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ABSTRACT 
This paper describes an asynchronous design tool flow known as 
Phased Logic that converts a clocked design into an asynchronous 
design implemented as a micropipeline using two-phase control 
and bundled data signaling.     Example designs include variations 
of a double-precision floating point clipping operation mapped to 
UMC 0.18µ and Artisan /IBM 0.13µ standard cell libraries, and a 
five-stage pipelined MIPs-compatible integer unit mapped to the 
Artisan/IBM 0.13µ library.  The design styles includes a feature 
known as early evaluation, which is a generalized form of bypass, 
that allows the self-timed design to recover some of the inherent 
latch delay penalty in micropipelines.    

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits] Types and Design Styles – 
microprocessors and microcomputers; B.6.1 [Logic Design] – 
Design Styles 

General Terms 
Design, Performance. 

Keywords 
Asynchronous, Phased Logic, micropipeline, self-timed, two-
phase, microprocessors. 

1. INTRODUCTION 
Proponents of self-timed design have repeatedly touted 
advantages such as lower EMI signatures, lower power, and 
control scalability over traditional clocked designs.  However, 
there is no asynchronous methodology that can claim mainstream 
success; instead asynchronous designs have been relegated to 
niche applications.  The reason for this lack of wide acceptance 
has been that most asynchronous methodologies have one or more 
disadvantages that outweigh any advantages.  Barriers to adopting 
an asynchronous methodology are: 
 

• Area – delay insensitive approaches have a 2X to 3X 
area increase due to the required dual-rail routing. 

• Performance – micropipeline approaches add extra 
latency in the critical path, resulting in a performance 

penalty.  Other approaches use fine grain cells that are 
more complex and slower than typical standard cells, 
resulting in a performance slowdown. 

• Tool Support – many asynchronous methodologies 
require new languages and/or new tool chains, requiring 
a substantial investment in design engineer retraining.  

• Custom libraries – many asynchronous methodologies 
require custom cell libraries and cannot use the same 
commercial standard cell libraries used for clocked 
designs. 

Phased Logic (PL) [1] [2] is a self-timed design methodology that 
avoids significant penalties in the above areas, and offers the 
typical advantages of other asynchronous approaches.  This paper 
describes the first PL netlists that have been mapped to a 
commercial standard cell netlist.  The example designs are a five-
stage pipelined MIPS-compatible integer-unit [3] and double-
precision floating-point clip operation. The CPU implementation 
uses an Artisan standard cell library and register file generator 
designed for an IBM 0.13µ technology. The clip operation is 
mapped to both Artisan 0.13µ and UMC 0.18µ libraries.   No 
extra cells were added to either the Artisan or UMC libraries even 
though this could have increased the efficiency of the PL 
implementation. A PL implementation is a two-phase 
micropipelined system that uses bundled-data signaling. A PL 
netlist is produced by an automated translation from the clocked 
netlist, which allows the designer to use familiar languages and 
tools for producing the clock design.  The performance penalty in 
the micropipeline due to the additional latch latency on blocks can 
be reduced by a technique known as early evaluation. This 
technique allows blocks in the micropipeline to evaluate on 
arrival of a subset of the inputs, increasing the amount of parallel 
activity in the micropipeline, which improves performance.  The 
use of bundled data signaling keeps the area penalty to 
approximately a 50% increase in active cell area, which does not 
include the area required by the global clock network. 

2. PHASED LOGIC 
A PL netlist is a two-phase micropipeline system whose 
distributed control network is automatically generated from a 
clocked netlist.  This transformation uses marked graph theory [4] 
to produce a PL netlist that is both live and safe. The control 
network only replaces the global clock network; the original logic 
of the clocked design is retained.  Two distinct implementation 
technologies are supported, fine-grain and coarse-grain.  The 
fine-grain approach [5] uses a one-to-one mapping of gates in the 
clocked system to PL gates that use a 4-input Lookup-Table 
(LUT4) as the logic element with delay-insensitive dual-rail 
routing between gates.  This technology forms the basis for the 

 
 
 



implementation of a self-timed FGPA.   Because all routing 
between gates is delay-insensitive, there are no timing 
mechanisms external to a PL gate that can cause a failure due to 
timing. The coarse-grain approach used in this paper maps groups 
of gates in the clocked netlist to the combinational compute 
function of a PL block, with bundled data signaling used between 
blocks.  The combinational compute function of a coarse-grain PL 
block can be implemented using a traditional standard cell library.   
The coarse-grain technology is an ASIC approach to the 
implementation of PL systems. All timing concerns in a coarse-
grain implementation are between local interconnected blocks; 
there are no global mechanisms that can cause failure due to 
timing.   

2.1 The Clocked to PL Transformation 
A marked graph is a directed graph consisting of edges, vertices, 
and tokens.  A vertex will fire if all input edges have a token 
count that is positive; upon firing, the token count of all input 
edges is decremented by one, and the token count of all output 
edges is incremented by one.  In a PL coarse-grain netlist, an edge 
is represented by a data bundle that consists of multiple data wires 
and one phase wire (similar to a “request” wire in other 
asynchronous methodologies). The phase value can either be 
EVEN (0) or ODD (1).  Each PL block also contains an internal 
state element called the block phase, which is either EVEN or 
ODD. If the phase of an input edge matches the block phase, then 
that edge is said to contain a token.  A PL block will fire if all 
input edges have tokens; firing toggles the internal gate phase, 
and toggles all output phases.  Upon firing, all data wires in 
output bundles are updated with new values.  

The starting point for a coarse-grain clocked-to-PL netlist 
transformation is a hierarchical clocked netlist, in which the 
components at the top level define the blocks that will have PL 
control logic placed around them.  If a block contains D-Flip-
Flops and combinational logic then it is designated as a barrier 
block; if it contains only combinational logic then is it called a 
through block.  In the marked graph equivalent, a barrier block 
will have an initial token on its output, and  a through block will 
not. The assignment of initial tokens is simply a netlist wiring 
decision. Each PL block has a phase output that is the same value 
as the internal gate phase, and a phase output that is the logical 
negation of the gate phase. A connection between two blocks in 
the clocked netlist designates an edge in the marked graph 
equivalent. All signals between two blocks are placed in one data 
bundle and assigned one phase wire.  At reset, all block phases 
are set to EVEN.  Figure 1 shows the simplest possible PL 
system, which consists of one barrier block and one through 
block. 
 
 
 
 
 
 
 
 

Figure 1: Two Block PL System 

A marked graph is live if every edge belongs to a directed circuit 
C that contains at least one token (m(C) > 1). A marked graph is 
safe if every edge belongs to at least one directed circuit that 
contains only one token (m(C) = 1).  The vertices in a live and 
safe marked graph will fire in a continuous cyclic manner. The PL 
system in Figure 1 is both life and safe. Figure 2 shows a PL 
system that has an edge that is not part of a directed circuit, which 
means that block C will never fire after the initial firing. The 
transformation process detects this liveness problem and adds an 
additional control signal called a feedback (aka 
acknowledgement) to make this edge part of a directed circuit 
with a token count of one.  A feedback signal does not have a data 
bundle associated with it.  The initial token marking rules do not 
allow barrier-to-barrier block connections; a through block is 
inserted automatically by the transformation process to break a 
barrier-to-barrier block connection. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Adding Feedback 

2.2 Early Evaluation  
Early evaluation [7] allows a block to fire upon arrival of only a 
subset of inputs. This increases the amount of parallel activity in 
the graph, which increases performance.  Inputs to an early 
evaluation block are separated into early arriving inputs (Ei) and 
late arriving inputs (Li). A logic function, called the trigger 
function, which is based on the data bundles of the early inputs, 
determines if the gate fires after all early inputs have arrived.  An 
early evaluation block has separate signals for output phase (Op) 
and output feedback (Fo). In non-early evaluation blocks the 
output phase also serves as the output feedback.  The feedback 
output is not updated until all inputs have arrived.  
 
 
 
 
 
 
 

Figure 3. Normal Fire Case for EEnode 
Figure 3 shows a two node marked graph model that used by the 
mapping algorithm to represent an early evaluation block. All late 
inputs terminate on the M node and all early inputs on the T node.  
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Feedback output originates from the M node; feedback input 
terminates on the T node.  We view an early evaluation block as 
dynamically switching between two configurations: normal fire 
and early fire.  A normal fire occurs when the trigger function 
evaluates to false; the output phase is updated after all inputs have 
arrived and is viewed as originating from the M node as shown in 
Figure 3.  An early fire occurs when the trigger function evaluates 
to true after all early inputs have arrived; the output phase is 
updated and is viewed as originating from the T node as shown in 
Figure 4.  In the early fire case, the M-node fires after the T-node 
fires, and after all late inputs have arrived. The firing of the M-
node updates the feedback output. 
 
 
 
 
 
 

Figure 4. Early Fire Case for EEnode 
Figure 5 shows an example of a marked graph model for a simple 
PL netlist that includes an EEnode (Gb).  A key question for PL 
netlists with EEnodes is how to maintain liveness and safety. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Safety in PL netlist with EEnodes 

In Figure 5(a), the graph is live and safe if the normal fire 
configuration of the EEnode is used.  However, using the early 
fire configuration of Gb in Figure 5(b) makes the graph unsafe as 
signals S1, A, and S2 are not part of a directed circuit C with 
token count 1 (m(C) = 1).  Figure 5(c) adds feedback signals F1, 
F2, and F3 to make the graph live and safe. Two rules for 
feedback insertion in the presence of EEnodes are evident from 
Figure 5: 
1. All late arriving signals into an EEnode must be part of a 

directed circuit that includes the feedback output from the 
EEnode as the feedback output is the only signal originating 
from the M-node in the early-fire configuration. 

2. At least one early input must be in a directed circuit that 
includes the feedback output from the EEnode as this is the 
only way to include the internal signal A of the EEnode in a 
directed circuit in the early-fire configuration.  

A third rule that is not as evident from Figure 5 is: 
3. The output signal of an EEnode must be in a directed circuit 

that either includes an early input, or a feedback input that 
terminates on the T node.  This ensures that the output signal 
will be in directed circuit in either the normal or early fire 
configurations. 

It is clear than an EEnode represents a form of choice, and a 
marked graph is defined as being choice-free.  Different formal 
methods for representing choice are Free-Choice petri-nets, 
Change Diagrams, and Causal Logic nets [12].  However, using 
one of these representations means that the simple properties of 
liveness and safety of marked graphs are lost.  So, how do we 
keep a marked graph model, and yet still account for choice as 
represented by an EEnode? 
Let a marked graph consisting of a directed graph G and marking 
mi be designated by (G, mi). The firing of a non-EE node simply 
changes the marking, and the graph transitions from (G, mi) to 
some (G, mk), where mk is the new marking of the marked graph.  
It is well known that if a marked graph G with initial marking m0 
is live and safe, than any marked graph (G, mi) reachable by a set 
of node firings from (G, m0) is also live and safe. 
However, the firing of an EEnode can change the graph, as the 
non-feedback output edges of an EEnode can change their 
origination points from the M node or the T node.  In order to 
keep the marked graph model in PL netlists with EEnodes, we 
view a PL netlist as transitioning from a marked graph (G, mi) to 
a new marked graph (G’, mj) any time an EEnode changes 
configuration (from normal to early configuration, or vice-versa). 
A configuration change occurs when the gate fires, and if the type 
of firing (early or normal) is different from the previous firing. An 
early-to-normal configuration change means the current fire is a 
normal fire, and the previous fire was an early fire.  A normal-to-
early configuration change means the current fire is an early fire, 
and the previous fire was a normal fire.   Our approach for making 
a PL netlist with EEnodes live and safe is to make the marked 
graph equivalent (G, m0) live and safe by adding appropriate 
feedback signals and an initial marking, where each EEnode in 
(G, m0) is represented by its early fire configuration.  We then 
claim that any combination of firings of non-EEnodes or EEnodes 
results in a live and safe marked graph (G’, mi). We prove this 
through two theorems.   
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Theorem 1:   From any marking mi reachable from (G, m0) by 
non-EEnode firings or EEnode early firings, allow a single 
EEnode ui to perform an early-to-normal configuration change. 
The resulting graph (G’, mi’) is live and safe. 
Proof:  The only directed circuits C with m(C) = 1 affected by the 
early-to-normal configuration change of ui are the ones containing 
an output arc Op of EEnode ui as the predecessor node to Op is 
now the M node instead of the T node.  All of these directed 
circuits now contain internal arc A as a result of the configuration 
change.  The configuration change resulted from the T node 
firing, which places a token on arc A, so all of these circuits are 
live, m(C) > 0.  When the T node fired, the only arcs in these 
directed circuits that could have contained a token are the arcs 
incident upon the T node.  The firing of the T node consumed 
these tokens, so the token count of these directed circuits remain 
unchanged, at m(C) = 1. 
Theorem 1 can be trivially extended to cover any number of 
nodes Uk performing early-to-normal configuration changes as 
each directed cycle with m(C) = 1 can only have one node ready 
to fire, so the cycles with m(C) =1 affected by an early-to-normal 
configuration change are independent of any other nodes that 
undergo the early-to-normal configuration change. 
Thus, any graph (G’, mi’) reachable from (G, m0) by non-EE 
node firings, EE node early firings, or EEnode early-to-normal 
configuration changes is live and safe.   The next theorem covers 
normal-to-early configuration changes: 

Theorem 2:  From any marking mk’ reachable from graph (G’, 
mi’) by non-EEnode firings, EEnode early firings or EE node 
early-to-normal configuration changes, allow a single EEnode ui 
to perform a normal-to-early configuration change. The resulting 
graph (G’’, mk’’) is live and safe. 
Proof: The only directed circuits C with m(C) = 1 affected by the 
normal-to-early configuration change are the ones containing an 
output arc Op of EEnode ui, as the predecessor node to Op is now 
the T node instead of the M node.  All these directed circuits now 
no longer contain arc A as a result of the configuration change, 
but they do still contain the output arc Op.  The firing of the T 
node that caused the normal-to-early configuration change places 
a token on Op, so these directed circuits are live, m(C) > 0.  As 
these directed circuits have m(C) = 1 at the time of T node firing, 
the only arcs in these directed circuits that could have contained a 
token are the arcs incident upon the T node.  The firing of the T-
node consumed these tokens, so the token count of these directed 
circuits remain unchanged, at m(C) = 1.  In the original graph (G, 
m0), the A arc had to be covered by a directed circuit with m(C) = 
1 that included a feedback output of the EEnode, and 
configuration changes of the EEnode does not affect this cycle. 
Theorem 2 can be trivially extended to cover any number of 
nodes Uk performing normal-to-early configuration change by the 
same reasoning used to extend Theorem 1.   This means that 
given a starting marked graph (G, m0) that is live and safe, then 
any marked graph (G’, mi’) reachable by non-EEnode firings, 
EEnode early firings, EEnode late firings, EE node early-to-late 
or late-to-early configuration changes is also live and safe.  

3. Related Work 
The ‘de-sync’ self-timed design style [10] is the most similar to 
our coarse-grain design style in that it uses a coarse-grained 

micropipeline with bundled-data signaling, uses a commercial 
standard cell library, begins with a clocked netlist and replaces 
the global clock network.  The micropipelined implementation 
uses four-phase control [9] built from standard cells.  For the 
DLX processor implementation (without forwarding) described in 
[10], the asynchronous design has equivalent area, performance 
and power consumption when compared to the clocked design.  
The main difference between our approaches is that the de-sync 
approach has not been shown to support the concept of early 
evaluation, which has the potential for increased performance. 
Another difference is that the de-sync approach splits all DFFs in 
the original netlist into master/slave components with separate 
control wrappers for each. This can result in an overhead-free 
(performance) asynchronous implementation of the clocked 
system if the master/slave delay is the same as the original DFF 
delay + setup time.   We initially tried this approach in [2] but 
abandoned it in the standard cell designs as we found that using 
available latches from the Artisan standard cell library resulted in 
a higher performance penalty than just using a single DFF and 
satisfying the setup time penalty.  The choice of a master/slave 
latch approach versus a DFF approach is highly dependent on 
available latch and DFF designs in a given commercial standard 
cell library.  

Null Convention Logic (NCL) [8] is a fine-grain, delay-
insensitive, four-phase approach that allows the use of a 
commercial synthesis tool for mapping combinational logic to a 
netlist of NCL gates.  Registers and acknowledgement logic are 
specified separately from the combinational logic register transfer 
level (RTL) VHDL specification.  Delay insensitivly between 
NCL gates is achieved by a TRUE, FALSE, NULL dual rail 
signaling method. This approach has a minimum 2X area penalty, 
requires the use of a custom library that implements the NCL 
logic family, and has a fairly high performance penalty when 
compared to a clocked implementation. There is no equivalent to 
early evaluation in the NCL approach.  

4. The Coarse-Grain PL Methodology 
 

4.1 Tool Flow 
Figure 6 illustrates the PL coarse-grain methodology flow. 
Synopsys is used for RTL synthesis and static timing.  The 
custom tools in the flow are: 
pl_partitioner: The principle function of this tool is to insert slack 
matching buffers into the netlist as specified by an external 
configuration file. In the clocked system, a slack-matching buffer 
is simply a combinational buffer on all signals between two 
blocks.   In the PL implementation, a PL control wrapper is 
placed around this block and thus it functions as an intermediate 
storage location for data tokens. A slack-matching buffer can 
improve performance in some cases if a block output feeds 
several other blocks that complete at different times.  Having this 
tool automatically insert the slack-matching buffer frees the user 
from having to ‘pollute’ their top level RTL with slack buffers.  
The output netlist can still be simulated as a clocked netlist.  An 
automated partitioning capability is planned for future versions 
that would partition a flat netlist into blocks for PL wrapper 
encapsulation.  This tool is implemented in C and has been tested 
under Linux Redhat 7.3 and Sun Solaris. 



pl_mapper: This tool automatically generates the PL control 
wrappers and the control signal network based upon the clocked 
netlist. This is the heart of the PL methodology, and this tool 
shares common code with the fine-grain methodology.  
This tool is implemented in C and has been tested under Linux 
Redhat 7.3 and Sun Solaris. 
A perl script called plcg_timing.pl is used to perform the timing 
analysis for each block using Synopsys static timing.  The overall 
flow is controlled by a top level perl script called plcg_make.pl. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: PL Coarse-Grain Methodology Flow 
 

4.2 Designer Responsibilities 
Aside from providing clocked RTL, designer responsibilities for 
producing a working PL system are: 
(1) The top-level RTL must contain the components that define 
the blocks to be encapsulated by PL wrappers.  Currently there is 
no automated partitioning capability in the PL methodology. 
(2) Early evaluation opportunities must be identified by the 
designer.  In the PL MIPS, early evaluation was used in blocks 
with inputs from external memory and/or branch PC as these 
inputs were not often required, and had longer latency compared 
to other inputs.   The designer must identify a single output port 
from the block that is a ‘1’ when the block early evaluates.  RTL 
code must be added to the block to support this function (in many 

cases, the logic function is already available).  More details on 
early evaluation are provided in [2].   
(3) The designer must identify locations of slack matching buffers 
via a configuration file provided to the pl_partition tool.    
 

4.3 PL Control Wrappers 
Two standardized control wrappers are used for PL blocks – one 
that supports early evaluation and one that does not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: PL Control Wrapper (no early eval) 
Figure 7 shows the PL control wrapper used for non-early 
evaluation blocks and it’s interface to the datapath block.  This is 
simply a variation on the traditional control used for 
micropipelines [11]. Each delay block for a phase input is chosen 
to match the datapath delay of the corresponding data bundle. The 
delay block is a chain of delay cells where the delay cell is 
provided as a standard cell by the Artisan library.  Initially, a 
Muller C-element and XOR gate was used to produce the gating 
signal for the output latches. The C-element is mapped to a 
standard cell implementation as described in [6]; no monolithic C-
element is available in the Artisan library. This combination was 
found to be slow (especially the XOR gate), and was replaced in 
the final design by the logic in the lower half of the figure.  Fast 
control is helpful when the compute function delay for a 
particular phase input is lower than the control path delay, which 
occurred in some instances.   In barrier blocks, the latches shown 
in the datapath block section are replaced by the DFFs in the 
original clocked netlist. If a barrier block has outputs that loop 
back to the compute function (which is usually the case), then that 
barrier block has a feedback to itself with a delay equal to the 
longest delay of the loopback path through the compute function. 

Figure 5 shows the PL control wrapper with early evaluation 
capability. A normal fire occurs when EE_sel = ‘0’ after all inputs 
have arrived; both output phase and feedback phase signals are 
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updated. An early fire occurs when EE_sel = ‘1’ and all inputs 
have arrived to the trigger phase C-element; this updates the 
output phase but not the feedback phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: PL Control Wrapper with Early Evaluation 
After an early fire, the feedback output phase is updated once all 
of the late inputs (Phs_1 – Phs_N) arrive. The Fb_Phase C-
element provides this value; note that this C-element has no delay 
blocks, as these delays do not have to be satisfied once the output 
has been updated.  This provides a fast path for feedback once all 
inputs have arrived. However, new Phs_1–Phs_N inputs could 
arrive while old inputs are still traversing delay blocks, causing 
input hazards to the Late_Phase C-element.  
 
 
 
 
 
 
 
 
 
 

Figure 9: DlyKill Block Internals 
To avoid this problem, the DlyKill block uses two delay chains 
internally as shown in Figure 6. The toggling of the Fb_C signal 
routes the a input between the two delay blocks so that one delay 
block is ‘recovering’ while the other delay block is ‘active’. 
Normal operation is either a+  → N1+  (sel = 1) or a- → N0-  (sel 
= 0 ) where the full delay chain penalty is used.  An early fire can 

cause sel to change while the a transition is still within dly1 or 
dly0.  A change in sel chooses the opposite delay path, whose 
value is the normal arrival value for the previous delay path.  
Providing early feedback before the late C-element fires means 
that the late C-element has to be an input to the trigger and all-
arrived C-elements to prevent firing of these C-elements before 
the late C-element has caught up to these states.   The EEsel 
latching logic (detail not shown) holds the EEsel signal stable as 
long as the late C-element and trigger C-element states are not 
equal to each other. 

5. Design Examples 
 
Mapping and simulation results for a MIPs-subset CPU and a 
double-precision floating point clipping operator are presented 
here.  Simulation results are from a gate level Verilog simulation 
using pre-layout back-annotated SDF generated by Synopsys 
 

5.1 A MIPs-subset CPU  
The PL coarse-grain methodology was first discussed in [2] and 
applied to the same MIPs-compatible CPU.   In that design, the 
logic was synthesized to four-input lookup tables (LUT4s), the 
control wrappers used behavioral models, the register file used a 
behavioral model, timings did not account for output loading, and 
no timing margins were assumed for either the PL or clocked 
netlists.  In this CPU implementation, all logic has been mapped 
to an Artisan standard cell library targeted for an IBM 0.13µ 
technology.  The register file is implemented using the Artisan 
two-port register file generator.  
Figure 10 shows the CPU architecture. Behavioral models were 
used for instruction and data memories.  Labeled through blocks 
contain only combinational logic. The unlabeled through blocks 
are buffers added automatically by the mapping tool to break 
connections between barrier blocks. A Verilog model with full 
timing as produced by the Artisan two-port register file generator 
was used for the rfcore block.  A custom PL wrapper was 
designed for the rdport and writeport blocks to interface to the 
rfcore, space constraints prevent its inclusion in the figures. The 
connections in Figure 7 indicate the phase signal connections 
between blocks; feedback connections are not shown as most 
blocks provide feedback to their immediate predecessor. 
However, feedback is not required in all cases. For example, the 
incpc block does not provide feedback to the PC block as these 
phase signals are part of a naturally occurring loop that contains 
one barrier block.  Also, fanout from one block to multiple blocks 
use the same phase/data bundle even though separate connections 
are show in the figure.  The idpipe block provides the same 
phase/data bundle to the add/shift/log blocks; this phase/data 
bundle is not duplicated.  However, separate feedbacks are 
required for these three fanouts. 
Early evaluation is used as follows: 

• The PC block fires early if the branch PC computation  
(bpc block) is not required. 

• The idpipe block (decode stage) fires early if the new 
operands for the execute stage do not require either a 
data memory value or a forwarded value from the ALU 
output (exep2 block).  
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• The add block fires early if the operation is not an add 
or subtract. The shift block fires early if the operation is 
not a shift operation.  The add and shift blocks only 
have one input, so this use of early evaluation is simply 
a bypass operation. 

• The memdff block fires early if a data memory operation 
is not required. 

Slack matching buffers were used on the output of the decode 
block as it fans out to multiple destinations which finish at 
different times.  These buffers further de-synchronize the firing of 
the blocks, improving throughput.  
Because of the use of latches in through blocks, time borrowing 
can be used between two through blocks or between a through 
block and a barrier block if the data delay in one block is less than 
the control path delay. Time borrowing was used across block 
pairs add/exep2, shift/exep2, log/exep2, incpc/pc, decode/ifetch, 
and in the through block between the rdport and idpipe blocks.  
Time borrowing is performed automatically by the mapper 
between a source block and a destination block if the destination 
block is not an early evaluation block, has only one control input, 
and if the data delay is less than the control delay in the 
destination block. 

5.2 CPU Performance Results, Area Values 
Table 1 gives the performance results of the PL CPU compared to 
the clocked CPU for five benchmark programs. A number > 1.0 
for the PL/CLK ratio means that the PL design had slowdown 
compared to the clocked design; all benchmark programs had 
slowdown for the PL versus the clocked design. The simulations 
used a gate-level Verilog netlist with Synopsys-generated pre-
layout timing delays.  Synopsys static timing reported the 
register-to-register critical path of the clocked design as 2170 ps;  

to this value was added a 3% clock skew budget of 65 ps for a 
total clock period of 2235 ps.  For the PL netlist, a target timing 
margin of 20% was specified for delay chain generation, with a 
10% minimum timing margin allowed for failure flagging for 
margin checking in the 2nd timing pass.  The minimum margin 
reported for any path after 2nd pass timing was 12%.  All 
benchmarks were written in C and compiled using gcc. 
The non-reordered code used the assembly code unchanged as 
produced by the gcc compiler. The reordered code used manual 
reordering of code sequences in critical loops increasing early 
evaluation opportunities as reported in [2].  An example code 
reordering is show below, where both sequences give equivalent 
results, but the bne instruction in Sequence B does not require 
operand forwarding from the exep2 block, resulting in faster 
execution. 
 addi   r4,r4,1 

 slti   r2, r2, 8 
 bne    r2, r0, L10 
 

slti   r2, r2, 8 
addi   r4,r4,1 

      bne    r2, r0, L10 
 
The fastest instructions were logical operations that did not 
require operand forwarding from the exep2 block.  The CRC 
reordered benchmark had the highest speedup because it had the 
largest number of logical operations and fewest operand-
forwarding requirements.  
In [2], an average speedup of 41% for PL versus Clocked was 
obtained for the reordered benchmarks using the generic LUT4 
technology.  Reasons for the slowdown in the standard cell MIPs 
are: 
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Figure 10: CPU Architecture Diagram
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• No timing margin was used for the results presented in [2]. 

• In [2], the simulation did not take into account the effect of 
loading on nets; all cell delays were fixed regardless of 
output loading. 

• Output latch delay and control path delay were significantly 
underestimated for the behavioral models used for the 
wrapper logic in [2]. 

The results presented in [2] can be viewed as an estimation of the 
maximal speedup that could be obtained if extremely low latency 
latches/DFFs and highly optimized control was used in the design 
in the wrapper logic. 
 

Table 1: Benchmark Performance Results 
Benchmark PL/CLK 

(noEE) 
PL/CLK  
(EE,non-
reordered) 

PL/CLK  
(EE,reordered) 

fibonnaci 1.29 1.12 1.12 

bubblesort 1.29 1.16 1.15 

crc  1.29 1.12 1.07 

sieve 1.29 1.18 1.15 

matrix 
transpose 

1.29 1.19 1.16 

average 1.29 1.15 1.13 

 
The performance numbers are disappointing in that the PL CPU 
has slowdown compared to the clocked design.   However, the 
slowdown is not prohibitive from considering this approach as a 
viable alternative to a global clock distribution network. 
Table 2 shows that the PL design has an increase of 47% in active 
cell area as reported by Synopsys.  The clocked design area figure 
does not include any area required by the global clock network, 
and neither figure includes interconnect area. 

Table 2: Area Results 

Design Cell Count Cell area % area 
increase 

Clocked 9183 169854  

PL 14983 249570 47% 

 

5.3 Double-Precision Floating Point Clip 
 
A double precision floating point clip operation defined as: 
     if ( A < low_bound)  then  

           Y := low_bound   
       elsif (A < high_bound) then 
           Y := A; 
       else  Y := high_bound; 
was implemented in several ways and mapped to both UMC 
0.18µ and Artisan /IBM 0.13µ standard cell libraries.  Figure 11 
shows the variations 

a. Multi-cycle FSM, implemented as one barrier block. 
The FSM had four states; two states for loading values 
for high and low bounds, and two for computing the 
clip value.  The result was available in two or three 
clocks, depending on if it was out of bounds are not. 

b. Same as (a), except early evaluation was used based on 
the sign bits of the high/low bound values and the input 
value. 

c. Same as (a), except logic was split into a barrier block 
and a through block.  

d. Same as (c), except EE was used in the same manner as 
(b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: DP FP Clip variations 
 

e. Same as (d), except a slack buffer was added. 
f. Three stage pipeline, with a new input value every 

clock. The first stage had a simple two-state FSM that 
input the low/high bound values, and accepted a new 
data input value every clock during computation. The 
second stage did low bound comparison, the third stage 
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high bound comparison. The top-level netlist contained 
three mixed DFF/combinational logic blocks, which 
were mapped to three barrier blocks, with splitter blocks 
inserted automatically by mapping tool to break barrier-
to-barrier gate paths. 

g. Same as (f), but the top-level netlist was partitioned into 
5 blocks, with the stage2 and stage3 blocks of (f) split 
into combinational and sequential components. This 
resulted in no barrier-to-barrier gate paths, so splitter 
blocks were not inserted. Also, the mapper took 
advantage of available time borrowing between the thru 
and barrier blocks when creating delay chains for the 
thru blocks. 

h. Same as (g), but early evaluation used for low/high 
bound comparisons based on both sign bits and 
exponent fields. The early evaluation computation 
conditions was done in the first stage and then passed to 
the successive stages  

 
Table 3 (after references) shows the mapping and simulation 
results for the Artisan 0.13µ and UMC 0.18µ libraries.  The 
designs were tested with 1000 vectors of randomly generated 
numbers between the values of +/- 15.0, with low and high 
bounds of +/- 5.0.   Approximately 2/3 of the input numbers were 
clipped. 
The most interesting aspect of the numbers in Table 3 is the 
disparity in the PL/CLK area/speed comparisons between the 
Artisan and UMC libraries.  For the UMC 0.18µ libraries, the EE 
versions of the PL designs achieved speedup; for Artisan libraries, 
no speedup was obtained.  The reason for this disparity is that the 
Artisan designs had much shorter combinational paths in terms of 
total gates as a result of more efficient technology gate mapping.  
The longer combinational paths in the UMC designs reduced the 
effective DFF and latch delay overhead in those netlists. This 
reinforces the point that low latency DFFs and latches in 
micropipeline designs can significantly increase performance.   
Neither Artisan or UMC had particularly fast DFFs; in both 
libraries the ratio of DFF clock-to-Q delay to a typical gate delay 
was a 4X to 5X factor. 
The effect of partitioning at the top level is seen in the 
performance difference between designs (f) and (g) for the 
Artisan library. In design (f), the three blocks at the top level were 
all barrier blocks, which forced the insertion of splitter blocks by 
the mapping tool to break barrier-to-barrier block paths.  In design 
(g), the top level included combinational blocks between stages. 
This removed the need for splitter block insertion, and also 
allowed the mapper to take advantage of time borrowing between 
the thru and barrier blocks during delay block creation. 

6. CONCLUSIONS 
This paper describes the first coarse-grain PL designs mapped to 
commercial standard cell libraries.  These results show that more 
work needs to be done in terms of improving wrapper designs, 
adding automatic partitioning of top level netlists to remove the 
partitioning burden from the designer, and experimentation with 
larger designs. 

7. REFERENCES 
[1] Linder, D.H. and Harden J.C. 1996. Phased Logic: 

Supporting the Synchronous Design Paradigm with Delay-
insensitive Circuitry, IEEE Transactions on Computers, Vol. 
45, No 9, 1031-1044. 

[2] Reese. R.B., Thornton, M.A., and Traver, C. A Coarse-
grained Phased Logic CPU, Ninth International Symposium 
on Advanced Research in Asynchronous Circuits and 
Systems (ASYNC 2003), Vancouver, BC, Canada, May 
2003, pp 2-13. 

[3] Wallander, W.  A VHDL Implementation of a MIPS, Project 
Report, Dept. of Computer Science and Electrical 
Engineering, Luleå University of Technology, 
http://www.ludd.luth.se/~walle/projects/myrisc. 

[4] Commoner, F., Holt, A.W, Even, S., and Pneuli, A. 1971. 
Marked Directed Graphs, Journal Computer and System 
Sciences, Vol. 5, No 5, 511-523. 

[5] Reese. R.B., Thornton, M.A., and Traver, C.  A Fine-grain 
Phased Logic CPU. In Proceedings of the IEEE Computer 
Society Annual Symposium on VLSI, Tampa, FL, February 
2003, 70-79. 

[6] Wuu, Toy-Yung Wuu and Vrudhula, S. B. A Design of a 
Fast and Area Efficient Multi-Input Muller C-element, IEEE 
Transactions on Very Large Scale Integration (VLSI) 
Systems, Vol 1, No. 2, June 1993. 

[7] Reese, R.B., Thornton, M.A., and Traver, C. Arithmetic 
Logic Circuits using Self-timed Bit-Level Dataflow and 
Early Evaluation, In Proceedings of the International 
Conference on Computer Design,  Austin, Texas, September 
2001, 18-23. 

[8] Ligthart, M., Fant, K., Smith, R., Taubin, A., and 
Kondratyev, A. Asynchronous Design Using Commercial 
HDL Synthesis Tools, In Proceedings of the Seventh 
International Symposium on Asynchronous Circuits and 
Systems, Eilat, Israel, April 2000, 114-125. 

[9] Furber, S. and Day P. Four-phase micropipeline latch control 
circuits, In IEEE Transactions on VLSI Systems, Vol. 4, No. 
2, June 1996, 247-253. 

[10] Blunno I., Cortadella J., Kondratyev A., Lavagno L., Lwin 
L., and Sotiriou, C. Handshake Protocols for de-
synchronization, In Proceedings of the Tenth International 
Symposium on Asynchronous Circuits and Systems, Crete, 
Greec, April 2004, 149-158. 

[11] I. Sutherland, Micropipelines, Communications of the ACM, 
Vol 32, No. 6, June 1989, pp. 720-738. 

[12] A.Yakovlev, M. Kishinevskh, A. Kondratyev, L. Lavagno, 
“On the models for asynchronous circuit behavior with OR 
causality”, Technical Report Series No. 463, Computing 
Science, University of Newcastle upon Tyne, November 
1993. 

 



Table 3:  DP FP Clip Operator Mapping/Simulation Results 

IBM 0.13 cells area
PL/clk 
(area)

clk cyc 
(ps) finish(ns)

PL/Clk 
(time)

Min. 
Margin

Borrow 
Margin

a. Mcycle clk 2332 38075 2359 6725
(1 blk) PL 2456 39912 1.05 n/a 8322 1.24 11.4% n/a
b. Mcycle clk 2441 39254 2225 6343
(1blk, EE) PL 2564 42621 1.09 n/a 6540 1.03 13.3% n/a
c. Mcycle clk 2266 36446 1483 4230
(2 blk) PL 2678 42306 1.16 n/a 5151 1.22 14.4% n/a
d. Mcycle clk 2266 36446 1483 4230
(2 blk + EE) PL 2753 42801 1.17 n/a 5031 1.19 17.4% n/a
e. Mcycle clk 2266 36446 1483 4230
(2 blk + EE, buff) PL 3613 55568 1.52 n/a 4865 1.15 17.4% n/a
f. 3-stg pipe clk 2822 50152 1411 1421
(3 blks+2 splitter) PL 4396 72878 1.45 n/a 2219 1.56 13.2% n/a
g. 3-stg pipe clk 2902 50102 1411 1422
(5 blks, time brw) PL 3898 62518 1.25 n/a 2038 1.43 16.1% 10.9%
h. 3-stg pipe clk 2902 50102 1411 1424

(5 blks, time brw,EE) PL 4020 63190 1.26 n/a 1884 1.32 16.1% 15.5%

UMC 0.18
a. Mcycle clk 1920 63200 4542 12954
(1 blk) PL 2031 73441 1.16 n/a 15922 1.23 19.7% n/a
b. Mcycle clk 1872 62683 3801 10838
(1blk, EE) PL 2016 74229 1.18 n/a 9114 0.84 16.4% n/a
c. Mcycle clk 2091 65025 4274 12198
(2 blk) PL 2414 84162 1.29 n/a 15424 1.26 22.3% n/a
d. Mcycle clk 2091 65025 4274 12198
(2 blk + EE) PL 2493 89276 1.37 n/a 10375 0.85 18.3% n/a
e. Mcycle clk 2091 65025 4274 12198
(2 blk + EE, buff) PL 3149 113890 1.75 n/a 9914 0.81 18.3% n/a
f. 3-stg pipe clk 2295 82481 4110 4143
(5 blks) PL 3488 135113 1.64 n/a 5810 1.4 16.9% n/a
g. 3-stg pipe clk 2548 84862 4110 4145
(5 blks, time brw) PL 3405 126904 1.50 n/a 5730 1.38 29.3% 20.2%
h. 3-stg pipe clk 2548 84862 4110 4149
(5 blks, time brw,EE) PL 3535 135364 1.60 n/a 3434 0.83 20.4% 15.3%


