
A Discrete Logarithm Number System for
Integer Arithmetic Modulo 2k:

Algorithms and Lookup Structures
Alexandru Fit-Florea, Lun Li, Mitchell A. Thornton, Senior Member, IEEE, and

David W. Matula, Member, IEEE

Abstract—We present a k-bit encoding of the k-bit binary integers based on a discrete logarithm representation. The representation

supports a discrete logarithm number system (DLS) that allows integer multiplication to be reduced to addition and integer

exponentiation to be reduced to multiplication. We introduce right-to-left bit serial conversion, deconversion, and unified conversion/

deconversion algorithms between binary and DLS. The conversion algorithms utilize OðkÞ additions, do not require the use of a

multiplier, and are applicable at least up to 128-bit integers. We illustrate the use of the representation in determining a novel and

efficient integer power modulo 2k operation jxyj2k and compare hardware performance with a current state-of-the-art method.

Furthermore, we describe properties of the conversion mappings that allow compact table lookup structures to be employed for direct

conversion to and deconversion from the DLS encoding. Our lookup architecture allows 16-bit conversion and deconversion mappings

to be realized with table sizes of order 2-8 Kbytes, which is up to a 64� size reduction of the 128 Kbytes of an arbitrary 16-bits-in,

16-bits-out function table. Performance and area results that demonstrate the effectiveness of the table lookup architecture are given.

The lookup methodology extends to other 16-bit integer functions such as multiplicative inverse and squaring operations.

Index Terms—High-speed arithmetic, arithmetic and logic units, computer arithmetic, discrete logarithm, number encodings,

conversions, bit serial, integer power, table lookup.

Ç

1 INTRODUCTION

THIS paper’s goal is to present the foundation for a discrete
log representation and encoding of the integers with

efficient conversion between standard binary radix bit string
integer representation and bit string encoding of the discrete
log representation of each integer. Our bit string encoding of
the discrete-log integer representation employs k bits to
represent the integers ½0; 2k � 1� in a scalable manner for all k.
The representation employs reduction modulo 2k of a three-
term product introduced by Benschop. In [1], Benschop
showed that any k-bit integer x ¼ bk�1bk�2 . . . b0 can be
represented by an exponent triple ðs; p; eÞ satisfying the
factored expressionx ¼ jð�1Þs2p3ej2k , where j � j2k denotes the
operation of reduction to the standard residue modulo 2k [9];
s 2 f0; 1g; and p and e can be uniquely determined by upper
bounds determined by k. Note that this representation allows
for integer multiplication and powering to be executed more
efficiently—much like in the case of real valued logarithms.
In order to take advantage of this representation, efficient

methods to convert integers to and from the exponent triple
are required. In the following, we discuss the mathematics
involved and provide a number of algorithms for achieving
this goal. We use the term discrete logarithm number system
(DLS) to denote the representation of any integer x 2
½0; 2k � 1� by a triple ðs; p; eÞ, and use the term DLS bit string
for the k-bit encoding of the triple. Access to the separate
exponents s, p, and e of the triple is useful for ALU design as
with the separate processing of sign, exponent, and sig-
nificand factors of a floating-point factorization
v ¼ ð�1Þs2pð1:b1b2 . . . bn�1Þ. The integrated DLS bit string is
most suitable for efficient storage and table lookup.

This paper extends our previous papers focusing on the

following:

. Conversion/deconversion. How do we implement the
binary-integer-to-ðs; p; eÞ triple conversion and
ðs; p; eÞ-to-binary-integer deconversion? Since the
exponent p can be determined by a count of low-
order zeros in the binary radix integer bit string, the
question reduces to how do we determine the ðs; eÞ
pair for an odd integer q such that q ¼ jð�1Þs3ej2k in
an efficient, reversible, and scalable manner.

. Encoding. How do we encode the triple ðs; p; eÞ into a
bit string with an appropriate integer range and
convenient scalability for variable k-bit word sizes?

Our method can be summarized with regard to three

distinct representations of integers by bit strings in a

scalable manner parameterized by increasing k, where k

denotes the k-bit integers, i.e., the set f0; 1; 2; . . . ; 2k � 1g:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009 163

. A. Fit-Florea is with Advanced Micro Devices (AMD), One AMD Place,
P.O. Box 3453, MS 363, Sunnyvale, CA 94088-3453.
E-mail: Alexandru.Fit-Florea@amd.com.

. L. Li is with Texas Instruments, MS 8736, 12500 TI Blvd., Dallas, TX
75243. E-mail: lun-li@ti.com.

. M.A. Thornton and D.W. Matula are with the Department of Computer
Science and Engineering, Southern Methodist University, Dallas,
TX 75205. E-mail: {mitch, matula}@engr.smu.edu.

Manuscript received 22 July 2007; revised 14 Feb. 2008; accepted 18 Sept.
2008; published online 24 Oct. 2008.
Recommended for acceptance by P. Kornerup, P. Montuschi, J.-M. Muller,
and E. Schwarz.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-07-0363.
Digital Object Identifier no. 10.1109/TC.2008.204.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

1. Representation A. Standard binary radix k-bit strings
x ¼ bk�1bk�2 . . . b0.

2. Representation B. The separable exponent triple
binary integer bit strings ðs; p; eÞ, where s 2 f0; 1g,
and p and e are determined uniquely in terms of k
with x ¼ jð�1Þs2p3ej2k .

3. Representation C. Our DLS k-bit string ak�1ak�2

. . . a0 having a value of vðak�1ak�2 . . . a0Þ ¼ x, where
parsing of the string yields unique integers s, p,
and e such that x ¼ jð�1Þs2p3ej2k .

In Section 2, we provide the foundation for the encoding
mapping between the triples ðs; p; eÞ of Representation B
and the k-bit DLS strings of Representation C that were
introduced only by an example in [8]. Our DLS encoding
employs self-determined variable length bit fields for
encodings of parameters p and e within a k-bit word, in
contrast to floating-point encodings, which employ fixed
length fields for sign, exponent, and significand terms. A
fundamental property of our k-bit encoding shown in
Section 2 is that it is one-to-one over the integers ½0; 2k � 1�
and constructed so that DLS strings satisfy the computa-
tionally useful inheritance property. This property provides
that the jth bit ðaj�1Þ of the DLS string ak�1 ak�2 . . . a0

depends only on the j low-order bits bj�1 bj�2 . . . b0 of the
binary integer representation for all 0 � j � k� 1. The
inheritance property provides the theoretical foundation
for bit serial algorithms. The reverse mapping from the DLS
string to the ðs; p; eÞ triple is accomplished by parsing. The
parsing process first identifies parameter p and then the
pair ðs; eÞ.

In Section 3, we focus on the conversion/deconversion
mappings between the binary radix bit strings of Representa-
tion A and the exponent triple ðs; p; eÞ of Representation B.
Efficient scalable iterative solutions of the integer-to-discrete
log conversion and deconversion questions were presented
at the algorithmic level in [2], [3], [4], and [16], and with
hardware implementation in [6] and [17]. The algorithm
described in [2] uses binary arithmetic with 3 as the
logarithmic base and has a critical path containing one
modulo 2k multiplication operation for each of its k iterations.
Extensions of the algorithm to other logarithmic bases and
computations using digits in a higher radix 2r are also
described. The algorithm in [2] was improved in [3] by
replacing k modulo 2k multiplication operations with k table
lookup-determined shift-and-add modulo 2k operations. The
algorithm described in [3] is well suited for implementation
in special purpose hardware as also is a digit serial algorithm
for deconversion modulo 2k introduced in [4]. Our new
contribution in Section 3 is a unified conversion/deconver-
sion algorithm extending results from [3] and [4]. The
extension provides integration, potentially reducing hard-
ware area requirements by almost one half.

As an internal ALU application of DLS representation,
in Section 4, we describe and analyze the performance of a
novel bit serial algorithm for the integer power operation
jxyj2k using the DLS triple as a catalyst. We extend the bit
serial powering operation introduced in [7] by employing
the unified conversion/deconversion from Section 3.
Specifically, the design shows how the data path can be
shared substantially reducing the total area for the whole

circuit. While the algorithms in [3] and [4] are scalable
with increasing k, alternative compressed direct table
lookup methods can be employed for sufficiently small
values of k, such as values less than or equal to 16. In
Section 5, we investigate a novel hierarchical table lookup
architecture for direct binary-DLS bit string conversion
traversing directly between Representations A and C. As
mentioned in [8], the one-to-one hereditary property of
DLS bit string encoding provides for table compression
similar to that obtained for determining the multiplicative
inverse in [5]. This hierarchical direct table lookup
procedure demonstrates further options for table-assisted
computation in optimizing an ALU design. Section 6
provides our conclusions highlighting the features and
selective advantages of discrete log representation and
encoding of the integers.

2 THE INHERITANCE PROPERTY AND DLS
ENCODING

The binary radix integer bit string given by x ¼ bn�1

bn�2 . . . b0 for 0 � x � 2n � 1 implicitly denotes the radix
polynomial x ¼

Pn�1
0 bi2

i with bi 2 f0; 1g for 0 � i � n� 1.
Partitioning the bit string yields

x ¼ bn�1bn�2 . . . bkð Þ�2kþbk�1bk�2 . . . b0

for any 1�k�n� 1. This means reduction modulo 2k is
obtained simply by truncating the leading portion of the
bit string. While straightforward, this reduction property
as summarized in the following is a fundamental feature of
radix representation.

Observat ion 1. Given x ¼ bn�1bn�2 . . . b0, then for
1 � k � n� 1,

jxj2k ¼ jbn�1bn�2 . . . b0j2k ¼ bk�1bk�2 . . . b0:

The inheritance principle introduced in [5] applies to
many integer operations and functions and is formally
defined in terms of modular reduction as follows:

Inheritance principle. The integer operation z ¼ x� y has
the inheritance property and is termed a hereditary
operation if for all nonnegative integers x and y,

jzj2k ¼ jxj2k � jyj2k
�
�

�
�
2k

for all k � 1:

The integer function or unary operation z ¼ fðxÞ has the
inheritance property and is termed a hereditary function if
for all nonnegative integers x,

jzj2k ¼ f jxj2kð Þ
�
�

�
�
2k

for all k � 1:

For example, integer addition and multiplication clearly
are operations satisfying the inheritance property. The
function x2 and more general xy for any fixed y are
hereditary functions.

In view of Observation 1, the inheritance principle may
be interpreted as stating for hereditary operations and
functions that the low-order k bits of the input arguments
determine the low-order k bits of the output for all k � 1.
With this interpretation, the inheritance principle is seen to
be the basis for right-to-left bit serial algorithms such as
grade school carry ripple addition.

164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

Observation 2. Let z ¼ fðxÞ be an integer valued hereditary
function with input x ¼ bn�1bn�2 . . . b0 and output

z ¼ an�1an�2 . . . a0, then the kth bit of the output ðak�1Þ
depends only on the low-order k bits of the input

bk�1bk�2 . . . b0.

It follows from Observation 2 that an arbitrary hereditary
function can be represented by a binary tree with edges
labeled by the input bits and output bits at the vertices, with
bit ak at depth kþ 1. This lookup tree structure was
introduced in [5] with specific regards to the modular
multiplicative inverse function and table lookup size
compression.

Our purpose in the rest of this section is to demonstrate
the construction of a k-bit DLS encoding of the triple
ðs; p; eÞ, which provides a one-to-one hereditary function
from binary integer radix representation directly to the DLS
bit string.

To obtain the DLS encoding, first recall that a positive
integer x has a unique factorization into odd and even terms
x ¼ 2pq with q ¼ bkbk�1 . . . b11 being an odd integer. It is
straightforward to show for k � 3 that the 2k�2 members of
the sequence 30; 31; 32; . . . ; 32k�2�1 reduce modulo 2k to a
sequence of distinct odd numbers covering half the odd
numbers in ½1; 2k � 1�. The complementary values
jð�1Þs3ej2k for s ¼ 1, 0 � e � 2k�2 � 1 cover the other half
of the odd numbers. Furthermore, j32k�2 j2k ¼ 1 for all k � 3

(but this does not hold for k ¼ 2). Thus, the sequence cycles
with period 2k�2 for all k � 3. For example, for k ¼ 5, the
reduced sequence is 1, 3, 9, 27, 17, 19, 25, 11, and the
complementary sequence is 31, 29, 23, 5, 15, 13, 7, 21. Thus,
every odd k-bit integer is uniquely represented by the
exponent pair ðs; eÞ in the DLS representation.

A k� 1 bit encoding of the odd integers q ¼
bkbk�1 . . . b11 by pairs ðs; eÞ can be formed as follows:
The powers j3ej2k for 0 � e � 2k�2 � 1 all have bit b2 ¼ 0,
and their complements jð�1Þ3ej2k all have b2 ¼ 1. Thus, let
s ¼ b2 with e ¼ ek�3ek�4 . . . e0 determined, satisfying
j3ej2k ¼ q ¼ bk�1bk�2 . . . b30b11 for b2 ¼ 0 and jð�1Þ3ej2k ¼
2k � q ¼ b0k�1b

0
k�2 . . . b030b011 for b2 ¼ 1.

Lemma 3. For any odd integer q ¼ bk�1bk�2 . . . b11 with k � 3,

there is a unique exponent e ¼ ek�3ek�4 . . . e0 and sign bit

s ¼ b2 satisfying q ¼ jð�1Þs3ej2k . Furthermore, the bits b2, b1,
and e0 are related by e0 ¼ b2 xor b1 and s ¼ b2 ¼ e0 xor b1.

Sketch of proof. The equation for q follows from the
preceding discussion. Noting that odd powers of 3 have
e0 ¼ 0 and b1 ¼ 1 and that s ¼ b2, the relations between b2,
b1, and e0 are obtained.

Definition. For k � 3, the DLS encoding DLSðs; eÞ ¼
ak�1 ak�2 . . . a11 determined given s and e ¼ ek�3ek�4 . . . e0

for the odd integer q ¼ jð�1Þs3ej2k is the bit string
DLSðs; eÞ ¼ ek�3ek�4 . . . e0b11 with b1 ¼ e0 xor s. For k ¼ 2,
the sign bit is assumed to be s ¼ 0 with DLSðs; eÞ ¼ e01,
equivalently DLSðs; eÞ ¼ b11. For k ¼ 1, corresponding to
q ¼ 1, the DLS encoding is the unit bit. The DLS encoding of
an even integer x ¼ q2p ¼ jð�1Þs2p3ej2k for p 6¼ 0 is obtained
by appending p low-order zeros to the DLS encoding of
q ¼ jð�1Þs3ej2k�p .

Theorem 4. The DLS encoding is a one-to-one hereditary
function for all odd integers.

Sketch of proof. For any 3 � j � k, note that j32m j2j ¼ 1 for
all m � j� 2, so that k� j leading bits of e do not affect the
determination of jqj2j ¼ jð�1Þs32k�2 j2j . For the transition
cases k ¼ 2 and k ¼ 1, the result can be verified by
enumeration.

The extension of Theorem 4 to even integers is immediate
noting that the DLS encoding includes the same ðpþ 2Þ low-
order bits as the binary representation of x ¼ 2pq.

The one-to-one mapping between 5-bit discrete log
numbers comprising a 5-bit DLS encoding and standard
5-bit binary radix representation is given in Table 1. The
DLS bit string is partitioned as follows to determine the
three exponents p, e, and s.

Consider the line in the table for DLS string a4a3a2a1a0 ¼
10110 (highlighted in Table 1). The parsing begins from the
right-hand side, determining the variable length field
identifying 2p ¼ a1 a0 ¼ 102 by counting zeros until the first
unit bit is encountered. The 2-bit field “unary” encoding of p
determines p ¼ 1. The next bit is a separation bit providing
the logical value s	 e0 used to determine s after e is
determined. The remaining leading bits are the 5� ðpþ 2Þ
bits of the exponent 0 � e � 25�ðpþ2Þ � 1 sufficient to deter-
mine the odd factor q ¼ jð�1Þs3ej2k . Thus, x ¼ q � 2p is the
integer represented with 0 � x � 25 � 1 uniquely deter-
mined. In this example, e ¼ 102 ¼ 210, and then s ¼ 1 is
d e t e r m i n e d f r o m e0 ¼ 0 an d s	 e0 ¼ 1. F i n a l l y ,
jð�1Þ12132j32 ¼ j � 18j32 ¼ 14 or b4b3b2b1b0 ¼ 01110 is ob-
tained. Note that the low-order pþ 2 bits are identical in
both DLS and binary integer encodings.

The conversion/deconversion for odd integers in Table 1
can be visualized by the lookup trees illustrated in Figs. 1a
and 1b, respectively. Navigation in Fig. 1a for binary-to-
DLS conversion occurs by reading down with edge
direction determined by the 5-bit odd integer string read
right-to-left. The DLS output string a4a3a2a1a0 is obtained
(right to left) from the bits extracted from the vertices. For
example, determining the DLS of the integer 13 ¼
b4b3b2b1b0 ¼ 01101 is achieved by traversing the tree in
Fig. 1a one bit at a time, starting with the least significant bit
(LSB) b0 ¼ 1 traversing to the right from the root of the tree,
determining a0 ¼ 1, then b1 ¼ 0 dictates traversing to the
left determining a1 ¼ 0. Bits b2 ¼ 1, b3 ¼ 1, and b4 ¼ 0
continue right, right, then left, determining a2 ¼ 1, a3 ¼ 0,
and a4 ¼ 1. A similar traversal of the lookup tree exists for
Fig. 1b. The lookup tree structure illustrates the use of the
hereditary property of these conversion operations.

3 DLS CONVERSION AND DECONVERSION

ALGORITHMS

Exponent p for an even number can be determined by
counting the low-order zeros in the binary radix integer bit
string. Without loss of generality, we focus on odd numbers
for the rest of this paper. Binary-to-discrete log conversion
refers to determining the pair ðs; eÞ given the k-bit odd
integer q, and deconversion refers to determining q given
the pair ðs; eÞ, where q, s, e satisfy q ¼ jð�1Þs3ej2k . For

FIT-FLOREA ET AL.: A DISCRETE LOGARITHM NUMBER SYSTEM FOR INTEGER ARITHMETIC MODULO 2k: ALGORITHMS AND LOOKUP... 165

conversion, s is determined by conditional complementa-
tion to obtain a normalized q. Without loss of generality,
assume s ¼ b2 ¼ 0, so that q is congruent to 1 or 3 (mod 8).
This reduces the conversion operation to the determination
of the discrete log e ¼ dlgðqÞ, with 0 � e � 2k�2 � 1 and
q ¼ 1; 3 mod 8. The deconversion problem reduces to eval-
uating the exponential residue operation determining q,
where q ¼ j3ej2k . For completeness, we review algorithms
from [3] and [4] demonstrating that both the exponential
residue operation (determining q given e) and the discrete
log operation (determining e given q) can be performed by a
series of less than k table-assisted shift-and-add operations
employing exponent recoding.

We conclude this section by emphasizing the algorithmic
similarities between additive conversion and deconversion
and introduce a unified conversion/deconversion algo-
rithm. This has the attractive property of reducing the
hardware area required due to sharing a common data path

as compared to independent conversion and deconversion

algorithm implementations in circuitry.

3.1 Additive Exponentiation Modulo 2k

j3ej2k can be computed using the square-and-multiply

method [12]. This entails computing j32j2k ; j34j2k ; . . . ; j32k j2k ,
by successive squaring. We observe that similar methods lead

to the correct result when the exponent e is recoded as a sum

of elements e ¼ j
P
�ij2k�2 [4]. In this case, j3ej2k can be

computed as j3ej2k ¼ j3
P

�i j2k . Of course, this presents an

advantage if the �i and/or corresponding powers f3�ig are

precomputed and available by an exponent table lookup.

In [4], it is shown that any exponent e can be expressed as a

sum of dlgð2i þ 1Þ’s termed the two-ones discrete logs.

Since 3dlgð2iþ1Þ ¼ 2i þ 1, it follows that the corresponding

multiplications can be performed as a series of shift-and-add

166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

TABLE 1
Conversion Table from the 5-Bit DLS to the 5-Bit Integers

operations. This works if the two-ones dlg’s are precomputed

and stored in a table (as shown in Table 2) of just k entries.
Algorithm 1 [4] determines the unique set of dlgð2i þ 1Þ’s

whose sum modulo 2k�2 is equal to e. It thus allows efficient

conversion from DLS to binary. In the algorithmic descrip-

tion that follows, index notation is used for the correspond-

ing bit of the standard binary representation. As an

example, if a value x is formed as the bit string

xn�1xn�2 . . .x2x1x0, the notation xi refers to the bit with

subscript i.

Algorithm 1 DLS-to-Binary Deconversion Algorithm (EXP)

Stimulus: k, e ¼ ek�3ek�4 . . . e2e1e0

Response: j3ej2k
Method:

L1: if e0 ¼ 1, then y :¼ 3; s :¼ e� 1

/* L1-L3: Initialize arguments and result */

L2: else z :¼ 1; h :¼ e
L3: end

L4: for i :¼ 1 to k� 3 do

/* L4: Loop over bits of h, index 1 to k� 3 */

L5: if hi ¼ 1, then /* L5: Conditional on ith bit of h */
L6: z :¼ jz� ð2iþ2 þ 1Þj2k

/* L6: Update response z by shift and add */

L7: h :¼ h� dlgð2iþ2 þ 1Þ
/* L7: Update argument h to reflect update to z */

L8: end if

L9: end for loop

L10: Result: ðzÞ /* L10: Return binary result z */

Note that lines L1-L3 correspond to initialization. The
product z is set to either 1 or 3 (corresponding to e0 ¼ 1 or
e0 ¼ 0). The working variable exponent h is always set in
such a way that z corresponds, for each iteration, to 3 raised
to the exponent ðe� hÞ and the least significant i bits of h
are all 0s. The algorithmic step of lines L4-L8 represents
updating h by subtracting dlgð2iþ2 þ 1Þ, which simply
represents the exponent of 3 that reduces to 2iþ2 þ 1. This
is followed by updating the product z to reflect the changes
in exponent, z :¼ jz� ð2iþ2 þ 1Þj2k . Eventually, after ðk� 2Þ
steps, h becomes 0 and the “product” z corresponds to
j3e�0j2k ¼ j3ej2k . The values dlgð2iþ2 þ 1Þ can be stored in a
lookup table and this method is practical for large
k ¼ 64; 128; . . . , since the table has only k entries.

3.2 Additive-Based Discrete Logarithm Modulo 2k

Computing the discrete logarithm for certain k-bit odd
integers x can be accomplished using a method [3] that is
essentially the dual of the exponentiation method of
Section 3.1. The key idea is to express x, if possible, as a
product of two-ones residues: x ¼ j

Q
ð2i þ 1Þj2k for selected

i’s. Once this is done, the discrete logarithm can be computed
as the corresponding sum: dlgðxÞ ¼ dlgð

Q
ð2i þ 1ÞÞ ¼

j
P

dlgð2i þ 1Þj2k�2 [3]. The solution involves identifying the
cases when x can be expressed as such a product and finding
the corresponding unique set of two-ones residues. It is

FIT-FLOREA ET AL.: A DISCRETE LOGARITHM NUMBER SYSTEM FOR INTEGER ARITHMETIC MODULO 2k: ALGORITHMS AND LOOKUP... 167

Fig. 1. (a) Five-bit lookup tree for odd integer binary to DLS encoding.

(b) Five-bit lookup tree for DLS encoding to odd integer binary.

TABLE 2
Two-Ones Discrete Log Table for k ¼ 8

shown in [3] that x can be expressed as a two-ones residue

product as long as x is congruent with 1 or 3 modulo 8. Note

that for the remaining odd residues, corresponding to

x congruent with 5 or 7 modulo 8, their additive inverses

j � xj2k are congruent with 1 or 3 modulo 8. The method in [3]

identifies the set of two-ones residues, and thus, it is the core

of a digit serial conversion method from binary to DLS.

Algorithm 2 Binary to DLS Conversion Algorithm (DLG)
Stimulus: k, x ¼ xk�1xk�2 . . .x2x1x0 with x0 ¼ 1 (odd

values)

Response: discrete log of x, expressed as an ðs; eÞ pair,

where x ¼ jð�1Þs3ej2k .
Method:

L1: if b2 ¼ 1, then x :¼ 2k � x;

/* L1: Get 2’s complement of x if b2 ¼ 1 */

L2: end if
L3: t :¼ 1; e :¼ 0; s :¼ b2

/* L3: Initialize arguments t, e, and s */

L4: for i :¼ 1, 3 to k� 1 do /* L4: Loop over bit

indices 1 to k� 1 skipping i ¼ 2 */

L5: if xi ¼ ti, then

/* L5: Conditional on equivalence of bits xi and ti */

L6: t ¼ t� ð2i þ 1Þ;
/* L6: Conditionally update t with shift and add */

L7: e :¼ eþ dlgð2i þ 1Þ /* L7: Conditionally

update e with lookup from dlg table */

L8: end if

L9: end for loop

L10: Result: ðs; eÞ /* L10: Return result as ðs; eÞ pair */

The initialization stage is performed in lines L1-L3. If x

is complemented, then b2 ¼ 1. The second stage contains

the main iteration step and is represented by lines L4-L9,

where both p and the exponent e are updated. p is

conceptually updated as t ¼ t� ð2i þ 1Þ, while the expo-

nent e is updated by adding the corresponding values

dlgð2i þ 1Þ, looked up from a table. The final result is

returned in line L10 as the sign s and the exponent e pair.

The updating of e and in lines L6 and L7 can be performed

concurrently. As can be seen by inspection of Algorithm 2,

the time complexity is essentially k dependent shift-and-

add modulo 2k operations.

3.3 Unified Conversion/Deconversion Algorithm

Similarities between the additive versions of the deconver-

sion (Algorithm 1) and conversion (Algorithm 2) algorithms

presented in Sections 3.1 and 3.2 are described here. Since

there are minimal differences between the two algorithms,

they are very suitable for hardware reuse and a unified

algorithm is developed.
While conceptually one operation is the inverse of the

other, they can be executed on the same data path. An

intuitive explanation as to why this is feasible is

presented here.
Algorithm 2 computes the discrete log of x. In order to

do this, e, the discrete log of x, is updated one digit at a

time. Concurrently, t is updated to eventually become

jx� x�1j ¼ 1. The way t and e are updated is strongly

related in the sense that t is multiplied with ð2i þ 1Þ while

e is adjusted by dlgð2i þ 1Þ, its discrete log. Eventually,
e represents the discrete log of
x.

Algorithm 1 starts with product z ¼ 1 and updates it by
multiplying with selected two-ones residues, ð2i þ 1Þ’s.
Concurrently, s, the exponent, is correspondingly adjusted
by subtracting dlgð2i þ 1Þ. This way, the multiplications by
ð2i þ 1Þ are counted off from the exponent. Eventually, the
exponent becomes zero valued and the product becomes
z ¼ j3ej2k .

In Algorithm 1, s is updated the same manner as e of
Algorithm 2 but with a sign reversal. It is already shown
that jdlgðzÞj2k�2 ¼ j � dlgðz�1Þj2k�2 . Computing z ¼ j3ej2k as
z¼j3�ð�eÞj2k allows changing the update of t by þdlgð2iþ1Þ
as opposed to ð�dlgð2i þ 1ÞÞ before and inside the core loop
of Algorithm 1. Due to this switching, the algorithm would
require some changes in the initialization part, but it would
still produce s ¼ dlgðzÞ at the end.

As emphasized above, the two algorithms can have a
common core—the iteration loop, and the only differences
are the initialization steps and the result returned by the
algorithm. Last, but not the least, the table lookup uses
the same table and the same entry for equal values of the
loop counter. This allows us to introduce the Unified
Deconversion-Conversion Algorithm.

Algorithm 3 Unified Deconversion—Conversion Algorithm

Stimulus:

operation �: either conversion or deconversion

k, x ¼ xk�1xk�2 . . .x2x1x0: either residue or

exponent (with x0 ¼ 1 for EXP),

Response:
discrete log of x, when � is conversion

or j3ej2k , when � is deconversion

Method:

L1: if � is conversion, then

/* L1: Conditional on conversion or deconversion */

L2: if b2 ¼ 1, then x :¼ 2k � x;

/* L2: Get 2’s complement of x if b2 ¼ 1 */

L3: end if
L4: z :¼ 1; e :¼ 0; s :¼ b2

/* L4: Initialize arguments t, e, and s */

L5: else /* L5-L9: Initialization for deconversion */

L6: if x0 ¼ 1, then z :¼ 3; e :¼ 2ðk�2Þ � xþ 1

/* L6: Conditional on LSB of x */

L7: else z :¼ 1; e ¼ 2ðk�2Þ � x
/* L7: Initialize arguments p and e */

L8: end if
L9: end if

L10: for i :¼ 1 to k� 3 do

/* L10: Loop over bit indices 1 to k� 3 */

L11: if ei ¼ 1, then

/* L11: Conditional on ith bit of e */

L12: z :¼ jz� ð2iþ2 þ 1Þj2k
/* L12: Update p with multibit left shift */

L13: e :¼ eþ dlgð2ðiþ2Þ þ 1Þ
/* L13: Update e with lookup from dlg table */

L14: end if

L15: end for loop

L16: if � is conversion, then

/* L16: Conditional on conversion or deconversion */

168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

L17: Result: ðzÞ /* L17: Return binary result */
L18: else

L19: Result: ðs; eÞ
/* L19: Return discrete log result */

L20: end if

As mentioned previously and also shown in [7], the DLS
together with conversion/deconversion algorithms provide
an efficient method for the integer powering modulo 2k

operation. In Section 4, we present a DLS-based method for
the integer powering operation that uses the conversion/
deconversion algorithms above and an analysis of its
hardware implementation.

4 INTEGER POWERING USING INTERMEDIATE DLS
REPRESENTATION

Algorithms for computing the operation z ¼ xy, where y
is a positive integer, have been the subject of considerable
research. The binary square-and-multiply method deter-
mines x; x2; x4; x8; . . . and processes the bits of y from
right-to-left to multiply by the appropriate binary powers
of x to determine xy. This algorithm has been described
in many popular texts [10], [11], [12]. Knuth [12] traces
this “fast” algorithm back to al-Kashi in the 15th century.

We are interested in the particular case of z ¼ jxyj2k ,
where x, y, and the result z are all nonnegative k-bit
integers. For typical word sizes such as k ¼ 8; 16; 32;
64; 128, and so forth, this integer valued powering
operation is proposed to supplement the integer addition
and multiplication operations. The squaring algorithm may
be implemented in hardware with microcode and a fast
multiplier much like the floating-point transcendental
operations in the Pentium and Athlon processors.

For implementation in hardware, there is a need for a
simpler algorithm that avoids the use of a large multiplier.
There is a further need for a right-to-left digit serial
algorithm that requires less time for lower precision
operations when a family of precision levels is implemented
in hardware.

In this section, we present a novel digit serial algorithm
for evaluation of the integer power operation jxyj2k that is
based on Algorithm 3; hence, it does not require a
multiplier. The algorithm employs both conversion and
deconversion of x to and from DLS, and bit serial multi-
plication. The conversion of the input x to DLS is
implemented with bit serial multiplication and the discrete
log (converted) value provides the “recoded multiplier bits”
with the exponent y being the multiplicand and bit serial
deconversion of jxyj2k provides the result z. In the following,
we first describe the existing “Fast” binary squaring
algorithm [10], [11], [12].

4.1 Existing “Fast” Binary Squaring Algorithm

The existing fast algorithm is based on the fact that
y ¼

Pk�1
i¼0 yi2

i, so that we can get the formula

z ¼ jxyj2k ¼ x

Pk�1

i¼0

yi2
i

�
�
�
�
�
�

�
�
�
�
�
�
2k

¼ xy020 � xy121 � � � � � xyk�12k�1
�
�
�

�
�
�
2k
:

As an example, 310 ¼ 30�20þ1�21þ0�22þ1�23 ¼ 32 � 38. This
method is implemented in Algorithm 4.

Algorithm 4 Binary Squaring Powering ðxyÞ
Stimulus: k, x ¼ xk�1xk�2 . . .x2x11,

y ¼ yk�1yk�2 . . . ; y2y1y0

Response: z ¼ jxyj2k .
L1: z :¼ 1; h :¼ x; /* Initialize Response Value z

to 1 and Argument h to x */

L2: for i :¼ 0 to k� 1, do /* Loop over the number
of bits in the argument x */

L3: if bit yi ¼ 1, then /* If the ith bit (denoted yi) of

the exponent y is 1 */

L4 z :¼ jz� hj2k /*, then update output value z to

contain the factor h */

L5 end if

L6: h :¼ jh� hj2k /* Update argument h to hold

next higher power of x */
L7: end for loop

L8: Result: ðzÞ
/* Response z now holds the xy modulo 2k value */

4.2 Proposed Feedback Shift Add (FSA) Algorithm

Any number can be converted to a triple ðs; p; eÞ, where
x ¼ 2pq with q being an odd integer. Thus

z ¼ jxyj2k ¼ ð�1Þs2p3eð Þyj j2k¼ ð�1Þsy2py3eyj j2k :

In the above formula, ð�1Þsy determines the sign. 2py

determines the number ðpyÞ of least significant zeros. For
odd numbers, we need to calculate e� y for term 3ey. Then,
we can convert jð�1Þsy3eyj2k back to binary to obtain z.

Computing the yth power of operand x can be done in a
serial fashion. That is, we start multiplication and decoding
after we obtain the entire value of e. A better technique is a
pipelined arrangement of the suboperations in which
multiplication and decoding starts when the first bit of e
is available. For every available bit of e, a bit of the
intermediate product is generated followed by a bit of z
being produced. This method is referred to as the pipelined
algorithm and is described in the following algorithm.

Algorithm 5 Additive Digit Serial Powering ðxyÞ
Stimulus: k, x ¼ xk�1xk�2 . . .x2x11,

y ¼ yk�1yk�2 . . . y2y1y0

Response: z ¼ jxyj2k .
Method

L1: if b2 ¼ 1, then x :¼ 2k � x;
/* L1: Get 2’s complement of x if b2 ¼ 1 */

L2: end if

L3: t :¼ 1; e :¼ 0; z :¼ 1; h :¼ 0; g ¼ e; s :¼ b2;

/* L3: Initialize t, e, z, h, g, s */

L4. if x1 ¼ t1, then

/* L4-L7: Update p (shift) and e (table) if x1 is p1 */

L5: t ¼ t� ð2i þ 1Þ; e :¼ eþ dlgð3Þ
L6: z :¼ jz� ð2y0 þ 1Þj2k

/* L6: Response z is updated if y0 ¼ 1 */

L7: end if

L8: for i :¼ 3 to k� 1 do

/* L8: Loop over bit index values 3 to k� 1 */

L9: if xi ¼ pi, then

FIT-FLOREA ET AL.: A DISCRETE LOGARITHM NUMBER SYSTEM FOR INTEGER ARITHMETIC MODULO 2k: ALGORITHMS AND LOOKUP... 169

/* L9-L11: Update t (shift) and e (table) if x1 is p1 */
L10: t ¼ t� ð2i þ 1Þ; e :¼ eþ dlgð2i þ 1Þ
L11: end if

L12: g ¼ 2� g; /* L12-L13: Update accumulated

value in variable m */

L13: m ¼ mþ g� ei�2

L14: if mi�2 ¼ 1, then /* L14-L16: Update h with

variable shift and add */

L15: h ¼ h� ð2i�2 þ 1Þ
L16: end if

L17: if hi ¼ 1, then /* L17-L19: Conditionally

update z and h based on hi */

L18: z :¼ jz� ð2iþ2 þ 1Þj2k ; h :¼ h� dlgð2iþ2 þ 1Þ
L19: end if

L20: end for loop

The initialization stage is performed in lines L1-L4. All
the required initializations for both stages of the algorithm
are performed here. The second stage (L5-L7) actually
performs the computation for the next to the last LSB with
index i ¼ 1. The third stage contains the main iteration step
and is represented by lines L8-L20. The third stage can be
separated into three substages. Both t and the exponent e
are updated (i.e., L9-L11), which generates 1 bit of exponent
according to the DLG algorithm. The second substage (i.e.,
L12-L16) corresponds to the accumulator used to imple-
ment e� y. The third stage updates z according to EXP
algorithm (i.e., L17-L19). The final result is obtained at
line L20. As can be seen by inspection of the algorithm, the
time complexity is essentially k dependent shift-and-add
modulo 2k operations.

4.3 Hardware Performance Evaluation for Integer
Power Operation

In order to evaluate the effectiveness of our method as
compared to the well-known “fast” squaring method, we
described each method in Verilog RTL. To implement the
“fast” squaring method described in Algorithm 4, a counter
is employed to control the number of loops, and the
values z and q are updated simultaneously. There are three
major components in the implementation of the circuit
described in Algorithm 5: a controller, a ROM lookup table,
and a computation data path. The controller consists of a
counter and state control block, Finite State Machine (FSM).
The FSM will start and stop the counting procedure. The
output of the counter, count, is used for purposes such as
address generation for the ROM, index production for the
bit checker and loop controller, and feedback to the FSM for
state transition. The ROM is used as a lookup table for the
dlgð�Þ function. The major components in the data path are
adders, shifters, and muxes. The muxes are used to control
whether registers holding p, e, z, and q will be updated by
the shifter and adder circuits. The modulo operation used in
the description of the algorithms is handled by limiting the
register size of p, e, z, and q. The width of the register
containing p, e, z, and q is set to k. Thus, while updating p, e,
z, and q, the result values may be longer than the specified
size (causing overflow). This intentional overflow actually
implements the modulo 2k operation. The two designs
corresponding to Algorithms 4 and 5 are implemented and
both are synthesized using the Synopsys toolset based on a

standard cell library from Synopsys [13] and a standard cell

library from Oklahoma State University [14]. Since the

results from the two standard cell libraries were similar, we

only list the result based on the standard cell library from

Synopsys.
Table 3 compares the results of our Algorithm 5 with the

existing fast algorithm (Algorithm 4) for different k values.

The latency of both designs are k since they are all bit serial

based. We also plot the trend of the two algorithms in

Figs. 2 (period) and 3 (area). It is seen that for all k values,

our algorithm is faster than the existing fast algorithm when

each algorithm is synthesized with the standard cell library.

Regarding area, our method requires more space for small

word sizes but increases slowly compared with the existing

fast algorithm. Thus, when k � 64, our algorithm requires

less area. It should be noted that the area values reported

here are only the net area required by the total cell area

170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

TABLE 3
Comparison of Layout Result

Fig. 2. Period trend of two algorithms.

Fig. 3. Area trend of two algorithms.

since we did not route the resulting circuits, thus additional
area and delay required by routing are not included.

As it is often the case, for relatively small values of the
word size, a specific function can be looked up in a table as
opposed to being computed using a functional hardware
implementation. This would allow for speeding up computa-
tions at the expense of area. In Section 5, we present the
complementary part of the functional algorithms in Section 3
by introducing DLS-related lookup structures and efficient
compression methods.

5 LOOKUP STRUCTURE-BASED METHOD

Integer functions that are determined modulo 2k for k-bit
word results generally have properties allowing much
smaller tables for exhaustive storage of k-bits-in, k-bits-out
function evaluation than corresponding real valued k-bit
functions. Four properties of integer functions are identi-
fied, which, when used in combination, allow for sig-
nificant reduction in size of lookup tables for integer
functions adhering to these properties (for 16-bit argu-
ments, the advantages for integer function lookup can be
as large as 32-to-1 or even 64-to-1, allowing 5 or 6 more
index bits for comparable table size):

1. Inheritance principle. Briefly, this principle states that
the low-order k bits of the result depend only on the
low-order k bits of the integer argument for all k. In
practice, the inheritance principle for integer func-
tions means that a k-bits-in, k-bits-out lookup table
can be reduced from a generic k� 2k bits ROM table
to a lookup tree structure of size 2� 2k bits. This
reduces table size by a factor of k=2 (e.g., reduction
to 1/8 the size for 16-bit integers).

2. One-to-one correspondence. This property holds when
distinct k-bit inputs have distinct k-bit outputs. This
property holds for multiplicative inverse and the
discrete log of odd integers and is extended to a
discrete log encoding of all k-bit integers as
illustrated in Section 2. With the inheritance princi-
ple, this property allows pre and postprocessing
logic to reduce the table size by another half.

3. Normalization (separating odd and even factors).
Employing a right-normalized binary integer repre-
sentation, x ¼ 2pq (where q is the odd factor and 2p is
the even-power factor), integer functions can often
be determined in a separable fashion by applying
table lookup to the argument’s odd factor followed
by function-specific postprocessing responsive to the
even-power factor.

4. Conditional complementation. This property states that
the result of the operation on the conditional 2’s
complement of the input is the conditional 2’s
complement of the output. Conditional complemen-
tation often applies only to selected bits of the odd
factor of the normalized integer argument. When
applicable, this allows one half or more further table
size reduction.

To fully benefit from the implicit compression provided
by exploitation of these properties, new table lookup
architectures are developed. The functionality of these

architectures is easily described through the concept of
“lookup trees.”

Lookup trees were introduced with regard to the
multiplicative inverse function for odd integers modulo 2k

in [5]. Properties 1, 2, and 4 described above were shown to
result in substantial table size reduction, but a method and
an architecture for efficient lookup were left open. The
integer square function satisfies the inheritance principle,
with argument normalization and appropriate conditional
complementation further reducing the size of the lookup
tree. In Section 2, we showed a preferred encoding allowing
the discrete logarithm to satisfy and benefit from all four
preceding integer function properties.

5.1 Table Lookup Architecture

Table lookup allows for direct conversions between binary
and DLS encodings resulting in fast performance. Fig. 4
shows the generic table lookup architecture similar to that
described in [15]; however, the originality of our approach is
the structure of the pre- and postprocessing logic that results
from the concept of the lookup tree described in [5]. In this
section, we focus in detail on the example of binary-to-DLS
conversion, although the methods pertain similarly to DLS-
to-binary conversion. The hardware comprises three major
components: the preprocess block, the postprocess block, and
a ROM. The preprocess block produces the ROM address
based on the input operand. After the data in the ROM is read,
the postprocess block will select the correct bit fields and
perform some additional processing, such as selective
complementation. Two schemes for table lookup are com-
pared here. One scheme uses a larger table supplemented by
postprocess logic, while the other one uses a smaller table
with both preprocess and postprocess logic.

5.2 Direct Lookup with Unnormalized Table Index

For the unnormalized index larger sized table implementa-
tion, we only exploit the hereditary and one-to-one
mapping properties of binary-to-DLS conversion. Due to
the one-to-one property, only left children of the lookup tree
need to be stored. No preprocessing is required before table
lookup occurs. For postprocessing, conditional complemen-
tation is required on the table output value with the input
value since only left children values are stored in the table.
The circuit structure and then the hardware implementation
are discussed next.

The ROM structure and select logic are shown in Fig. 5.
The ROM is equivalent to three-level trees. The first level
forms 256 rows, where the low 8 bits ð½a0 : a7�Þ are used as

FIT-FLOREA ET AL.: A DISCRETE LOGARITHM NUMBER SYSTEM FOR INTEGER ARITHMETIC MODULO 2k: ALGORITHMS AND LOOKUP... 171

Fig. 4. Table lookup architecture.

address bits. In the second level, four subtrees between
levels 8 and 9 are formed as 4 bytes. ½a8 : a9� are used to
select one of 4 bytes. After the byte is determined, ½a10� and
½a10 : a11� are used to select 1 bit from the byte, respectively,
while the other 2 bits are extracted directly without
selection. Therefore, a total of 4 bits is extracted from the
selected byte. In the third level, there are 32 subtrees
between level 8 and level 12 formed as 32 7-bit fields.
½a8 : a12� are used to select one of the 32 7-bit fields. ½a13�
and ½a13 : a14� are used to select 1 bit from the selected field,
respectively, while the single rightmost bit is extracted
directly without selection. Therefore, a total of 3 bits is
extracted from the selected 7-bit field. Finally, a 15-bit
output is produced from the select logic.

The postprocessing logic for this unnormalized index
table lookup scheme is simple. Since we only store left
children, only 15 bits are extracted from the ROM. A one is
padded to the LSB position to produce a 16-bit output. Also,
16 2-bit-input XOR gates serve as conditional complement
logic, where the corresponding bit from the result of the
padding and the input are connected to the inputs of the
XOR gates.

5.3 Direct Lookup with Normalized Table Index

The ROM table size may be reduced by utilizing more
properties of our discrete log encoding. For normalized
binary-to-DLS conversion, the inheritance principle, one-to-
one mapping property, normalization to odd factor argu-
ment, and conditional complementation [5] are used.

Preprocessing consists of even-power and sign bit
extraction. Normalization is used to produce the p field of
the DLS triple. It is accomplished by shifting to the right
and counting the number of trailing zeros. In the worst case,
16 shifts are required. A divide and conquer approach is
adopted in our implementation. We first shift 8 bits to the

right to check whether it is in the lower 8 bits or the higher
8 bits. Next, we shift 4 bits to the right of the selected 8-bit
field from the previous step to check whether it is in the
lower 4 bits or the higher 4 bits. This procedure continues
until the binary exponent p of the operand is obtained.
Another operation is sign extraction. The sign bit is the third
bit of the normalized operand. If the sign bit is asserted, it is
required to conditionally complement the normalized
operand. Since normalization (odd number, no need
for a0) and sign symmetry (sign bit a2 is out), the index
for address and select logic in the next step are formed as
½a01a03 : a014� after conditional complementation.

The ROM structure and select logic are shown in Fig. 6.
The ROM is equivalent to three-level trees. The first level
forms 128 rows, where the low 7 bits ð½a01a03 : a08�Þ are used
as address bits. In the second level, subtrees between
levels 7 and 8 are represented as a 6-bit field. ½a09� and
½a09 : a010� are used to select 1 bit from the selected field,
respectively. Therefore, a total of 2 bits are extracted from
the 6-bit field. In the third level, 16 subtrees between level 7
and level 10 are formed as 16 bytes. ½a09 : a012� are used to
select one of 17 bytes. ½a013� and ½a013 : a014� are used to
select 2 bits from the selected byte, respectively, while the
other 2 bits are extracted directly without selection. There-
fore, a total of 4 bits is extracted from the selected 7-bit byte.
Finally, a 13-bit output is formed from the select logic.

Postprocessing for the normalized index smaller table
lookup scheme is more complex as compared to the larger
table approach. Since normalization is performed in the
preprocessing circuitry, denormalization is necessary. All
bits whose index is less than the power of the original
operand are padded with zeros, while all bits whose index
is larger than this power are filled with lookup values.
Sixteen 2-bit-input XOR gates are used for conditional
complementation as described previously.

172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

Fig. 5. Fifteen-bit table lookup architecture for ðe; s; pÞ.

5.4 Performance Evaluation

We described the circuits shown in Figs. 5 and 6 in a Verilog
module using the toolset (Design Compiler and Physical
Compiler) based on a standard cell library obtained from
the Synopsys tutorial files [13].

Table 4 shows the comparison between the two schemes
for direct lookup table conversion for k ¼ 16. The ROM size
is given in kilobytes. The core area is the area of standard
cell implementation for all other logic except ROM. Both
circuits have the same minimal clock period of 1.7 ns, but
the larger table implementation requires one less cycle for
postprocessing. Due to the extra processing before and after
accessing the ROM, the normalized version of the circuit
requires three clock periods of latency versus the two
required for the unnormalized version; however, the ROM
size is only 27 percent as large.

5.5 Extension of Lookup Structure

In this section, we have investigated standard cell imple-
mentations of a novel table lookup procedure for binary-to-
discrete log conversion. This method is equally applicable
to realizing any integer function satisfying the inheritance
principle that can then be described with a “treelike”
lookup table structure.

The distinction between real and integer arithmetic in an
ALU is conveniently described with reference to the

multiplication of two k-bit integer operands. The exact
product fits in a 2k-bit field. The real (e.g., floating point)
result typically provides a normalized high-order (approx-
imate) part with the low part rounded off. The integer result
is the k-bit low-order part providing an exact result in a
modular system with the modulus determined by the word
size implicitly truncating the high-order part.

Integer functions that are determined modulo 2k for k-bit
word results generally have properties allowing much
smaller tables for exhaustive storage of k-bits-in, k-bits-out
function evaluation than corresponding real valued k-bit
functions. The four properties of integer functions identified
in this section used in combination can fundamentally
redefine and reduce the size of lookup tables for exhaustive
storage. For 16-bit arguments, the advantages for integer
function lookup can be as large as 32-to-1 or even 64-to-1,
allowing 5 or 6 more index bits for comparable table size.

Our investigation indicates that this table lookup
procedure is practical and allows for significant reductions
in table size.

6 CONCLUSION

We have presented an alternative representation for the
k-bit integers based on a discrete logarithm representa-
tion and introduced a novel DLS encoding with a one-to-
one mapping between binary-encoded and DLS-encoded
k-bit strings. The mapping is shown to be implementable
using a new unified conversion/deconversion algorithm
that employs just OðkÞ additions with references to a
conversion lookup table having just k entries, allowing
scalable implementations for k up to 128 bits or more. To
illustrate the use of DLS representation, we provided a
novel pipelined bit serial integer power operation for xy

FIT-FLOREA ET AL.: A DISCRETE LOGARITHM NUMBER SYSTEM FOR INTEGER ARITHMETIC MODULO 2k: ALGORITHMS AND LOOKUP... 173

Fig. 6. Thirteen-bit table lookup architecture for e.

TABLE 4
Comparison for Two Conversions

employing intermediate DLS representation that returns
xy in binary using just OðkÞ additions without multi-
plications. We have also described a table lookup
structure and architecture for binary/DLS conversion
and presented an implementation of this structure with
performance results. Favorable area and power results
are obtained for the powering operation xy and the new
table lookup architecture.

ACKNOWLEDGMENTS

This work was supported in part by the Semiconductor
Research Cooperation under Contract 1399-001.

REFERENCES

[1] N.F. Benschop, Multiplier for the Multiplication of at Least Two
Figures in an Original Format, US Patent 5,923,888, July 1999.

[2] A. Fit-Florea and D.W. Matula, “A Digit-Serial Algorithm for the
Discrete Logarithm Modulo 2k,” Proc. 15th IEEE Int’l Conf.
Application-Specific Systems, Architectures, and Processors (ASAP ’04),
pp. 236-246, 2004.

[3] A. Fit-Florea, D.W. Matula, and M.A. Thornton, “Additive
Bit-Serial Algorithm for the Discrete Logarithm Modulo 2k,”
IEE Electronics Letters, vol. 41, no. 2, pp. 57-59, Jan. 2005.

[4] A. Fit-Florea, D.W. Matula, and M.A. Thornton, “Addition-Based
Exponentiation Modulo 2k,” IEE Electronics Letters, vol. 41, no. 2,
pp. 56-57, Jan. 2005.

[5] D.W. Matula, A. Fit-Florea, and M.A. Thornton, “Lookup Table
Structures for Multiplicative Inverses Modulo 2k,” Proc. 17th
IEEE Symp. Computer Arithmetic (ARITH-17 ’05), pp. 130-135,
2005.

[6] L. Li, A. Fit-Florea, M.A. Thornton, and D.W. Matula, “Hardware
Implementation of an Additive Bit-Serial Algorithm for the
Discrete Logarithm Modulo 2k,” Proc. IEEE CS Ann. Symp. VLSI
(ISVLSI ’05), pp. 130-135, 2005.

[7] L. Li, M.A. Thornton, and D.W. Matula, “A Fast Algorithm for the
Integer Powering Operation,” Proc. 16th ACM Great Lakes Symp.
VLSI (GLSVLSI ’06), pp. 302-307, 2006.

[8] L. Li, A. Fit-Florea, M. Thornton, and D.W. Matula, “Performance
Evaluation of a Novel Direct Table Lookup Method and
Architecture with Application to 16-Bit Integer Functions,” Proc.
IEEE Int’l Conf. Application-Specific Systems, Architectures, and
Processors (ASAP ’06), Sept. 2006.

[9] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and Its Applications
to Computer Technology. McGraw-Hill Book, 1967.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, second ed. The MIT Press, pp. 879-880, 2001.

[11] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs,
pp. 383-384. Oxford Univ. Press, 2000.

[12] D. Knuth, The Art of Computer Programming: Seminumerical
Algorithms, vol. 2, second ed., pp. 441.1-466.1. Addison Wesley,
1981.

[13] Synopsys Design/Physical Compiler Student Guide, 2003.
[14] J.E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash,

N. Illiev, and N. Jachimiec, “A Framework for High-Level
Synthesis of System-on-Chip Designs,” Proc. IEEE Int’l Conf.
Microelectronic Systems Education (MSE ’05), pp. 67-68, June 2005.

[15] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs,
chapter 24, Oxford Univ. Press, 2000.

[16] A. Fit-Florea, “Extending Hardware Support for Arithmetic
Modelo 2k,” PhD dissertation, Dept. of Computer Science and
Eng., Southern Methodist Univ., 2006.

[17] L. Li, “Integrated Techniques for the Formal Verification and
Validation of Digital Systems,” PhD dissertation, Dept. of
Computer Science and Eng., Southern Methodist Univ., 2006.

Alexandru Fit-Florea received the BS and MS
degrees in computer science from “Babes-
Bolyai” University, Cluj-Napoca, Romania, in
1997 and 1998, respectively, and the PhD
degree in computer science from Southern
Methodist University in 2005. Since 2004, he
has been with Advanced Micro Devices (AMD),
Sunnyvale, California, where he is currently a
member of the technical staff and is working on
the architecture of a next generation of micro-

processors. His interests include computer arithmetic, instruction set
extensions and implementation, and floating-point algorithm design.

Lun Li received the BS degree from Beijing
Jiaotong University, Beijing, in 1997, the MS
degree in electrical engineering from University
of Tulsa in 2002, and the PhD degree in
computer engineering from Southern Methodist
University in 2006. Since 2007, he has been
with Texas Instruments, where he is working on
formal verification. His interests include com-
puter arithmetic, CAD, and formal verification.

Mitchell A. Thornton received the BSEE
degree from Oklahoma State University in
1985, the MSEE degree from the University of
Texas, Arlington, in 1990, and the MSCS
degree and the PhD degree in computer
engineering from Southern Methodist Univer-
sity, Dallas, in 1993 and 1995, respectively. His
industrial experience includes full-time employ-
ment at E-Systems (now L-3 Communications),
Greenville, Texas, and Cyrix, Richardson,

Texas, where he served in a variety of engineering positions between
1985 and 1992. From 1995 to 1999, he was a faculty member in the
Department of Computer Systems Engineering, University of Arkansas
and from 1999 to 2002 in the Department of Electrical and Computer
Engineering, Mississippi State University. He is currently a professor of
computer science and engineering and, by courtesy, electrical
engineering in the Department of Computer Science and Engineering,
Southern Methodist University. His research interests are in the general
area of digital circuits and systems design with specific emphasis in
EDA/CAD methods including asynchronous circuit and computer
arithmetic circuit synthesis, formal verification/validation and simulation
of digital systems, multiple-valued logic, and spectral techniques. He
has served on the program committees of several conferences and
symposia including general chair of the IEEE International Symposium
on Multiple-Valued Logic in 2008 and cogeneral chair of the 2007 Dallas
Circuits and Systems Workshop. He is a registered professional
engineer in the states of Texas, Arkansas, and Mississippi and serves
as a subject matter expert for the National Council of Examiners for
Engineers and Surveyors (NCEES). He is also a member of the
IEEE CS TAB Committee on Multiple-Valued Logic and the IEEE-USA
Committee on Professional Licensure and Registration. He is a senior
member of the IEEE.

David W. Matula received the PhD degree in
engineering from the University of California,
Berkley, in 1966. He is currently a professor in the
Department of Computer Science and Engineer-
ing, Southern Methodist University, Dallas. He is
the author of more than 100 papers on computer
arithmetic and graph algorithms. He was a
codesigner of the Cyrix floating point coproces-
sors, and of the one Watt Geod processor
employed in the OLPC. He holds 18 patents on

computer arithmetic and cellular communication systems. He was the
coeditor of two special issues of the IEEE Transactions on Computers on
computer arithmetic appearing in 1977 and 1992. He was the keynote
speaker at the 16th IEEE Symposium on Computer Arithmetic in 2003.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 2, FEBRUARY 2009

