never fires early).

 Places Pint = {P1, P2} and transitions Tint = {Nt, Et, Ot} form the marked graphs of the

early (Eg) and normal (Ng) fire subnets. Places Pext = {P3, P4, P5, P6, P7}, transitions

Text ={EIt, LIt}, and the initial marking m0 are added to Eg and Ng to form PNs {Ge, m0}

and {Gn, m0}, respectively. Initial tokens are placed only within members of Pext. In

Figure 8, the transition EIt has an input (place P3) from transition Nt, ensuring that P1 is

 18

in a directed circuit C with m0(C) = 1, which prevents a second fire of Et from occurring

in Ge until all inputs have arrived.

Given that an EEgate may fire either early or normally, depending on the trigger function

Tf, we must express the relationship between these graphs to understand the complete

behavior and to show safety and liveness. To explore this point, Figure 9a,b shows the

coverability graphs [4] of {Ge, m0} and {Gn, m0}. The coverability graph of a PN gives

all reachable markings for that PN. Each node in a coverability graph is the marking of

the places in the PN. In Figure 9, each node lists places P1 to P7, left to right, represented

as a bit string formed from the count of tokens in each place. To emphasize the state of

the external places, we assign the identifier for each node to be the decimal representation

of the bitstring formed from P3,P4,P5,P6,P7 (shown in bold face in Figure 9). The arcs

from each node point to the marking that results when the enabled transition on the arc

fires. The set of reachable markings of the set of external places Pext is important, as

these markings on the input/output arcs of the EEgate define the behavior of the gate to

the successor and predecessor gates in the MG model of the PL netlist.

In a safe PN, only ‘1’s and ‘0’s can appear for place values in the coverability graph.

Liveness for a PN cannot be determined solely from the coverability graph. However, if

a PN is live and is also a MG, then every marking in the coverability graph is live.

Therefore, all markings in Ge and Gn coverability graphs are safe and live. In the

coverability graphs in Figure 9c, the dotted arrows show the alternate arcs based on the

decision point for the trigger function Tf that is evaluated when the early inputs arrive

 19

(transition Et). These illustrate the reconfiguration from a marking in the early fire

coverability graph to the normal fire coverability graph and vice versa. From these

coverability graphs, we form the following key observations:

The set of reachable markings of Pext for Tf=0 is a subset of its reachable

markings for Tf = 1. Furthermore, the alternate arcs for an early or normal fire

in Ge lead to a marking in Gn when Tf evaluates to 0, and every marking in Gn is

live and safe. The decision point for an early or normal fire in Gn leads to a

marking in Ge when Tf evaluates to a 1, and every marking in Ge is live and safe.

If we restrict consideration to graphs of interest, namely, those that are live and safe, then

this observation can be supported by noting that the nodes of the normal-fire coverability

graphs form a subset of the nodes of the early-fire graph (since we have identified nodes

that differ only in the markings of internal places). Hence, the set of reachable markings

for Pext is independent of the trigger function Tf as long as the Eg net is used for the

early fire model.

We argue from these observations that the dynamic choice behavior of an EEgate can be

modeled as a conditional arc between coverability graphs of MGs. Taking the arc from

one graph to another is a configuration change in the graph. We define the two possible

changes as follows:

 20

• An early-to-normal configuration change for an EEgate is a change from the Eg

graph to the Ng graph, triggered by the Et transition when Tf = 0. The P2

predecessor transition changes from Et to Nt, and a token appears in P1, but not

in P2.

• A normal-to-early configuration change for an EEgate is a change from the Ng

graph to the Eg graph, triggered by the Et transition when Tf =1. The P2

predecessor place changes from Nt to Et, and a token appears in both P1 and P2.

We will use the above two configuration change definitions in the proof of liveness and

safety of EEgates in PL netlists. We begin with a marked graph G composed of EEgates

and non-EEgates, where EEgates are represented by Eg (Tf = 1, always early fire) and

non-EEgates by a single transition for all input arcs as used in [2]. Initially G has no

feedback arcs, and we produce a live and safe marked graph (G’,m0) by a modified

version of the feedback insertion rules presented in Section II. We show that any

combination of early-to-normal and normal-to-early configuration changes in the EEgates

in G’ results in a live and safe MG. We start with three lemmas that characterize the safe

and live G’.

Lemma 1: In (G’, m0), each late input LIi to an EEgate u must be in a directed circuit C

with m0(C) = 1 that contains a feedback output arc fo from Nt.

 21

Proof: Because the EEgate is represented by the early-fire Eg net, no late inputs in G are

in directed circuits, as no Nt transition has output arcs in G. So, a feedback arc fo must be

added for each late input in order to form a directed circuit for that late input.

Lemma 2: In (G’, m0), at least one early input EIi to an EEgate u must be in a directed

circuit C with m0(C) = 1 that contains a feedback output arc fo from Nt.

Proof: This is evident from PN Ge of Figure 8. If the EIt transition did not include as an

input a feedback output arc, then the firing sequence EIt > Et > Ot > EIt >Et places two

tokens in P1, which is a safety violation.

Lemma 3: In (G’, m0), each output arc Oi from Ot of an EEgate must be in a directed

circuit C with m0(C) = 1 that contains either a feedback input arc fi terminating on Et or

an early input EIi.

Proof. This is evident from net Eg as there is no path from Nt to an output arc Oi from

Ot. This restricts directed circuits containing an output arc Oi to either contain a

feedback input arc or early input arc.

Based on Lemmas 1-3, the modifications to the clocked-to-PL translation rules presented

in Section II are:

a) In Step 3, during the marking of initial safe signals, only early inputs are traced

through EEgates. This is because Eg is used to represent an EEgate, and as such,

there is no path from a late input to an output. This means that no late inputs will

be marked as initially safe, and must be covered by inserted feedback signals as

 22

per Lemma 1. It also means that outputs of EEgates are only marked initially safe

if the directed circuit used to mark an EEgate output as initially safe contains an

early input (Lemma 3).

b) In Step 3, after the marking of initially safe signals, examine each EEgate ui. If all

early inputs to ui have been marked as safe, then mark any one early input signal

as unsafe. This modification forces a feedback signal to be added in Step 4 to

cover this signal as per Lemma 2, preventing a second early fire from occurring

until all late inputs for the previous early fire have arrived. Recall that this early

input signal can only be initially marked as safe if it is in a directed circuit C

containing only one barrier gate. The initial token marking m0 places initial

tokens on the outputs of all barrier gates, so m0(C)=1, making the signals

contained in C safe. Marking one early input signal unsafe within C does not

invalidate the safety of the other signals within C as this directed circuit still

exists. Thus the feedback to be added in Step 4 only has to cover this early input

signal.

c) In Step 4, during the backtracking along clear paths, the path through an EEgate

can only include early inputs, as there is no path in Eg from the output of an

EEgate to a late input.

These changes to the feedback insertion rules will create directed circuits that contain

Pint, the set of internal places (P1, P2) for the Eg nets of all EEgates. These directed

circuits will always contain one or more places Pi ∈ Pext, the set of places external to all

EEgates Eg. The initial token marking rules for MGs without EEgates only place tokens

within Pext to created directed circuits Ci with m0(Ci) = 1. The validity of these rules has

 23

already been proven in [2]. These same initial token marking rules can be used for G’

with no modifications, as places P1 and P2 in Eg contain no initial tokens.

With these revised feedback insertion rules, the marked graph (G’, m0) is live and safe if

early evaluation gates always fire early (ie, Tf = 1). We now show that any combination

of early-to-normal or normal-to-early configuration changes still result in a live and safe

MG.

Theorem 3: From any marking mi reachable from (G’, m0), allow a single EEgate ui to

perform an early-to-normal configuration change. The resulting graph (G’’, m0’) is live

and safe.

Proof: The only directed circuits C with mi(C) = 1 affected by the early-to-normal

configuration change are the ones containing an output arc from Ot, as the predecessor

transition to P2 is now Nt. All these directed circuits now contain P1 as a result of the

configuration change. P1 has a token from the firing of Et, so these directed circuits are

live, mi(C) > 0. When Et fired, the only arcs in these directed circuits that could have

contained a token are the arcs incident on Et. The firing of Et consumed these tokens, so

the token count of these directed circuits remain unchanged, at mi(C) = 1.

Theorem 4: From any marking mi reachable from (G’, m0), allow any set of EEgates

U={u0,u1,u2...un} to perform early-to-normal configuration changes. The resulting graph

(G’’, m0’) is live and safe.

 24

Proof: The only directed circuits C with mi(C) = 1 affected by the early-to-normal

configuration changes are the ones containing an output arc from Ot within a gate ui ∈ U.

Pick any directed circuit Ci affected by an early-to-normal configuration change. Because

Ci was live and safe in (G’, mi), the Et transition change within Ci that triggers the early-

to-normal configuration change is the only fireable transition on this directed circuit.

Thus, any of the other early-to-normal configurations changes do not affect this directed

circuit, so by the same reasoning in the proof of Theorem 6, Ci is live and safe. Because

all directed circuits Ci can be affected by only one of the early-to-normal configuration

changes in U, then all directed circuits with mi(C) = 1 affected by these configuration

changes are live and safe.

At this point, we have proven that any combination of early-to-normal configuration

changes from (G’, mi) result in a marked graph (G’’, m0’) that is live and safe. As long as

no normal-to-early configuration changes occur in G’’, the graph is live and safe as all

markings reachable from (G’’, m0’) are live and safe. Also, any combinations of

additional early-to-normal configuration changes from any (G’’, mi’) resulting in (G’’’,

m0’’) are also live and safe by Theorems 3 and 4. We will now consider normal-to-early

configurations changes from G’’.

Theorem 5: From any marking mi’ reachable from (G’’, m0’), allow a single EEgate ui to

perform a normal-to-early configuration change. The resulting graph (G’’’, m0’’) is live

and safe.

 25

Proof: The only directed circuits C with mi’(C) = 1 affected by the normal-to-early

configuration change are the ones containing an output arc from Ot, as the predecessor

transition to P2 is now Et. All these directed circuits now no longer contain P1 as a result

of the configuration change, but they do still contain P2. The firing of Et that causes the

normal-to-early configuration change places a token in P2, so these directed circuits are

live, mi’(C) > 0. As these directed circuits have mi’(C) = 1 at the time of Et firing, the

only arcs in these directed circuits that could have contained a token are the arcs incident

on Et. The firing of Et consumed these tokens, so the token count of these directed

circuits remain unchanged, at mi’(C) = 1.

Theorem 6: From any marking mi’ reachable from (G’’, m0’), allow any set of EEgates

U={u0,u1,u2...un} to perform normal-to-early configuration changes. The resulting graph

(G’’’, m0’’) is live and safe.

Proof: The only directed circuits C with mi’(C) = 1 affected by the normal-to-early

configuration changes are the ones containing an output arc from Ot within a gate ui ∈ U.

Pick any directed circuit Ci affected by an normal-to-early configuration change. Because

Ci was live and safe in (G’’, mi’), the Et transition change within Ci that triggers the

normal-to-early configuration change is the only fireable transition on this directed

circuit. Thus, any of the other normal-to-early configurations changes do not affect this

directed circuit, so by the same reasoning in the proof of Theorem 5, Ci is live and safe.

Because all directed circuits Ci can be affected by only one of the normal-to-early

configuration changes in U, then all directed circuits with mi’(C) = 1 affected by these

configuration changes are live and safe.

 26

Theorems 3-6 prove that any combination of early-to-normal and normal-to-early

configuration changes in the live and safe marked graph (G’, m0) produce another live

and safe MG. The key point in inserting feedbacks in a PL netlist to provide

liveness/safety in the presence of EEgates is to make the graph live and safe assuming

that the EEgates always fire early; then any combination of early and normal fires are live

and safe.

One outcome of using the same initial token marking rules for a PL netlist with or

without EEgates, is that an EEgate can either be a barrier gate or a through gate, as early

evaluation is independent of initial token marking. Of course, it is meaningless for a

barrier gate to be an EEgate if it implements a buffer function, as there is only one input

to the gate. However, there are two situations where a barrier gate with early evaluation

capability could be useful:

(a) the DFFs in the original clocked netlist have multiple inputs that implement a

combinational function (this accommodates the common situation in ASIC

libraries that embed logic within DFFs).

(b) If a DFF does not have embedded combinational logic, then after Step 1 of the

translation process and before splitter gates are inserted, a netlist transformation

is performed in which DFFs are absorbed into the combinational gate that

supplies their data input. Absorption of a DFF into a combinational gate can be

done if the DFF is the unique fanout of that combinational gate. This can reduce

the critical path of the circuit, improving performance. However, this can also

 27

create a direct DFF-to-DFF path if there was only one combinational gate

between DFFs, and this performance gain is lost when splitter gates are inserted

in Step 2 of the clocked-to-PL transformation process.

V. Generalized Insertion of Early Evaluation Gates

The previous section shows that the insertion of early evaluation gates can be

accomplished without making phased logic circuits unsafe. However, early evaluation

gates will be more expensive to implement than standard PL gates, so it is important to

use them only when a significant performance advantage can be obtained. An early

evaluation gate implements two logic functions. The master function, M(I), is the original

function mapped to the gate from its corresponding clocked netlist element. The trigger

function, T(IT), has only a subset of the inputs of the master function, IT ⊂ I. The trigger

function is true for those values of IT such that M(IT) =M(I). A technique for finding

potential trigger functions for these logic functions, selecting the optimal trigger

functions, and then selecting which netlist elements should be implemented with early

evaluation gates is described in this section.

Two approaches are taken for the generation of trigger functions; an exhaustive search

for small functions and a heuristic method for larger functions. We will first assume 4-

input logic functions. This is a reasonable upper bound for standard logic cells and a

common size for field-programmable gate array lookup tables. With this assumption, all

14 possible subfunctions with three or fewer inputs can be evaluated as trigger functions

and a merit function can be applied to choose the trigger function with the best

characteristics. A function can be a trigger function if it is true for at least some cases

 28

when the master function value is independent of the non-trigger inputs. Candidate

trigger functions are computed by processing the cube list representation of the fON and

fOFF functions for the master function, M(I).

As an example, consider the truth table for a carry-out function of a full adder cell,

M(a,b,c) = c(a+b)+ab, as shown in the Master column of Table 1. Since this function

depends on three input signals, a search for the trigger function would consist of

generating all candidate functions with support sets of {a}, {b}, {c}, {a,b}, {a,c} and

{b,c}. In the Trigger column of Table 1 a potential trigger function is shown, T(a,b) =

ab+a’b’, that is based on the support set {a,b}.

Table 1: Truth Tables for Master and Trigger Functions
a b c Master Trigger
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

Each time the trigger function is true, the master gate can evaluate even if the input signal

c has not arrived since its value is a don’t-care in these cases.

The best trigger function may be determined by means of a merit function that measures

the degree of coverage that the trigger function provides in relation to the master Boolean

function. The coverage is the number of times a master function may early evaluate

divided by 2n where n is the number of elements in the set I (i.e. |I|). The higher this

percentage is, the more often early evaluation can occur. Table 2 shows the cube

 29

representation of the master full-adder carry-out function along with the computed

coverage. Since 2 cubes in Table 2 depend only upon master inputs a and b and each of

those cubes cover 4 of the 8 possible outputs of the master function, a coverage of 50% is

computed for the trigger function ftrig=ab+a’b’. The trigger function corresponds to the

cube list given by fON
trig={00-,11-}.

Table 2: Determination of Candidate Trigger Functions

Master Cube Master Outputs {a,b} Coverage Trigger Function
00- 0 2 1
010 0 0 0
100 0 0 0
11- 1 2 1
1-1 1 0 0
-11 1 0 1

The merit function is also weighted by the relative arrival times of the input signals to the

master and candidate trigger PL gates. This is necessary since, unlike the case of the

adder circuit, a potential trigger function with large coverage may depend on slowly

arriving signals and hence provide less effective speed-up than a trigger function with

less coverage but depending on faster arriving inputs. The arrival times are computed by

finding the maximum path length in terms of PL gates from the primary circuit inputs or

from barrier gate outputs to PL gate inputs. The merit function is given in Equation (2).

max

max%
T
M

CoverageMerit ×= (2)

Mmax and Tmax are the maximum delay of the input signals to the master and trigger PL

functions, respectively. This merit function works well if data movement in the forward

direction from external inputs or barrier gates limits performance, as is the case in a

 30

clocked system. However, if performance is limited at a gate by feedback arrival, then

insertion of an EEgate will not help. To account for this, the effect on cycle time of the

PL netlist by the proposed EEgate insertion could be incorporated into the merit function.

However, this is a difficult issue, as typically the insertion of just one early evaluation

gate does not improve cycle time. Instead, groups of gates (i.e, one gate for each bit of a

datapath) have to be inserted before improvement in cycle time is seen. Also, how to

determine cycle time in a netlist that has data-dependent cycle times caused by the

presence of EEgates is a difficult problem. Future work is planned on evaluating

different merit functions for EEgate insertion.

This technique presented here generalizes EE to work for any arbitrary master function

since candidate trigger functions are automatically extracted based on the structure of the

master function. If the merit function is low for all trigger functions, the use of early

evaluation gates may not be worth the additional overhead, and in those cases a standard

PL gate can be used instead. The designer can select a threshold value for the merit

function, below which an early evaluation gate is not inserted.

As the size of the master functions increase in terms of the variable support set, it

becomes impractical to search over all possible candidate functions since a total of 2n-2

functions must be evaluated. To avoid this exponentially large exhaustive search, a

heuristic method using Binary Decision Diagrams (BDDs) can be used [14]. A BDD is a

directed acyclic graph that represents a fully specified switching function : nf →B B .

All vertices in a BDD are annotated with either a Boolean constant or a dependent

variable. Those vertices annotated with a constant are terminal nodes with the remainder

 31

of the vertices referred to as non-terminal nodes. All non-terminal vertices have two

exiting directed arcs while terminal vertices have no exiting edges. One of the non-

terminal vertices is denoted as the initial node of the BDD and it has no edges pointing to

it. These graphs are ordered in the sense that for any given path from an initial to a

terminal vertex, all intermediate vertices encountered are annotated with variables that

may occur only once during the traversal and always in the same order regardless of the

path. BDDs are also reduced in the sense that all isomorphic subgraphs are shared and

that no redundant vertices exist. Additionally the edge set of a BDD also carries

annotations in the form of Boolean constants. Each non-terminal vertex has two exiting

edges labeled with a 1 or a 0. A switching function may be evaluated for a particular

variable assignment by traversing a path from the initial to a root node and following the

directed edges that correspond to the polarity of each variable for the particular

assignment. The annotation of the root node is then the evaluation of the function. As an

example, Figure 10 contains a diagram representing a BDD for the master function given

in Table 1 with a variable ordering of a, b, c respectively.

It is a property of BDDs that all paths from the initial to a root vertex represent disjoint

cubes in the on- or off-set of the function being represented. By definition, a trigger

function is one that is composed of a set of cubes in the on-set that represent cubes in

either the on- or off-set of the master function and which depend on fewer variables than

the master function. Such cubes are easily identified from a BDD representation of the

master function by extracting those that correspond to paths from the initial to a terminal

node such that the paths do not include all variables. In the example master function in

 32

Table 1, a trigger function can be extracted depending only on variables a and b. In the

corresponding BDD shown in Figure 10a, note that variables a and b are ordered first and

that complete paths exist by following the 0-edge of variables a and b yielding the cube

as the on-set of the trigger function. These complete paths are illustrated in the BDD in

Figure 10b where two paths are shown by the dashed ovals that correspond to the cubes

{abc}={00-,11-}. The technique for extracting a trigger function is then to construct a

BDD with all variables in the set IT to be grouped together and appear in the BDD

structure closest to the initial node with the remaining variables in I to appear closer to

the root nodes. Next, the BDD is traversed and all distinct paths containing variables in

IT are chosen as cubes in the on-set of the trigger function whether those paths terminate

at terminal nodes annotated with 0 or 1.

An additional constraint in determining the trigger function is the desire to have variables

in the support set that are early arriving. This information is obtained through a timing

analysis of the PL circuit prior to trigger function extraction and is used to determine

candidate variable orderings for the BDD. Those variables that are earliest in arrival are

ordered first in the BDD. Those variables with equal arrival times are grouped together

in the BDD. This method has been used to extract trigger functions from candidate

master functions that depend on as many as 34 variables in less than 1 ms of computer

runtime.

 33

VI. Other Performance Considerations in PL Circuits

A. Performance of Timed Marked Graphs

An elementary directed circuit in a MG is a directed circuit that contains no other circuits.

A timed marked graph assigns delays to each transition in the MG; the MG model of a

PL netlist is a timed MG. Assuming fixed delays for each transition, a lower bound on

the cycle time of a timed MG can be found by computing the average cycle time D(Ci) of

each elementary directed circuit Ci of G in isolation, by summing the firing times of the

nodes in Ci and dividing by the number of tokens present on Ci. The lower bound on

cycle time is then max{D(Ci)} [31] . Figure 11 shows a simple PL netlist that is an

unbalanced two-stage pipeline, where B1/B2 are barrier gates and T1-T4 are through

gates. Recall that barrier gates and through gates are DFFs and combinational gates in

the original clocked system. The elementary directed circuit in Figure 11a formed by

B1>T1>T2>T3>B2>T4>B1 contains two tokens and forms the directed circuit with the

maximum average cycle time. Assuming each node has a delay of 10 time units, then the

average firing time of this directed circuit is 60/2 = 30 time units. Analysis shows that

the firing pattern at each node is 20, 40, 20, 40, etc. for an average delay of 30 time units.

In a clocked system, the cycle time of this system would be 40 time units if B1, B2 were

DFFs, and T1-T4 were combinational blocks, as the cycle time of the clocked system is

set by the maximum delay between DFFs.

The cycle time of a PL netlist without early evaluation gates is fixed and is independent

of input vector value. The cycle time of a PL netlist with early evaluation gates can vary

 34

from cycle to cycle based upon input vector values because the early or normal firing of

an early evaluation gate is data-dependent. As such, the cycle times of PL circuits with

early evaluation gates presented in Section VII are average cycle times measured over a

range of different input vectors. There is a one-to-one correspondence between a firing

cycle in a PL netlist and a clock cycle in the original clocked system. Thus, the cycle

time of the PL netlist is analogous to the clock period of a clocked netlist.

A register-to-register path in a clocked circuit corresponds to a barrier gate to barrier gate

path in the PL circuit. In a clocked circuit, only one computation can be in progress on

the register-to-register path at any given time during a clock cycle, unless an

asynchronous technique such as wave pipelining is used. However, in a PL circuit, it is

possible to have more than one token in flight between barrier gates, which would

correspond to more than one computation in progress between the barrier gates. This

allows PL system performance to be somewhat tolerant of unequal delays between barrier

gates. This is seen Figure 11a as the delays across the two stages of the pipeline in the

PL system are averaged because the PL system can support two tokens in flight between

B1 and B2; something that cannot occur in the clocked system.

B. Feedback insertion and cycle time

In a PL netlist, directed circuits occur either naturally via paths from the output of a

barrier gate back to its input, or are created by the addition of feedback. Figure 11b is a

minimal feedback solution to the circuit of Figure 11a. The directed circuit formed by

B1>T1>T2>T3>B1 is now the circuit with the maximum average cycle time. This circuit

 35

has one token, with average cycle time of 40/1 = 40 time units. The firing pattern at each

gate is now 40,40,40...etc. Analysis shows that the firing of gate B1 is caused by token

arrival on the feedback input from T3, not by token arrival from T4. The firing of gate

B1 is limited by token movement in the backwards direction along feedbacks, not by

token movement in the forward direction along non-feedback inputs. This illustrates how

feedback insertion can have an adverse effect on the performance of the final PL circuit.

Long feedbacks (feedbacks that skip over multiple gate lengths) generate directed circuits

with many gates, which can limit the performance of the PL netlist. To remove feedback

path length as a performance factor, all circuit examples in Section VII use a feedback

path length of 1 unless explicitly stated otherwise. This maximizes the number of

feedbacks, but also maximizes circuit performance for our current mapping approach.

The original scoring function for feedback insertion in [2] is area-oriented, not

performance-oriented. To create a performance-oriented feedback insertion algorithm,

the effect on cycle time on the resulting PL netlist must be considered when feedback is

inserted in the netlist. Unfortunately, identification of the elementary directed circuit with

the maximum cycle time is an NP-complete problem [33]. A lower bound on the

average cycle time of a timed marked graph can be computed in polynomial time using a

linear programming approach [31]. Another approach for computing the cycle time of a

marked graph involves the solution of a set of linear equations that use a special max-plus

algebra [32]. The applicability of these approaches for computing cycle time in PL

netlists with EEgates is questionable given that the number of nodes can be large and the

token flow data-dependent.

 36

We have implemented a performance-oriented algorithm for feedback insertion that uses

a simulation-based approach for computing cycle time. We feel that a simulation

approach is required because of the data-dependent cycle times in PL netlists with

EEgates. The cycle time of the PL netlist is calculated via a timed MG simulator that is

integrated into the mapping software. The MG simulator currently assumes that all

EEgates always fire early; however we plan on extending it to use firing patterns for

EEgates captured from an external gate level simulator. Our performance-oriented

algorithm uses the MG simulator to iteratively identify gates fired by feedback arrival,

and targets those feedbacks that have the most waiting time between the last non-

feedback arrival and the gate firing. These feedbacks are removed, and the resulting

unsafe signals are covered by feedbacks restricted to half of the maximum path length of

the deleted feedbacks. The goal is to have those gates previously fired by token

movement in the backward direction (feedback arrival), to now be fired by token

movement in the forward direction (non-feedback arrival). The performance-oriented

algorithm for feedback insertion is:

1. Identify a target average cycle time Tavg for the final PL netlist. We currently

find Tavg by creating a PL netlist where all feedbacks are restricted to path length

=1. This gives the minimum achievable cycle time for this PL netlist using our

current mapping approach.

2. Create a PL netlist using the area-oriented scoring function for feedback with no

restriction on feedback path length. This creates a PL netlist with the minimum

 37

number of feedbacks using our current search technique for feedback insertion.

This netlist is used as the starting point for the optimization process.

3. Run the MG simulator until a stable average cycle time is reached where the

average cycle time is computed as a running average over the last four cycles.

This usually takes less than 10 simulation cycles. During the simulation, track

gates that are fired by feedback arrival, and not by non-feedback input arrival.

Time spent waiting for feedback is wasted time. We want gates to be triggered by

data movement in the forward direction, as in the clocked system. If the target

cycle time has been reached, then the mapping is finished.

4. Traverse the list of gates Gl fired by feedback arrival, and identify the gates

Glmax that have the largest delta time between the last non-feedback arrival and

the feedback arrival that fires the gate. For each of these gates, identify the

feedback input fi that triggered the firing of the gate. If the path length of the

feedback is the largest so far, record as Pmax. Place the feedback fi in a list Fl.

After all gates Glmax have been processed, if Pmax = 1 then the mapping is

finished as the length of the late arriving feedbacks cannot be further reduced.

5. For each feedback fi ∈ Fl, remove fi from the PL netlist and mark the signals

covered by fi as unsafe.

6. Insert feedback to cover all unsafe signals created in step 5 using the area-oriented

scoring function, restricting feedback length to Pmax/2. Go to step 3.

This algorithm is a greedy heuristic as no candidate feedbacks in step 4 are rejected.

Results from using this approach are given in Section VII.

 38

C. Slack Matching Buffers

Another method of improving the performance of the PL netlist involves adding extra

buffers called slack-matching buffers [30] in order to alter the average cycle time of

directed circuits within the netlist. Circuit A in Figure 12 is a modified version of the

original two-stage pipeline found in Figure 11. The dashed lines are feedbacks of length

1. The directed circuit formed by B2>T1>T2>T3>B2 is now the circuit with the

maximum average cycle time. This circuit has one token, with average cycle time of

40/1 = 40 time units. However, by adding the extra buffer T5 shown in Circuit B, the

directed circuit with the maximum average firing time becomes B1>T1>T2>B3>T4, the

same directed circuit found in Figure 11a. The firing pattern of each gate is changed to a

repeating pattern of 40,20,40,20, etc, for an average cycle time of 30 time units, an

improvement of 10 time units. In the examples in Section VII, any slack matching that

has been done to improve performance is explicitly stated and is accomplished manually.

An area of future work is to incorporate automatic insertion of slack matching buffers

into our mapping tool.

VII. Results

A. The Clocked-to-PL mapping environment

We evaluated the effectiveness of early evaluation for gates of 4 inputs or less, by

synthesizing several benchmark circuits both with and without the use of early evaluation

gates. The benchmark circuits were the International Test Conference 1999 (ITC99)

suite [14], a 5-stage pipelined MIPS CPU[28], and the picoJava-II™ Floating Point Unit

 39

[29]. Circuit sizes ranged from 4 gates to over 8500 gates and a variety of circuit

structures are included. The circuits were specified in RTL-level VHDL and Verilog

formats, and each test case was synthesized using the Synopsys© Design Compiler tool

with a minimum delay constraint to an EDIF netlist of D-flip-flips and 4-input lookup

tables (LUT4s). Early evaluation functions are extracted from this netlist using the

techniques described in section V and are written to a separate file. The PL mapping

program reads both the EDIF netlist and early evaluation function file, maps this to a

netlist of normal and early-evaluation PL gates, inserts feedback signals using the

algorithm described in Sections II and IV, and produces a VHDL netlist that is simulated

via the Mentor Graphics Modelsim VHDL simulator. The complete mapping flow is

shown in Figure 13. The logic synthesis via Design Compiler from RTL to a gate-level

netlist has no knowledge of early-evaluation or PL in general. Logic synthesis

constraints used to produce faster or slower clocked circuits will in general also produce

faster or slower PL circuits. An area of future work is changing logic synthesis

algorithms to be early-evaluation and PL aware, so that the resulting netlist has more

opportunity for speedup.

A 4-input lookup table was chosen as the basic combinational element because one

application of PL technology would be as the basis for a family of self-timed Field

Programmable Gate Arrays (FPGAs). Circuit details for LUT4-based PL gates with early

evaluation capability are presented in [8]. A summary of PL gate operation is presented

here for completeness. Each PL gate has five inputs; four LEDR inputs for the logic

function and one single-rail feedback input. The internal logic function is stored in a

 40

LUT4, whose output is latched upon gate firing to produce a LEDR output. A Muller C-

element is used to detect input arrival, and the state of the C-element determines the gate

phase and the value of the feedback output. Unused logic inputs are either used as extra

feedback inputs, or tied to the feedback output of the gate. Trees of four-input C-elements

are used to concentrate feedback inputs to a gate if necessary. To remove technology

dependence, all circuit performance results are normalized to LUT4 delays (one LUT4

delay = 1.0). A PL gate has delay equal to 1.4 because of the overhead of the output latch

after the internal LUT4 that contains the gate function. A PL gate with early evaluation

is implemented using two normal PL gates; one implementing the trigger function T(EIi)

and early transition Et, as defined in section IV, and one implementing the normal

function and transition Nt. Because of the extra complexity of this gating, a PL gate with

early evaluation has delay of 1.6 LUT4 delays. The four-input Muller C-elements used

for feedback concentration have delay of 0.6. Note that a PL system has a 40% gate-level

delay penalty with respect to the clocked netlist because of the output latch latency. A

PL gate is similar to a Sutherland micropipeline block [16], and a common feature of

micropipelines is that output latch latency is in the critical path of the circuit. The

performance boost from early evaluation can be used to overcome this latency penalty.

C. International Test Conference 1999 (ITC99) Benchmarks

Table 3 gives the performance results from mapping the International Test Conference

1999 (ITC99) benchmarks to PL netlist implementations. For the 15 benchmarks

presented in Table 3, 11 cases demonstrated a performance improvement after insertion

of early evaluation gates. Furthermore 11 of the 15 cases had less than the expected 40%

 41

performance degradation when compared to their clock counterparts, and three

benchmarks had better performance than the clocked netlists. In these results, EE

circuitry was added to all PL gates where a speedup was possible. No slack matching

buffers were added to any of these circuits.

Table 3 contains columns representing the description of the benchmark circuit, total PL

gates required without EE, total PL gates required with EE, the percent area increase in

terms of additional gates when the EE algorithm is applied, the cycle time of the clocked

design (longest register-to-register path), the average cycle times of the non-EE and EE

PL netlists, the percent performance increase for non-EE versus EE, and the percent

performance increase for clocked versus the PL EE netlist. Synopsys© Design Compiler

was used to find the longest register-to-register path in the clocked design, with the delay

of a DFF plus setup time equal to 1.0 LUT4 delay.

Because a PL gate with early evaluation has a longer delay than a non-EE PL gate, some

benchmarks suffered a slight degradation in overall delay values when the EE algorithm

was applied. Overall, the EE algorithm resulted in a speedup of the PL netlist for most of

the benchmarks. Not surprisingly, those benchmarks with significant amounts of

arithmetic circuitry benefited more from the EE algorithm since arithmetic circuits are

frequently composed of addition circuits where EE techniques are known to perform

well[20]. In the more complex examples (Viper and 80386 processors), the speedup

gained from early evaluation was able to overcome the 40% gate-level penalty of PL

gates and enable the PL system to have equivalent performance to the clocked system.

 42

Note that in the Viper and 80386 benchmarks, the PL netlist without EE had lower cycle

time than the original clocked netlists; this performance boost is from delay averaging of

unequal paths lengths between DFFs.

Table 3: Experimental Results Comparing the Use of EE in PL Synthesis
 Area Performance

Description PL
Gates
(no EE)

EE
Gates

% Area
Increase

Clk
Cycle
time

PL Cycle
(no EE)

PL Cycle
(w. EE)

% Cycle
(noee vs
ee)

% Cycle
 (clk vs ee)

FSM that compares serial
flows 30 35 17% 7 9.2 8 13% -14%
FSM that recognizes BCD
numbers 8 8 0% 2 4.0 4 0% -100%
Resource arbiter 96 111 16% 7 7.8 9 -10% -23%
Computer min and max 341 456 34% 12 19.6 16 18% -33%
Elaborate contents of memory 304 410 35% 16 14.8 14 8% 15%
Interrupt handler 18 20 11% 5 7.0 8 -14% -60%
Count points on a straight line 261 350 34% 10 12.6 12 8% -16%
Find inclusions in sequences 99 114 15% 11 11.2 12 -4% -5%
Serial to serial converter 93 112 20% 7 8.6 8 2% -20%
Voting system 121 157 30% 9 12.6 12 6% -31%
Scramble string with a cipher 379 585 54% 13 15.4 14 9% -8%
1-player games (guess a
sequence) 584 766 31% 12 16.8 18 -6% -48%
Interface to meteo sensors 170 195 15% 7 9.2 8 15% -11%
Viper processor (subset) 3409 5789 70% 40 37.8 27 29% 33%
80386 processor (subset 5122 8035 57% 42 34.4 28 19% 34%

D. A 5-Stage Pipeline CPU

A deeper exploration of the benefits of early evaluation was done via the mapping of a 5-

stage pipeline CPU [28][34] that implements a subset of the MIPS ISA. Figure 14 shows

a simplified diagram of the pipeline structure. The circled multiplexers indicate

architectural-level application of early evaluation. One location for application of early

evaluation is in the forwarding path from the ALU to decode stage; if this forwarding

path is not needed for the current instruction, then this multiplexer fires early allowing

the decode stage to begin execution before the ALU result is ready. Similarly, if the next

PC value did not require the computed PC from the branch logic, then this multiplexer

 43

fires early. The multiplexer that interfaced the external input databus to the rest of the

CPU was also replaced with EE gates. If the instruction was not a load word (lw), this

allowed the rest of the CPU to proceed without having to wait for the memory interface

to fire. These EE gates were inserted manually into the architecture in order to observe

their effect upon performance. Other CPU versions had additional EE gates that were

inserted automatically into the netlist via the procedure in Section V. A limitation on our

tool that performs automated insertion of EEgates is that we currently have no method for

specifying delays of external inputs, so the early evaluation multiplexers for the external

memory inputs have to be inserted manually; we plan on correcting this limitation in the

future. Table 4 gives the different versions of the CPU that were generated to explore the

benefits of early evaluation.

Table 4: MIPS CPU Implementations

PL Versions (clocked version had 6134 gates, delay path of
24)

Gates % Extra
gates

a) No EE gates, no slack matching buffering 6231 0%
b) Manually inserted EE gates, no slack matching buffering 6424 3.1%
c) Version (b) + slack matching buffering 6453 3.6%
d) Version (c) + automated insertion of EE gates, with trigger
gates chosen by a cost function that weights signal arrival
times with a trigger function coverage of 50% or better

7207 15.7%

e) Version (c) + automated insertion of EE gates on all LUTs
with input signal arrival time differences of one LUT delay or
better

8252 32.4%

Version (e) inserted early evaluation gates wherever a possible speedup could be

obtained; the same as was done for the ITC benchmarks. Version (d) utilized user-

specified constraints to the early evaluation trigger function extraction algorithm which

 44

limited trigger function choice based on signal arrival times and function coverage. Note

that version (e) requires almost twice as many extra gates as version (d).

Five benchmark programs were used for performance measurement: (a) fibonacci (fib), a

value of 7 was used, (b) bubblesort, an array size of 10 was used, (c) crc, calculate a

CRC table with 256 entries, (d) sieve – find prime numbers, stopping point set to 40 (e)

matrix transpose - a 20x30 matrix was used. Table 5 shows the PL cycle times in LUT4

delays for the various versions running the CRC benchmark. The register-to-register path

of the clocked design was 24 LUT4 delays. The column marked as “CRC” is average

cycle time of the PL system for the execution of the CRC benchmark using code

produced by the gcc compiler with a compile optimization level of “-O”. The small

difference between versions (d) and (e) indicates the importance of limiting trigger

function extraction, as there is a point of diminishing returns for performance gained

versus gates added. As opposed to the ITC benchmarks, every version with early

evaluation was less than the clocked cycle time of 24 LUT4 delays.

Table 5: Performance for CRC Benchmark

Version CRC % improvement CRC (RO) % improvement
(a) 25.2 25.2
(b) 22.2 12% 21.6 14%
(c) 18.9 25% 17.8 29%

(d) 17.3 31% 16.1 36%
(e) 17.6 30% 16.3 35%

 45

The column marked as “CRC (RO)” is the CRC benchmark with the instruction stream as

produced by the gcc compiler reordered so as to reduce ALU operand forwarding. For

example, a typical code segment produced by gcc is shown below:

 addi r4,r4,1

 slti r2, r2, 8

 bne r2, r0, L10

ALU forwarding is required for the bne instruction because r2 is a destination in the slti

instruction, and a source in the bne instruction. However, the instructions can be

reordered as shown below:

slti r2, r2, 8

addi r4,r4,1

bne r2, r0, L10

Functionally, the two code streams are equivalent, but the second code stream does not

require ALU forwarding for the bne instruction, which increases the number of early

evaluation firings and hence the performance. Instruction reordering was done manually

by examining the assembly code of the critical loops. Table 6 gives the performance for

all benchmarks using reordered instruction streams. The CRC benchmark had the fastest

average cycle time as it had the highest percentage of logical operations whose cycle time

benefited the most from the insertion of early evaluation gates. The Fib benchmark was

fast as it had the lowest amount of ALU operand forwarding. Instruction reordering is an

example of an application-level modification to take advantage of the speedup offered by

early evaluation.

 46

Table 6: Performance for all MIPs Benchmarks

 Fib Bubble CRC Sieve Tpose Avg
Ver a. 25.2 25.2 25.2 25.2 25.2
Ver b. 21.8 13% 22.0 13% 21.6 14% 22.2 12% 22.0 13% 13%
Ver c. 17.8 29% 18.8 26% 17.8 29% 19.0 24% 18.5 27% 27%
Ver d. 16.6 34% 17.5 30% 16.1 36% 17.5 30% 16.9 33% 33%
Ver e. 16.8 33% 17.8 29% 16.3 35% 17.5 30% 16.9 33% 32%

E. picoJava-II™ Floating Point Unit

The floating-point unit in the picoJavaII CPU is a microcoded engine with a 32-bit

datapath that performs single and double precision floating point operations in IEEE 754

format. The microcode is stored in two 160 x 54 bit ROMs. The FPU is available from

Sun Microsystems as Verilog RTL. Before synthesis, the Verilog RTL was restructured

to place the microcode ROMs external to the hierarchy so that a PL interface wrapper

could be placed around them. The Verilog RTL was then synthesized to a netlist of DFFs

and LUT4s and mapped to a PL implementation. The cycle time of the clocked netlist

was 40 LUT4 delays and contained 8559 gates. Table 7 shows the PL cycle times for the

individual FPU instructions. The EE version of the FPU was mapped using the same

trigger function constraint options as for version (d) of the 5-stage pipelined CPU. Note

that all of the instruction cycle times of the EE version of the FPU are lower than the

clocked version. The increase in gates from the clocked version to the PL (none-EE)

version is due to the insertion of through gates (splitter gates) between directly connected

DFFs by the mapping program as mentioned in Section II. No slack matching buffers

were added in the mapping of the FPU.

 47

Table 7: FPU Instruction Cycle Times

Clocked version 8559 gates, cycle time = 40
PL (None-EE) 8573 PLgates
PL (EE) 12130 PLgates (42% increase over non-EE version)
 Cycle Time (LUT4 delays)

Instructions No EE EE %change
fadd/fsub 50.4 31.6 37%
fcmpg 50.4 31.8 37%
fcmpl 50.4 31.8 37%
fdiv 50.4 35 31%
fmul 50.4 31.6 37%
frem 50.4 34.4 32%
f2d 50.4 31.6 37%
f2i 50.4 31.6 37%
f2l 50.4 31.4 38%
i2f 50.4 31.4 38%
l2f 50.4 31.4 38%
dadd/dsub 50.4 31.4 38%
dcmpg 50.4 31.2 38%
dcmpl 50.4 31.4 38%
ddiv 50.4 36.2 28%
dmul 50.4 31.4 38%
drem 50.4 33.2 34%
d2f 50.4 31.4 38%
d2i 50.4 31.4 38%
d2l 50.4 31.4 38%
i2d 50.4 31.6 37%
l2f 50.4 31.4 38%
Average 50.4 32.1 36%

F. Mapping Performance

Table 8 gives netlist results using different mapping constraints for the MIPS, CPU, ITC

B14 and ITC B15 benchmarks. These tests were run on a 2.0 GHz P4 computer with 1

GB of main memory under RedHat Linux. Column meaning from left to right is:

• FB Alg (PO Iter): This indicates if the area-oriented (AO) or performance-

oriented (PO) feedback insertion algorithm was used. For the PO algorithm, the

 48

number in parenthesis is the number of iterations of steps 3-6 required to meet the

target performance.

• PLgates: number of PLgates in the equivalent MG for the PL netlist.

• Signals: number of signals in the equivalent MG for the PL netlist; each fanout

from a gate is a separate signal.

• Unsafe: number of signals unsafe after initial safe net marking.

• Max FB Len (Actual): This is restriction on the maximum feedback path length.

The number in parenthesis is the actual maximum feedback length used in the

netlist.

• Fbacks: number of feedbacks inserted

• %chg: percent change in number of feedbacks required from base case of

FBlen=1.

• Map Time (s): mapping time in seconds measured via Unix time utility.

• EE trigger extract: early evaluation trigger extraction time

• MG Sim Cycle Time: The cycle time in LUT4 delays as reported by the MG

simulator contained within the mapping tool; this does not simulate the datapath.

• VHDL Sim Cycle Time: The cycle time in LUT4 delays as reported by the VHDL

simulation of the PL netlist.

• %chg: percent change in the VHDL simulation cycle time from the base case of

feedback length = 1.

 49

Table 8: Netlist results under different mapping constraints

FB Alg
(PO Iter) PLgates Signals Unsafe

Max FB
Length
(Actual) Fbacks %chg

Map
Time
(s)

EE
Trigger
Extract
(s)

MG
Sim
Cycle
TIme

VHDL
Sim
Cycle
Time %chg

MIPS ao 6231 17170 12672 1 12572 6.7 25.2 25.2
 ao max(20) 6200 51% 52 32.2 31.8 -26%
 ao2 max(14) 7763 38% 30 25.2 25.2 0%
 po (11) max(11) 6320 50% 68 25.2 25.2 0%
MIPS/ee ao 7207 17614 14726 1 14626 7.7 4.7 11.8 16.6
 ao max(11) 9531 35% 25 16.5 21.4 -29%
 po (88) max(6) 12012 18% 189 11.8 19.2 -16%
FPU ao 8573 27511 18197 1 17971 91 50.4 50.4
 ao max(24) 8227 54% 2062 50.4 50.4 0%
 ao2 max (31) 8159 55% 388 50.4 50.4 0%
FPU/ee ao 11550 27511 25478 1 25350 17 8.6 22.4 31.6
 ao max(11) 13174 48% 103 23 31.6 0%
B14 ao 3409 11653 9392 1 9306 30 37.4 37.4
 ao max(19) 3177 66% 969 55.2 55.2 -48%
 ao2 max(24) 3211 65% 263 54.6 54.6 -46%
 po2 (212) max(16) 6344 32% 492 37.4 37.4 0%
B14/ee ao 5789 11653 10961 1 10890 9 1.6 13.2 27
 ao max(10) 6774 38% 52 20.2 27 0%
B15a ao 11409 1 11303 955 33.9 34.4
 ao max(22) 5321 53% 2889 56.6 56.6 -65%
 ao2 max(25) 5454 52% 1263 52.4 52.4 -52%
 po2(162) max(17) 7026 38% 1445 33.9 34.4 0%
B15b ao1 5122 16456 16456 1 16350 10 33.9 34.4
 ao1,2 max(25) 7137 56% 280 54.4 54.4 -58%
 po1,2(232) max(17) 9591 41% 591 33.9 34.4 0%
B15/ee ao 8035 16456 14603 14584 11 1.9 16 28
 ao max(13) 10455 28% 41 22.7 34.8 -24%
 po (65) max(8) 11490 21% 156 16 30.2 -8%
 1 initial safe net marking not performed, 2: initial feedback destinations restricted

Some general observations based on Table 8 are:

1. The lowest cycle times were obtained for FBlen = 1. In most cases, having an

unrestricted feedback length resulted in longer cycle times, but not for the FPU,

 50

FPU/ee or B14/ee cases. For these cases, the PO feedback insertion was not

performed, as the AO feedback insertion did not affect performance.

2. The cycle time reported by the MG simulator is in good agreement with the cycle

time reported by the VHDL simulator for the non-EE cases. However, the cycle

time reported by the MG simulator is very optimistic for EE cases since it

assumes that EEgates always perform an early fire.

3. The PO feedback insertion algorithm always met the target cycle time, with a

reduction in the number of feedbacks required when compared to the FBlen= 1

case. However, meeting the target MG cycle time for the EE netlist cases does

not guarantee that the VHDL cycle time will be the same as the case for FBlen =1

because of the optimistic cycle time of the MG simulator. The PO feedback

insertion algorithm created netlists with lower performance for the MIPS/ee and

B15/ee cases because the iteration terminates when the target performance is

reached – more late-arriving feedbacks can still be removed, but these do not

affect the MG simulation time, while they do affect the VHDL simulation time.

This implies that a more accurate cycle time simulation is needed for netlists with

EEgates. This could be achieved by using the actual EEgate firing sequences

captured from the VHDL simulator. A firing sequence of early/normal fires for

an EEgate does not change as long as the netlist is live and safe and thus will not

change for different feedback arrangements. A firing sequence would only have

to be captured once, using a representative set of input vectors.

4. The B15a, B15b cases illustrate that initial safe net marking can dominate the

CPU time required for mapping if the combinational network has high fanout,

 51

increasing the number of paths to be traced. The B15b case disabled initial safe

net marking, resulting in the insertion of more feedbacks.

5. High fan-in within a combinational network can cause the back tracing for

feedback destination gates to dominate the mapping CPU time. To reduce

execution time for complex netlists when there is no restriction on feedback path

length, feedback insertion was divided into two passes. The first pass restricted

starting points for back tracking to barrier gates and early evaluation gates.

Barrier gates were chosen as the starting point because only output signals from

barrier gates cannot be covered by feedback originating from a barrier gate.

EEgates were chosen because the late arriving inputs must be covered by

feedback from the EEgate. First pass feedback insertion was terminated when the

number of signals covered by the next best choice feedback dropped below a

user-specified threshold Smin. The second pass feedback insertion algorithm then

proceeded normally, with feedback path length restricted to Smin. This two-pass

approach was tested with for the non-early evaluation cases in Table 8 with Smin

= 5. Except for the MIPS, the restricted-search feedback insertion algorithm

significantly reduced the mapping time and came very close to matching the

number of feedbacks inserted by the original search algorithm. For the FPU, the

restricted search algorithm actually beat the original search algorithm by a small

amount. The two-pass feedback insertion algorithm was not used with the early

evaluation benchmark cases because feedback destination candidates are already

limited as back tracing through EEgates is restricted to early inputs.

 52

We feel that the results justify the use of a simulation-based approach for a performance-

driven feedback insertion for the non-EEgate test cases. Improvement of the cycle time

estimation is needed with this approach for early-evaluation PL netlists, perhaps by

including EEgate firing sequences captured from a gate level simulation.

VIII. Conclusion

A technique called early evaluation has been described for improving the performance of

phased logic circuits. An extension of a previously published translation algorithm has

been shown by means of marked-graph theory to result in live and safe phased logic

circuits. The inclusion of this technique in the phased logic design flow allows a designer

to specify a circuit in VHDL or Verilog, synthesize it to a clocked netlist, translate it to a

PL netlist, and then make tradeoffs between increased area and performance through the

automated insertion of early evaluation gates. This technique has been shown to improve

the performance of several benchmark circuits of various architectural types, including a

pipelined integer CPU and a microcoded floating point unit.

REFERENCES

[1] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-Timing with Level-Encoded

2-Phase Dual-Rail (LEDR),” Advanced Research in VLSI, 1991.
[2] Daniel H. Linder and James C. Harden, “Phased Logic: Supporting the Synchronous

Design Paradigm with Delay-insensitive Circuitry,” IEEE Transactions on
Computers, vol 45, no 9, September 1996.

[3] Daniel H. Linder, Phased Logic: A Design Methodology for Delay-Insensitive
Synchronous Circuitry, PhD thesis, Mississippi State University, 1994.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications,” IEEE Proceedings,
vol. 77, pp. 541-580, April 1989.

 53

[5] A.Yakovlev, M. Kishinevskh, A. Kondratyev, L. Lavagno, “On the models for
asynchronous circuit behavior with OR causality”, Technical Report Series No. 463,
Computing Science, University of Newcastle upon Tyne, November 1993.

[6] F. Commoner, A. W. Holt, S. Even, A. Pneueli, "Marked Directed Graphs", J.
Computer and System Sciences, vol. 5, pp. 511-523, 1971.

[7] R. B. Reese, M. A. Thornton, and C. Traver, “ Arithmetic Logic Circuits using Self-
timed Bit-Level Dataflow and Early Evaluation”, Proceedings of the 2001
Conference on Computer Design, pp 18-23, September 2001.

[8] C. Traver, R. B. Reese, M. A. Thornton, “Cell Designs for Self-timed FPGAs”,
Proceedings of the 2001 ASIC/SOC Conference, pp 175-179, September 2001.

[9] M.A. Thornton, K. Fazel, R.B. Reese, and C. Traver, “Generalized Early Evaluation
in Self-Timed Circuits”, Proceedings of DATE 2002, Paris France, March 4-8, 2002.

[10] R. Reese, and C. Traver, "Synthesis and Simulation of Phased Logic Systems",
Technical Report MSSU-COE-ERC-00-09, MSU/NSF Engineering Research Center,
June 2000. Presented at International Workshop on Logic Synthesis (IWLS 2000),
Dana Point, CA, June 2, 2000.

[11] D.E. Muller and W. S. Bartky, "A Theory of Asynchronous Circuits", in Proc.
Int. Symp. on Theory of Switching, vol. 29, pp.204-243, 1959.

[12] Tzyh-Yung Wuu and Sarma B. K. Vrudhula, "A Design of a Fast and Area
Efficient Multi-Input Muller C-element", IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol 1, no. 2, June 1993.

[13] Dana L. How, “A Self Clocked FPGA for General Purpose Logic Emulation”, in
proceedings of IEEE 1996 Custom Integrated Circuits Conference, pp. 148-151,
1996.

[14] Electronic CAD and Reliability Group, ITC99 Benchmark Set-Politecnio di
Torino, http://www.cad.polito.it/tools/itc99.html, 1999.

[15] R.E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE
Transaction on Computers, vol. C, no. 35, pp. 677-691, 1986.

[16] I. Sutherland, “Micropipelines”, Communications of the ACM, vol 32, no. 6, pp.
720-738, June 1989.

[17] M.R. Greenstreet, T.E. Williams, and J. Staunstrup, "Self-Timed Iteration", VLSI
'87, C. H. Sequin (Ed.), Elsevier Science Publishers, pp. 309-322, 1988.

[18] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, Alex Kondratyev,
"Asynchronous Design Using Commercial HDL Synthesis Tools", In Sixth Int. Symp.
on Advanced Research in Asynchronous Circuits and Systems (Async 2000), Eilat,
Israel, April 2000.

[19] A. DeGloria and M. Olivera, “Completion-detecting Carry Select Addition”, IEE
Proceedings-Computer and Digital Techniques, vol. 147, no. 2, pp. 93- 100, 2000.

[20] S. M. Nowick, K. Y. Yun, P. A. Beerel and A. E. Dooply, “Speculative
Completion for the Design of High-performance Asynchronous Dynamic Adders”,
Proceedings of Advanced Research in Asynchronous Circuits and Systems, pp. 210-
223, 1997.

[21] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn and D. Ferguson, “Speedup
of Delay-insensitive Digital Systems Using NULL Cycle Reduction”, Notes of the
International Workshop on Logic and Synthesis, pp. 185-189, 2001.

 54

[22] S. C. Smith, “Speedup of Self-Timed Systems Using Early Completion”,
Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI
2002), Pittsburgh, Pennsylvania, pp. 107-113, 2002.

[23] L. Benini, E. Macii and M. Poncino, “Telescopic Units: Increasing the Average
Throughput of Pipelined Designs by Adaptive Latency Control”, Proceedings of the
Design Automation Conference, pp. 22-27, 1997.

[24] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso and M. Poncino,
“Automatic Synthesis of Large Telescopic Units Based on Near-Minimum Timed
Supersetting”, IEEE Transactions on Computers, vol. 48, no. 8, pp. 769-779, 1999.

[25] L. Y. Rosenblum, A. V. Yakovlev, “Signal graphs: from self-timed to timed
ones”, Proceedings of International Workshop on Timed Petri Nets, IEEE Computer
Society Press, Torino, Italy, pp. 199-207, 1985.

[26] Anthony J. McAuley, “Four State Asynchronous Architectures”, IEEE
Transactions on Computers, vol. 41, no. 2, February 1992.

[27] James L. Peterson, “Petri Nets”, Computing Surveys, vol. 9, no. 3, September
1977.

[28] Anders Wallander, “A VHDL Implementation of a MIPS”, Project Report, Dept.
of Computer Science and Electrical Engineering, Luleă University of Technology,
http://www.ludd.luth.se/~walle/projects/myrisc.

[29] “picoJava-II™ Microarchitecture Guide”, Sun Microsystems, Inc, Part No.:960-
1160-11, March 1999, http://www.sun.com/processors/communitysource/index.html.

[30] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U.
Cummings, Tak Kwan Lee, “The Design of an Asynchronous MIPS R3000
Microprocessor”, Proceedings of the 17th Conference on Advanced Research in VLSI,
pp. 164-181.

[31] J. Campos, G. Chiola, J. Colom, M. Silva, “Properties and Performance Bounds
for Timed Marked Graphs”, IEEE Transactions. Circuits and Systems, vol. 39, pp.
386-401, May 1992.

[32] F. Baccelli, G. Cohen, G. Olsder, J. Quadrat, Synchronization and Linearity:
Algebra for Discrete Event Systems. New York: John Wiley & Sons, 1992.

[33] J. L. Chen, Analysis of Distributed System Software in Maintenance Phase Based
on Timed Petri Net Model. Ph.D. dissertation, Northwestern University, 1987.

[34] R. Reese, M. Thornton and C. Traver, "A Fine-grained Phased Logic CPU", IEEE
Computer Society Annual Symposium on VLSI (ISVLSI 2003), Tampa, Florida,
February, 2003, pp. 70-79.

 55

Figures

Figure 1. LEDR Encoding and PL Gate Firing

Figure 2. Token abstraction (input signals)

PL Gate

EVEN
EVEN

EVEN

a. LEDR encoding

EVEN
“0”

ODD
“1”

EVEN
“1”

ODD
“0”

phase:
EVEN

b. Ready to fire

2

2
2

PL Gate

ODD
EVEN

EVEN
phase:
ODD2

2
2

c. After gate fires

V

T

PL Gate

EVEN
EVEN

EVEN

a. LEDR encoding

EVEN
“0”

ODD
“1”

EVEN
“1”

ODD
“0”

phase:
EVEN

b. Ready to fire

22

22
22

PL Gate

ODD
EVEN

EVEN
phase:
ODD22

22
22

c. After gate fires

V

T

a. Ready to fire

gate phase:

EVENEVEN

EVEN

2

2

Input phase:

b. After firing

gate phase:

ODDEVEN

EVEN

2

2

Input phase:

a. Ready to fire

gate phase:

EVENEVEN

EVEN

22

22

Input phase:

b. After firing

gate phase:

ODDEVEN

EVEN

22

22

Input phase:

 56

Figure 3. Token abstraction (outputs)

Figure 4. Initial token marking is a wiring choice

gate phase:
EVEN2

gate phase:

ODD
gate phase:

EVEN
2

2

A

B

C

A
B

C

EVENgate phase:
EVEN2

gate phase:

ODD
gate phase:

EVEN
2

2

A

B

C

A
B

C

EVEN

gate phase: EVEN
2

gate phase:

EVEN
gate phase:

EVEN

2T
V

A

A

B

B

C

C

T
V

EVEN

ODD

gate phase: EVEN
2

gate phase:

EVEN
gate phase:

EVEN

2T
V

A

A

B

B

C

C

T
V

EVEN

ODD

 57

Figure 5: Example translation

D

D D

a) Clocked circuit

T

T
T

B

BB

b) PL circu it before splitter gate insertion

T

T

T

B

BB

c) PL circuit after splitter gate insertion, si*
indicates an unsafe signal in initia l marking

T

s1*

s3*

s2*s4

s5
s6* s7*

s8
s9

s10*

T

T

T

B

BB

d) After feedback insertion, circu it is live and
safe.

T

s1

s3

s2
s4

s5
s6 s7

s8 s9

s10f1

f2 f3

Coverage:
f1: s3, s10
f2 : s6
f3: s7
f4 :s1
f5: s2f4

f5

u1 u2

u3 u4 u5
u6

u1

u3

u4 u5 u6

u1

u2

u2

u3

u4 u5 u6u7

u1 u2

u3

u4 u5

u7 u6

D

D D

DD

DD DD

a) Clocked circuit

T

T
T

B

BB

b) PL circu it before splitter gate insertion

T

T

T

B

BB

c) PL circuit after splitter gate insertion, si*
indicates an unsafe signal in initia l marking

T

s1*

s3*

s2*s4

s5
s6* s7*

s8
s9

s10*

T

T

T

B

BB

d) After feedback insertion, circu it is live and
safe.

T

s1

s3

s2
s4

s5
s6 s7

s8 s9

s10f1

f2 f3

Coverage:
f1: s3, s10
f2 : s6
f3: s7
f4 :s1
f5: s2f4

f5

u1 u2

u3 u4 u5
u6

u1

u3

u4 u5 u6

u1

u2

u2

u3

u4 u5 u6u7

u1 u2

u3

u4 u5

u7 u6

 58

Figure 6: Token marking, feedback insertion, splitter gate insertion rules

T

T = Through Gate B= Barrier Gate

T a. TG to TG feedback

B T b. TG to BG feedback

T B c. BG to TG feedback

d. BG to BG feedback
not allowed, unsafeB B

B BT
e. Splitter gate inserted

between barrier gates

feedback
non-feedback

T

T = Through Gate B= Barrier Gate

T a. TG to TG feedback

B T b. TG to BG feedback

T B c. BG to TG feedback

d. BG to BG feedback
not allowed, unsafeB B

B BT
e. Splitter gate inserted

between barrier gates

feedback
non-feedback

 59

Figure 7. Petri Net models of EEgate early and normal fire behaviors

Et

Early Inputs

LI0...LIk

FeedbackOutput

P2 P1

Ot

a. PN Eg (early fire)

Nt

Late Inputs

EI0...EIj

Et

Early Inputs

LI0...LIk

FeedbackOutput

P1

Ot

b. PN Ng (normal fire)

Nt

Late Inputs

EI0...EIj

P2

Et

Early Inputs

LI0...LIk

FeedbackOutput

P2 P1

Ot

a. PN Eg (early fire)

Nt

Late Inputs

EI0...EIj

Et

Early Inputs

LI0...LIk

FeedbackOutput

P1

Ot

b. PN Ng (normal fire)

Nt

Late Inputs

EI0...EIj

P2

 60

Figure 8. Eg and Ng within live/safe MGs

Et

Early
Input

Late
Input Feedback

Output

P5

P2

P1

P3

P6

P4
P7

EIt LIt

Ot

Normal fire

Nt

Et

Early
Input

Late
Input Feedback

Output

P5

P2 P1

P3

P6

P4
P7

EIt LIt

Ot

Early fire

Nt
a. PN {Ge, m0}

b. PN {Gn, m0}

Et

Early
Input

Late
Input Feedback

Output

P5

P2

P1

P3

P6

P4
P7

EIt LIt

Ot

Normal fire

Nt

Et

Early
Input

Late
Input Feedback

Output

P5

P2 P1

P3

P6

P4
P7

EIt LIt

Ot

Early fire

Nt
a. PN {Ge, m0}

b. PN {Gn, m0}

 61

a) Early Fire b) Normal Fire

 c) Configuration change arcs

Figure 9. Coverability graphs for EEgate early fire and normal fire marked graph models

EI, LI

E, LI

O, LI

m25: 0011001

m5: 0000101

EI

m1: 1100001

m9: 1001001

LI

LI

m10: 1001010

m2: 1100010

O

m6: 0000110

LI

LI

EI

O, N

N

m17: 0110001

O, LI

m18: 0110010

LIO

O

m26: 0011010

N

O

EI, LI

E, LI

O, LI

m25: 0011001

m5: 0000101

EI

m1: 1100001

m9: 1001001

LI

LI

m10: 1001010

m2: 1100010

O

m6: 0000110

LI

LI

EI

O, N

N

m17: 0110001

O, LI

m18: 0110010

LIO

O

m26: 0011010

N

O

EI, LI

E, LI

m25: 0011001

m5: 0000101

EI

m1: 1000001

LI

m2: 1000010

m6: 0000110

LI

LI

EI

N

m17: 0110001

O, LI

m18: 0110010

LIO

m26: 0011010

O

EI, LI

E, LI

m25: 0011001

m5: 0000101

EI

m1: 1000001

LI

m2: 1000010

m6: 0000110

LI

LI

EI

N

m17: 0110001

O, LI

m18: 0110010

LIO

m26: 0011010

O

EI, LI

E, LI

m25: 0011001

m5: 0000101

EI

m1: 1000001

LI

m2: 1000010

m6: 0000110

LI

LI

EI

N

m17: 0110001

m18: 0110010

LIO

m26: 0011010

O

m25: 0011001

m5: 0000101

EI

m1: 1100001

m9: 1001001

LI

LI

m10: 1001010

m2: 1100010

O

m6: 0000110

LI

LI

EI

N

m17: 0110001

m18: 0110010

LIO

O

m26: 0011010

N

O

E, Tf=1

E, Tf=0

E, Tf=1
E, Tf=0

E, Tf=0E, Tf=0
E, Tf=1

E, Tf=1

EI, LI

E, LI

m25: 0011001

m5: 0000101

EI

m1: 1000001

LI

m2: 1000010

m6: 0000110

LI

LI

EI

N

m17: 0110001

m18: 0110010

LIO

m26: 0011010

O

m25: 0011001

m5: 0000101

EI

m1: 1100001

m9: 1001001

LI

LI

m10: 1001010

m2: 1100010

O

m6: 0000110

LI

LI

EI

N

m17: 0110001

m18: 0110010

LIO

O

m26: 0011010

N

O

E, Tf=1

E, Tf=0

E, Tf=1
E, Tf=0

E, Tf=0E, Tf=0
E, Tf=1

E, Tf=1

 62

0 1

0 1

0

0
1

a

b b
1

c
0 1

0 1

0 1

0

0
1

a

b b
1

c
0 1

Figure 10. Example BDD for Master Function in Table 1

Figure 11. Performance Example

B1B1 T1T1 T2T2 T3T3 B2B2 T4T4

a. Block delay = 10 units, Firing pattern at B1 = 20,40,20,40... for average = 30

B1B1 T1T1 T2T2 T3T3 B2B2 T4T4

b. Block delay = 10 units, Firing pattern at B1 = 40, 40, 40... for average = 40

 63

Figure 12. Slack Matching Buffer Insertion

Figure 13. Tool Flow

PL Mapper – generates
inserts feedback
signals, maps to netlist
of PL gates.

RTL (VHDL or
Verlog)

Synopsys
RTL Synthesis

EDIF Netlist
(flattended

Early Evaluation
function extraction
(optional)

Early evaluation
file + EDIF netlist

Feedback
generation
constraints
(user-specified)

VHDL netlist of
PL gates for
simulation via
Mentor Modelsim

LUT4+DFF
library

Early
evaluation
constraints
(user-specified)

B1 T1 T2 T3 B3 T4

B2

B1 T1 T2 T3 B3 T4

B2 T5

Circu it A, no buffering

Circu it B, slack matching buffer added

B1 T1 T2 T3 B3 T4

B2

B1 T1 T2 T3 B3 T4

B2 T5

Circu it A, no buffering

Circu it B, slack matching buffer added

 64

Figure 14. Pipelined CPU

Regfile

A
LU

+

4

Branch
Compute

PC

Fetch Decode Execute Mem WB

Regfile

A
LU

+

4

Branch
Compute

PC

Fetch Decode Execute Mem WB

