
A Standard Cell Implementation of a Phased Logic CPU
Robert B. Reese

Mississippi State University
Electrical & Computer Engr.

reese@ece.msstate.edu

Mitch A. Thornton
Southern Methodist University
Computer Science and Engr.

mitch@engr.smu.edu

Cherrice Traver
Union College

Electrical & Computer Engr.

traverc@doc.union.edu

ABSTRACT
This paper describes an asynchronous design tool flow known as
Phased Logic that converts a clocked design into an asynchronous
design implemented as a micropipeline using two-phase control
and bundled data signaling. Example designs include variations
of a double-precision floating point clipping operation mapped to
UMC 0.18µ and Artisan /IBM 0.13µ standard cell libraries, and a
five-stage pipelined MIPs-compatible integer unit mapped to the
Artisan/IBM 0.13µ library. The design styles includes a feature
known as early evaluation, which is a generalized form of bypass,
that allows the self-timed design to recover some of the inherent
latch delay penalty in micropipelines.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits] Types and Design Styles –
microprocessors and microcomputers; B.6.1 [Logic Design] –
Design Styles

General Terms
Design, Performance.

Keywords
Asynchronous, Phased Logic, micropipeline, self-timed, two-
phase, microprocessors.

1. INTRODUCTION
Proponents of self-timed design have repeatedly touted
advantages such as lower EMI signatures, lower power, and
control scalability over traditional clocked designs. However,
there is no asynchronous methodology that can claim mainstream
success; instead asynchronous designs have been relegated to
niche applications. The reason for this lack of wide acceptance
has been that most asynchronous methodologies have one or more
disadvantages that outweigh any advantages. Barriers to adopting
an asynchronous methodology are:

• Area – delay insensitive approaches have a 2X to 3X
area increase due to the required dual-rail routing.

• Performance – micropipeline approaches add extra
latency in the critical path, resulting in a performance

penalty. Other approaches use fine grain cells that are
more complex and slower than typical standard cells,
resulting in a performance slowdown.

• Tool Support – many asynchronous methodologies
require new languages and/or new tool chains, requiring
a substantial investment in design engineer retraining.

• Custom libraries – many asynchronous methodologies
require custom cell libraries and cannot use the same
commercial standard cell libraries used for clocked
designs.

Phased Logic (PL) [1] [2] is a self-timed design methodology that
avoids significant penalties in the above areas, and offers the
typical advantages of other asynchronous approaches. This paper
describes the first PL netlists that have been mapped to a
commercial standard cell netlist. The example designs are a five-
stage pipelined MIPS-compatible integer-unit [3] and double-
precision floating-point clip operation. The CPU implementation
uses an Artisan standard cell library and register file generator
designed for an IBM 0.13µ technology. The clip operation is
mapped to both Artisan 0.13µ and UMC 0.18µ libraries. No
extra cells were added to either the Artisan or UMC libraries even
though this could have increased the efficiency of the PL
implementation. A PL implementation is a two-phase
micropipelined system that uses bundled-data signaling. A PL
netlist is produced by an automated translation from the clocked
netlist, which allows the designer to use familiar languages and
tools for producing the clock design. The performance penalty in
the micropipeline due to the additional latch latency on blocks can
be reduced by a technique known as early evaluation. This
technique allows blocks in the micropipeline to evaluate on
arrival of a subset of the inputs, increasing the amount of parallel
activity in the micropipeline, which improves performance. The
use of bundled data signaling keeps the area penalty to
approximately a 50% increase in active cell area, which does not
include the area required by the global clock network.

2. PHASED LOGIC
A PL netlist is a two-phase micropipeline system whose
distributed control network is automatically generated from a
clocked netlist. This transformation uses marked graph theory [4]
to produce a PL netlist that is both live and safe. The control
network only replaces the global clock network; the original logic
of the clocked design is retained. Two distinct implementation
technologies are supported, fine-grain and coarse-grain. The
fine-grain approach [5] uses a one-to-one mapping of gates in the
clocked system to PL gates that use a 4-input Lookup-Table
(LUT4) as the logic element with delay-insensitive dual-rail
routing between gates. This technology forms the basis for the

implementation of a self-timed FGPA. Because all routing
between gates is delay-insensitive, there are no timing
mechanisms external to a PL gate that can cause a failure due to
timing. The coarse-grain approach used in this paper maps groups
of gates in the clocked netlist to the combinational compute
function of a PL block, with bundled data signaling used between
blocks. The combinational compute function of a coarse-grain PL
block can be implemented using a traditional standard cell library.
The coarse-grain technology is an ASIC approach to the
implementation of PL systems. All timing concerns in a coarse-
grain implementation are between local interconnected blocks;
there are no global mechanisms that can cause failure due to
timing.

2.1 The Clocked to PL Transformation
A marked graph is a directed graph consisting of edges, vertices,
and tokens. A vertex will fire if all input edges have a token
count that is positive; upon firing, the token count of all input
edges is decremented by one, and the token count of all output
edges is incremented by one. In a PL coarse-grain netlist, an edge
is represented by a data bundle that consists of multiple data wires
and one phase wire (similar to a “request” wire in other
asynchronous methodologies). The phase value can either be
EVEN (0) or ODD (1). Each PL block also contains an internal
state element called the block phase, which is either EVEN or
ODD. If the phase of an input edge matches the block phase, then
that edge is said to contain a token. A PL block will fire if all
input edges have tokens; firing toggles the internal gate phase,
and toggles all output phases. Upon firing, all data wires in
output bundles are updated with new values.

The starting point for a coarse-grain clocked-to-PL netlist
transformation is a hierarchical clocked netlist, in which the
components at the top level define the blocks that will have PL
control logic placed around them. If a block contains D-Flip-
Flops and combinational logic then it is designated as a barrier
block; if it contains only combinational logic then is it called a
through block. In the marked graph equivalent, a barrier block
will have an initial token on its output, and a through block will
not. The assignment of initial tokens is simply a netlist wiring
decision. Each PL block has a phase output that is the same value
as the internal gate phase, and a phase output that is the logical
negation of the gate phase. A connection between two blocks in
the clocked netlist designates an edge in the marked graph
equivalent. All signals between two blocks are placed in one data
bundle and assigned one phase wire. At reset, all block phases
are set to EVEN. Figure 1 shows the simplest possible PL
system, which consists of one barrier block and one through
block.

Figure 1: Two Block PL System

A marked graph is live if every edge belongs to a directed circuit
C that contains at least one token (m(C) > 1). A marked graph is
safe if every edge belongs to at least one directed circuit that
contains only one token (m(C) = 1). The vertices in a live and
safe marked graph will fire in a continuous cyclic manner. The PL
system in Figure 1 is both life and safe. Figure 2 shows a PL
system that has an edge that is not part of a directed circuit, which
means that block C will never fire after the initial firing. The
transformation process detects this liveness problem and adds an
additional control signal called a feedback (aka
acknowledgement) to make this edge part of a directed circuit
with a token count of one. A feedback signal does not have a data
bundle associated with it. The initial token marking rules do not
allow barrier-to-barrier block connections; a through block is
inserted automatically by the transformation process to break a
barrier-to-barrier block connection.

Figure 2: Adding Feedback

2.2 Early Evaluation
Early evaluation [7] allows a block to fire upon arrival of only a
subset of inputs. This increases the amount of parallel activity in
the graph, which increases performance. Inputs to an early
evaluation block are separated into early arriving inputs (Ei) and
late arriving inputs (Li). A logic function, called the trigger
function, which is based on the data bundles of the early inputs,
determines if the gate fires after all early inputs have arrived. An
early evaluation block has separate signals for output phase (Op)
and output feedback (Fo). In non-early evaluation blocks the
output phase also serves as the output feedback. The feedback
output is not updated until all inputs have arrived.

Figure 3. Normal Fire Case for EEnode
Figure 3 shows a two node marked graph model that used by the
mapping algorithm to represent an early evaluation block. All late
inputs terminate on the M node and all early inputs on the T node.

EVEN
EVEN
Barr.

Before Firing

After Firing

ODDEVEN
Thru

EVEN
EVEN
Barr.

EVEN
ODD
Thru

EVEN
EVEN
Barr.

Before Firing

After Firing

ODDEVEN
Thru

EVEN
EVEN
Barr.

EVEN
ODD
Thru

EVEN
Barr.

EVEN
Thru

EVEN
Barr.

Problem
edge

EVEN
Barr.

EVEN
Thru

EVEN
Barr. Feedback added

for liveness

A

B

C

A

B

C

EVEN
Barr.

EVEN
Thru

EVEN
Barr.

Problem
edge

EVEN
Barr.

EVEN
Thru

EVEN
Barr. Feedback added

for liveness

A

B

C

A

B

C

M

T
A

(a) Token
Arrival

M

T
A

(b) T Fires

Fo

M

T
A

(c) M Fires
Fi Fi Fi

Fo Fo

Ei

Li
Op

MM

TT
A

(a) Token
Arrival

MM

TT
A

(b) T Fires

Fo

MM

TT
A

(c) M Fires
Fi Fi Fi

Fo Fo

Ei

Li
Op

Feedback output originates from the M node; feedback input
terminates on the T node. We view an early evaluation block as
dynamically switching between two configurations: normal fire
and early fire. A normal fire occurs when the trigger function
evaluates to false; the output phase is updated after all inputs have
arrived and is viewed as originating from the M node as shown in
Figure 3. An early fire occurs when the trigger function evaluates
to true after all early inputs have arrived; the output phase is
updated and is viewed as originating from the T node as shown in
Figure 4. In the early fire case, the M-node fires after the T-node
fires, and after all late inputs have arrived. The firing of the M-
node updates the feedback output.

Figure 4. Early Fire Case for EEnode
Figure 5 shows an example of a marked graph model for a simple
PL netlist that includes an EEnode (Gb). A key question for PL
netlists with EEnodes is how to maintain liveness and safety.

Figure 5. Safety in PL netlist with EEnodes

In Figure 5(a), the graph is live and safe if the normal fire
configuration of the EEnode is used. However, using the early
fire configuration of Gb in Figure 5(b) makes the graph unsafe as
signals S1, A, and S2 are not part of a directed circuit C with
token count 1 (m(C) = 1). Figure 5(c) adds feedback signals F1,
F2, and F3 to make the graph live and safe. Two rules for
feedback insertion in the presence of EEnodes are evident from
Figure 5:
1. All late arriving signals into an EEnode must be part of a

directed circuit that includes the feedback output from the
EEnode as the feedback output is the only signal originating
from the M-node in the early-fire configuration.

2. At least one early input must be in a directed circuit that
includes the feedback output from the EEnode as this is the
only way to include the internal signal A of the EEnode in a
directed circuit in the early-fire configuration.

A third rule that is not as evident from Figure 5 is:
3. The output signal of an EEnode must be in a directed circuit

that either includes an early input, or a feedback input that
terminates on the T node. This ensures that the output signal
will be in directed circuit in either the normal or early fire
configurations.

It is clear than an EEnode represents a form of choice, and a
marked graph is defined as being choice-free. Different formal
methods for representing choice are Free-Choice petri-nets,
Change Diagrams, and Causal Logic nets [12]. However, using
one of these representations means that the simple properties of
liveness and safety of marked graphs are lost. So, how do we
keep a marked graph model, and yet still account for choice as
represented by an EEnode?
Let a marked graph consisting of a directed graph G and marking
mi be designated by (G, mi). The firing of a non-EE node simply
changes the marking, and the graph transitions from (G, mi) to
some (G, mk), where mk is the new marking of the marked graph.
It is well known that if a marked graph G with initial marking m0
is live and safe, than any marked graph (G, mi) reachable by a set
of node firings from (G, m0) is also live and safe.
However, the firing of an EEnode can change the graph, as the
non-feedback output edges of an EEnode can change their
origination points from the M node or the T node. In order to
keep the marked graph model in PL netlists with EEnodes, we
view a PL netlist as transitioning from a marked graph (G, mi) to
a new marked graph (G’, mj) any time an EEnode changes
configuration (from normal to early configuration, or vice-versa).
A configuration change occurs when the gate fires, and if the type
of firing (early or normal) is different from the previous firing. An
early-to-normal configuration change means the current fire is a
normal fire, and the previous fire was an early fire. A normal-to-
early configuration change means the current fire is an early fire,
and the previous fire was a normal fire. Our approach for making
a PL netlist with EEnodes live and safe is to make the marked
graph equivalent (G, m0) live and safe by adding appropriate
feedback signals and an initial marking, where each EEnode in
(G, m0) is represented by its early fire configuration. We then
claim that any combination of firings of non-EEnodes or EEnodes
results in a live and safe marked graph (G’, mi). We prove this
through two theorems.

A

Gd

Ga

Gb

Gc

S1

S4
S5

(b) Early Fire case, signals S1, A, S2 unsafe

T

M
S2

S3

A

Gd

Ga

Gb

Gc

S1

S4

S5

(c) Feedback added, all signals safe in
early fire case

T

M
S2

S3

A

Gd

Ga

Gb

Gc

S1

S4
S5T

M
S2

S3

F1
F2

F3

(a) Normal Fire case, all signals safe

Directed
cycles with
one token:

S1,S5,S2.

S4, A, S5, S3.

All signals
covered.

S1, A, S2 not
part of a
directed cycle
with one token

Directed
Cycles with
one token:

S1, F1.
S4, A, F3.
S4, S5, S3.
S2, F2.

All signals
covered.

A

GdGd

GaGa

Gb

GcGc

S1

S4
S5

(b) Early Fire case, signals S1, A, S2 unsafe

TT

MM
S2

S3

A

GdGd

GaGa

Gb

GcGc

S1

S4

S5

(c) Feedback added, all signals safe in
early fire case

TT

MM
S2

S3

A

GdGd

GaGa

Gb

GcGc

S1

S4
S5TT

MM
S2

S3

F1
F2

F3

(a) Normal Fire case, all signals safe

Directed
cycles with
one token:

S1,S5,S2.

S4, A, S5, S3.

All signals
covered.

S1, A, S2 not
part of a
directed cycle
with one token

Directed
Cycles with
one token:

S1, F1.
S4, A, F3.
S4, S5, S3.
S2, F2.

All signals
covered.

M

T
A

(a) Token Arrival

M

T
A

(b) T Fires
Fi Fi

Fo Fo

Li

Ei
Op

MM

TT
A

(a) Token Arrival

MM

TT
A

(b) T Fires
Fi Fi

Fo Fo

Li

Ei
Op

Theorem 1: From any marking mi reachable from (G, m0) by
non-EEnode firings or EEnode early firings, allow a single
EEnode ui to perform an early-to-normal configuration change.
The resulting graph (G’, mi’) is live and safe.
Proof: The only directed circuits C with m(C) = 1 affected by the
early-to-normal configuration change of ui are the ones containing
an output arc Op of EEnode ui as the predecessor node to Op is
now the M node instead of the T node. All of these directed
circuits now contain internal arc A as a result of the configuration
change. The configuration change resulted from the T node
firing, which places a token on arc A, so all of these circuits are
live, m(C) > 0. When the T node fired, the only arcs in these
directed circuits that could have contained a token are the arcs
incident upon the T node. The firing of the T node consumed
these tokens, so the token count of these directed circuits remain
unchanged, at m(C) = 1.
Theorem 1 can be trivially extended to cover any number of
nodes Uk performing early-to-normal configuration changes as
each directed cycle with m(C) = 1 can only have one node ready
to fire, so the cycles with m(C) =1 affected by an early-to-normal
configuration change are independent of any other nodes that
undergo the early-to-normal configuration change.
Thus, any graph (G’, mi’) reachable from (G, m0) by non-EE
node firings, EE node early firings, or EEnode early-to-normal
configuration changes is live and safe. The next theorem covers
normal-to-early configuration changes:

Theorem 2: From any marking mk’ reachable from graph (G’,
mi’) by non-EEnode firings, EEnode early firings or EE node
early-to-normal configuration changes, allow a single EEnode ui
to perform a normal-to-early configuration change. The resulting
graph (G’’, mk’’) is live and safe.
Proof: The only directed circuits C with m(C) = 1 affected by the
normal-to-early configuration change are the ones containing an
output arc Op of EEnode ui, as the predecessor node to Op is now
the T node instead of the M node. All these directed circuits now
no longer contain arc A as a result of the configuration change,
but they do still contain the output arc Op. The firing of the T
node that caused the normal-to-early configuration change places
a token on Op, so these directed circuits are live, m(C) > 0. As
these directed circuits have m(C) = 1 at the time of T node firing,
the only arcs in these directed circuits that could have contained a
token are the arcs incident upon the T node. The firing of the T-
node consumed these tokens, so the token count of these directed
circuits remain unchanged, at m(C) = 1. In the original graph (G,
m0), the A arc had to be covered by a directed circuit with m(C) =
1 that included a feedback output of the EEnode, and
configuration changes of the EEnode does not affect this cycle.
Theorem 2 can be trivially extended to cover any number of
nodes Uk performing normal-to-early configuration change by the
same reasoning used to extend Theorem 1. This means that
given a starting marked graph (G, m0) that is live and safe, then
any marked graph (G’, mi’) reachable by non-EEnode firings,
EEnode early firings, EEnode late firings, EE node early-to-late
or late-to-early configuration changes is also live and safe.

3. Related Work
The ‘de-sync’ self-timed design style [10] is the most similar to
our coarse-grain design style in that it uses a coarse-grained

micropipeline with bundled-data signaling, uses a commercial
standard cell library, begins with a clocked netlist and replaces
the global clock network. The micropipelined implementation
uses four-phase control [9] built from standard cells. For the
DLX processor implementation (without forwarding) described in
[10], the asynchronous design has equivalent area, performance
and power consumption when compared to the clocked design.
The main difference between our approaches is that the de-sync
approach has not been shown to support the concept of early
evaluation, which has the potential for increased performance.
Another difference is that the de-sync approach splits all DFFs in
the original netlist into master/slave components with separate
control wrappers for each. This can result in an overhead-free
(performance) asynchronous implementation of the clocked
system if the master/slave delay is the same as the original DFF
delay + setup time. We initially tried this approach in [2] but
abandoned it in the standard cell designs as we found that using
available latches from the Artisan standard cell library resulted in
a higher performance penalty than just using a single DFF and
satisfying the setup time penalty. The choice of a master/slave
latch approach versus a DFF approach is highly dependent on
available latch and DFF designs in a given commercial standard
cell library.

Null Convention Logic (NCL) [8] is a fine-grain, delay-
insensitive, four-phase approach that allows the use of a
commercial synthesis tool for mapping combinational logic to a
netlist of NCL gates. Registers and acknowledgement logic are
specified separately from the combinational logic register transfer
level (RTL) VHDL specification. Delay insensitivly between
NCL gates is achieved by a TRUE, FALSE, NULL dual rail
signaling method. This approach has a minimum 2X area penalty,
requires the use of a custom library that implements the NCL
logic family, and has a fairly high performance penalty when
compared to a clocked implementation. There is no equivalent to
early evaluation in the NCL approach.

4. The Coarse-Grain PL Methodology

4.1 Tool Flow
Figure 6 illustrates the PL coarse-grain methodology flow.
Synopsys is used for RTL synthesis and static timing. The
custom tools in the flow are:
pl_partitioner: The principle function of this tool is to insert slack
matching buffers into the netlist as specified by an external
configuration file. In the clocked system, a slack-matching buffer
is simply a combinational buffer on all signals between two
blocks. In the PL implementation, a PL control wrapper is
placed around this block and thus it functions as an intermediate
storage location for data tokens. A slack-matching buffer can
improve performance in some cases if a block output feeds
several other blocks that complete at different times. Having this
tool automatically insert the slack-matching buffer frees the user
from having to ‘pollute’ their top level RTL with slack buffers.
The output netlist can still be simulated as a clocked netlist. An
automated partitioning capability is planned for future versions
that would partition a flat netlist into blocks for PL wrapper
encapsulation. This tool is implemented in C and has been tested
under Linux Redhat 7.3 and Sun Solaris.

pl_mapper: This tool automatically generates the PL control
wrappers and the control signal network based upon the clocked
netlist. This is the heart of the PL methodology, and this tool
shares common code with the fine-grain methodology.
This tool is implemented in C and has been tested under Linux
Redhat 7.3 and Sun Solaris.
A perl script called plcg_timing.pl is used to perform the timing
analysis for each block using Synopsys static timing. The overall
flow is controlled by a top level perl script called plcg_make.pl.

Figure 6: PL Coarse-Grain Methodology Flow

4.2 Designer Responsibilities
Aside from providing clocked RTL, designer responsibilities for
producing a working PL system are:
(1) The top-level RTL must contain the components that define
the blocks to be encapsulated by PL wrappers. Currently there is
no automated partitioning capability in the PL methodology.
(2) Early evaluation opportunities must be identified by the
designer. In the PL MIPS, early evaluation was used in blocks
with inputs from external memory and/or branch PC as these
inputs were not often required, and had longer latency compared
to other inputs. The designer must identify a single output port
from the block that is a ‘1’ when the block early evaluates. RTL
code must be added to the block to support this function (in many

cases, the logic function is already available). More details on
early evaluation are provided in [2].
(3) The designer must identify locations of slack matching buffers
via a configuration file provided to the pl_partition tool.

4.3 PL Control Wrappers
Two standardized control wrappers are used for PL blocks – one
that supports early evaluation and one that does not.

Figure 7: PL Control Wrapper (no early eval)
Figure 7 shows the PL control wrapper used for non-early
evaluation blocks and it’s interface to the datapath block. This is
simply a variation on the traditional control used for
micropipelines [11]. Each delay block for a phase input is chosen
to match the datapath delay of the corresponding data bundle. The
delay block is a chain of delay cells where the delay cell is
provided as a standard cell by the Artisan library. Initially, a
Muller C-element and XOR gate was used to produce the gating
signal for the output latches. The C-element is mapped to a
standard cell implementation as described in [6]; no monolithic C-
element is available in the Artisan library. This combination was
found to be slow (especially the XOR gate), and was replaced in
the final design by the logic in the lower half of the figure. Fast
control is helpful when the compute function delay for a
particular phase input is lower than the control path delay, which
occurred in some instances. In barrier blocks, the latches shown
in the datapath block section are replaced by the DFFs in the
original clocked netlist. If a barrier block has outputs that loop
back to the compute function (which is usually the case), then that
barrier block has a feedback to itself with a delay equal to the
longest delay of the loopback path through the compute function.

Figure 5 shows the PL control wrapper with early evaluation
capability. A normal fire occurs when EE_sel = ‘0’ after all inputs
have arrived; both output phase and feedback phase signals are

Phs_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
C

Reset

Ophase
Dly1

? ?

Feedback_in

Data_outClr

Pre

Reset (if needed)

Preset (if needed)

Block
Phasek

DlyN

Data_bndl_N
?

GC

Ophs_ip

OphsPhs_1

I[N]

I[1]
I[N]

NOR Tree

AND Tree

Reset (high true)

0

I[1]
1 GC

2/1 Mux

Reset

C element and XOR gate
replaced by

Ophs_ip
delay

Phs_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
C

Reset

Ophase
Dly1

? ?

Feedback_in

Data_outClr

Pre

Reset (if needed)

Preset (if needed)

Block
Phasek

DlyN

Data_bndl_N
?

GC

Ophs_ip

OphsPhs_1

I[N]

I[1]
I[N]

NOR Tree

AND Tree

Reset (high true)

0

I[1]
1 GC

2/1 Mux

Reset

C element and XOR gate
replaced by

Ophs_ip
delay

Clocked RTL (VHDL/Verilog)

Synthesis (Synopsys)

Hier. VHDL
and EDIF
netlist

Slack Buffers,
Early Evaluation
pin ID.

One-level Hier. EDIF
(blks contain std cells).

Partitioner

PL Mapper –
generate control

network

Synthesis of control
wrappers (Synopsys)

1st Pass Timing Analysis

PL Mapper –
regenerate control
w/delay elements

Commercial Tool

Custom Tool

Synopsys Static Timing

Hier. VHDL and EDIF
Synthesis of control
wrappers (Synopsys)

2nd Pass Timing Analysis

Synopsys Static Timing

Margin Report

Clocked RTL (VHDL/Verilog)

Synthesis (Synopsys)

Hier. VHDL
and EDIF
netlist

Slack Buffers,
Early Evaluation
pin ID.

One-level Hier. EDIF
(blks contain std cells).

Partitioner

PL Mapper –
generate control

network

Synthesis of control
wrappers (Synopsys)

1st Pass Timing Analysis

PL Mapper –
regenerate control
w/delay elements

Commercial Tool

Custom Tool

Synopsys Static Timing

Hier. VHDL and EDIF
Synthesis of control
wrappers (Synopsys)

2nd Pass Timing Analysis

Synopsys Static Timing

Margin Report

updated. An early fire occurs when EE_sel = ‘1’ and all inputs
have arrived to the trigger phase C-element; this updates the
output phase but not the feedback phase.

Figure 8: PL Control Wrapper with Early Evaluation
After an early fire, the feedback output phase is updated once all
of the late inputs (Phs_1 – Phs_N) arrive. The Fb_Phase C-
element provides this value; note that this C-element has no delay
blocks, as these delays do not have to be satisfied once the output
has been updated. This provides a fast path for feedback once all
inputs have arrived. However, new Phs_1–Phs_N inputs could
arrive while old inputs are still traversing delay blocks, causing
input hazards to the Late_Phase C-element.

Figure 9: DlyKill Block Internals
To avoid this problem, the DlyKill block uses two delay chains
internally as shown in Figure 6. The toggling of the Fb_C signal
routes the a input between the two delay blocks so that one delay
block is ‘recovering’ while the other delay block is ‘active’.
Normal operation is either a+ → N1+ (sel = 1) or a- → N0- (sel
= 0) where the full delay chain penalty is used. An early fire can

cause sel to change while the a transition is still within dly1 or
dly0. A change in sel chooses the opposite delay path, whose
value is the normal arrival value for the previous delay path.
Providing early feedback before the late C-element fires means
that the late C-element has to be an input to the trigger and all-
arrived C-elements to prevent firing of these C-elements before
the late C-element has caught up to these states. The EEsel
latching logic (detail not shown) holds the EEsel signal stable as
long as the late C-element and trigger C-element states are not
equal to each other.

5. Design Examples

Mapping and simulation results for a MIPs-subset CPU and a
double-precision floating point clipping operator are presented
here. Simulation results are from a gate level Verilog simulation
using pre-layout back-annotated SDF generated by Synopsys

5.1 A MIPs-subset CPU
The PL coarse-grain methodology was first discussed in [2] and
applied to the same MIPs-compatible CPU. In that design, the
logic was synthesized to four-input lookup tables (LUT4s), the
control wrappers used behavioral models, the register file used a
behavioral model, timings did not account for output loading, and
no timing margins were assumed for either the PL or clocked
netlists. In this CPU implementation, all logic has been mapped
to an Artisan standard cell library targeted for an IBM 0.13µ
technology. The register file is implemented using the Artisan
two-port register file generator.
Figure 10 shows the CPU architecture. Behavioral models were
used for instruction and data memories. Labeled through blocks
contain only combinational logic. The unlabeled through blocks
are buffers added automatically by the mapping tool to break
connections between barrier blocks. A Verilog model with full
timing as produced by the Artisan two-port register file generator
was used for the rfcore block. A custom PL wrapper was
designed for the rdport and writeport blocks to interface to the
rfcore, space constraints prevent its inclusion in the figures. The
connections in Figure 7 indicate the phase signal connections
between blocks; feedback connections are not shown as most
blocks provide feedback to their immediate predecessor.
However, feedback is not required in all cases. For example, the
incpc block does not provide feedback to the PC block as these
phase signals are part of a naturally occurring loop that contains
one barrier block. Also, fanout from one block to multiple blocks
use the same phase/data bundle even though separate connections
are show in the figure. The idpipe block provides the same
phase/data bundle to the add/shift/log blocks; this phase/data
bundle is not duplicated. However, separate feedbacks are
required for these three fanouts.
Early evaluation is used as follows:

• The PC block fires early if the branch PC computation
(bpc block) is not required.

• The idpipe block (decode stage) fires early if the new
operands for the execute stage do not require either a
data memory value or a forwarded value from the ALU
output (exep2 block).

Phase_1

Phase_N

Phase_k

Data_bndl_1
?

Data_bndl_N

Phase

Phase_n

DKill

?

EEval
function

Data_bndl_j
?

Data_bndl_k

?

C
Dly

Phase_j

Late

0

1

k

DKill

C

Dly

Trigger

Compute
Function

D Q

G
? ?

DoutClr

Pre

Reset (if needed)

Preset (if needed)

gC

EE_sel

D Q
Q

Clr
C

Reset

C
Phase_1

Phase_N

1

0

All arrived

feedback

feedback_n

EE Lat

Phase_1

Phase_N

Phase_k

Data_bndl_1
?

Data_bndl_N

Phase

Phase_n

DKill

?

EEval
function

Data_bndl_j
?

Data_bndl_k

?

C
Dly

Phase_j

Late

0

1

k

DKill

C

Dly

Trigger

Compute
Function

D Q

G
? ?

DoutClr

Pre

Reset (if needed)

Preset (if needed)

gC

EE_sel

D Q
Q

Clr
C

Reset

C
Phase_1

Phase_N

1

0

All arrived

feedback

feedback_n

EE Lat

sel = feedback

a
dc0

dc1

1

0

‘1’ on arrival
‘0’ on kill

‘0’ on arrival
‘1’ on kill

sel

Y
normal delay chainsel

dc0

dc1a

multiple sections for
long delay chains

sel = feedback

a
dc0

dc1

1

0

‘1’ on arrival
‘0’ on kill

‘0’ on arrival
‘1’ on kill

sel

Y
normal delay chainsel

dc0

dc1a

multiple sections for
long delay chains

• The add block fires early if the operation is not an add
or subtract. The shift block fires early if the operation is
not a shift operation. The add and shift blocks only
have one input, so this use of early evaluation is simply
a bypass operation.

• The memdff block fires early if a data memory operation
is not required.

Slack matching buffers were used on the output of the decode
block as it fans out to multiple destinations which finish at
different times. These buffers further de-synchronize the firing of
the blocks, improving throughput.
Because of the use of latches in through blocks, time borrowing
can be used between two through blocks or between a through
block and a barrier block if the data delay in one block is less than
the control path delay. Time borrowing was used across block
pairs add/exep2, shift/exep2, log/exep2, incpc/pc, decode/ifetch,
and in the through block between the rdport and idpipe blocks.
Time borrowing is performed automatically by the mapper
between a source block and a destination block if the destination
block is not an early evaluation block, has only one control input,
and if the data delay is less than the control delay in the
destination block.

5.2 CPU Performance Results, Area Values
Table 1 gives the performance results of the PL CPU compared to
the clocked CPU for five benchmark programs. A number > 1.0
for the PL/CLK ratio means that the PL design had slowdown
compared to the clocked design; all benchmark programs had
slowdown for the PL versus the clocked design. The simulations
used a gate-level Verilog netlist with Synopsys-generated pre-
layout timing delays. Synopsys static timing reported the
register-to-register critical path of the clocked design as 2170 ps;

to this value was added a 3% clock skew budget of 65 ps for a
total clock period of 2235 ps. For the PL netlist, a target timing
margin of 20% was specified for delay chain generation, with a
10% minimum timing margin allowed for failure flagging for
margin checking in the 2nd timing pass. The minimum margin
reported for any path after 2nd pass timing was 12%. All
benchmarks were written in C and compiled using gcc.
The non-reordered code used the assembly code unchanged as
produced by the gcc compiler. The reordered code used manual
reordering of code sequences in critical loops increasing early
evaluation opportunities as reported in [2]. An example code
reordering is show below, where both sequences give equivalent
results, but the bne instruction in Sequence B does not require
operand forwarding from the exep2 block, resulting in faster
execution.
 addi r4,r4,1

 slti r2, r2, 8
 bne r2, r0, L10

slti r2, r2, 8
addi r4,r4,1

 bne r2, r0, L10

The fastest instructions were logical operations that did not
require operand forwarding from the exep2 block. The CRC
reordered benchmark had the highest speedup because it had the
largest number of logical operations and fewest operand-
forwarding requirements.
In [2], an average speedup of 41% for PL versus Clocked was
obtained for the reordered benchmarks using the generic LUT4
technology. Reasons for the slowdown in the standard cell MIPs
are:

Sequence A

Sequence B

ife
tc

h

id
pi

pe

PC

ad
d

sh
ift

lo
g

ex
ep

2

ex
ed

ff

m
em

df
f

bp
c

bp
cd

ff

imem

dmem

de
co

de
w

rp
or

t

rd
po

rt rfcore

in
cp

c

through
block

barrier block,
EEval

through block,
EEval barrier

block
through block,
slack buffer

EE

EE

EE

EE

EE EE

EE
BB BB

BB

BB

BB

BB
BB BB

Figure 10: CPU Architecture Diagram

ife
tc

h

id
pi

pe

PC

ad
d

sh
ift

lo
g

ex
ep

2

ex
ed

ff

m
em

df
f

bp
c

bp
cd

ff

imem

dmem

de
co

de
w

rp
or

t

rd
po

rt rfcore

in
cp

c

through
block

barrier block,
EEval

through block,
EEval barrier

block
through block,
slack buffer

EE

EE

EE

EE

EE EE

EE
BB BB

BB

BB

BB

BB
BB BB

Figure 10: CPU Architecture Diagram

• No timing margin was used for the results presented in [2].

• In [2], the simulation did not take into account the effect of
loading on nets; all cell delays were fixed regardless of
output loading.

• Output latch delay and control path delay were significantly
underestimated for the behavioral models used for the
wrapper logic in [2].

The results presented in [2] can be viewed as an estimation of the
maximal speedup that could be obtained if extremely low latency
latches/DFFs and highly optimized control was used in the design
in the wrapper logic.

Table 1: Benchmark Performance Results
Benchmark PL/CLK

(noEE)
PL/CLK
(EE,non-
reordered)

PL/CLK
(EE,reordered)

fibonnaci 1.29 1.12 1.12

bubblesort 1.29 1.16 1.15

crc 1.29 1.12 1.07

sieve 1.29 1.18 1.15

matrix
transpose

1.29 1.19 1.16

average 1.29 1.15 1.13

The performance numbers are disappointing in that the PL CPU
has slowdown compared to the clocked design. However, the
slowdown is not prohibitive from considering this approach as a
viable alternative to a global clock distribution network.
Table 2 shows that the PL design has an increase of 47% in active
cell area as reported by Synopsys. The clocked design area figure
does not include any area required by the global clock network,
and neither figure includes interconnect area.

Table 2: Area Results

Design Cell Count Cell area % area
increase

Clocked 9183 169854

PL 14983 249570 47%

5.3 Double-Precision Floating Point Clip

A double precision floating point clip operation defined as:
 if (A < low_bound) then

 Y := low_bound
 elsif (A < high_bound) then
 Y := A;
 else Y := high_bound;
was implemented in several ways and mapped to both UMC
0.18µ and Artisan /IBM 0.13µ standard cell libraries. Figure 11
shows the variations

a. Multi-cycle FSM, implemented as one barrier block.
The FSM had four states; two states for loading values
for high and low bounds, and two for computing the
clip value. The result was available in two or three
clocks, depending on if it was out of bounds are not.

b. Same as (a), except early evaluation was used based on
the sign bits of the high/low bound values and the input
value.

c. Same as (a), except logic was split into a barrier block
and a through block.

d. Same as (c), except EE was used in the same manner as
(b).

Figure 11: DP FP Clip variations

e. Same as (d), except a slack buffer was added.
f. Three stage pipeline, with a new input value every

clock. The first stage had a simple two-state FSM that
input the low/high bound values, and accepted a new
data input value every clock during computation. The
second stage did low bound comparison, the third stage

ctrl

D
FF

S

cLog

barr.

a. One Block

EEctrl

D
FF

S

cLog

b. One block with EE

ctrl ctrl ctrl
EE
ctrl

thru. barr. thru.

c. two blocks d. two blocks with EE

ctrl ctrl ctrl ctrl ctrl

EEEE

barr. thru. barr. thru. barr.

ctrl
EE
ctrl

barr. thru.

e. two blocks, EE, slack buffer

ctrl

thru
(slack)

ctrl ctrl ctrl ctrl ctrl

barr. thru. (spitter) barr. barr. thru. (spitter)

f. Three-stage pipeline, three blocks in original netlist,
splitter blocks inserted between barrier blocks

g,h. Three-stage pipeline, five blocks in original netlist (3 barrier,
2 thru blocks), time borrowing between thru and barrier blocks.

ctrl

D
FF

S

cLog

ctrl

D
FF

S

cLog

barr.

a. One Block

EEctrl

D
FF

S

cLog

EEctrl

D
FF

S

cLog

b. One block with EE

ctrl ctrl ctrl
EE
ctrl

thru. barr. thru.

c. two blocks d. two blocks with EE

ctrl ctrl ctrl ctrl ctrl

EEEE

barr. thru. barr. thru. barr.

ctrl
EE
ctrl

barr. thru.

e. two blocks, EE, slack buffer

ctrl

thru
(slack)

ctrl ctrl ctrl ctrl ctrl

barr. thru. (spitter) barr. barr. thru. (spitter)

f. Three-stage pipeline, three blocks in original netlist,
splitter blocks inserted between barrier blocks

g,h. Three-stage pipeline, five blocks in original netlist (3 barrier,
2 thru blocks), time borrowing between thru and barrier blocks.

high bound comparison. The top-level netlist contained
three mixed DFF/combinational logic blocks, which
were mapped to three barrier blocks, with splitter blocks
inserted automatically by mapping tool to break barrier-
to-barrier gate paths.

g. Same as (f), but the top-level netlist was partitioned into
5 blocks, with the stage2 and stage3 blocks of (f) split
into combinational and sequential components. This
resulted in no barrier-to-barrier gate paths, so splitter
blocks were not inserted. Also, the mapper took
advantage of available time borrowing between the thru
and barrier blocks when creating delay chains for the
thru blocks.

h. Same as (g), but early evaluation used for low/high
bound comparisons based on both sign bits and
exponent fields. The early evaluation computation
conditions was done in the first stage and then passed to
the successive stages

Table 3 (after references) shows the mapping and simulation
results for the Artisan 0.13µ and UMC 0.18µ libraries. The
designs were tested with 1000 vectors of randomly generated
numbers between the values of +/- 15.0, with low and high
bounds of +/- 5.0. Approximately 2/3 of the input numbers were
clipped.
The most interesting aspect of the numbers in Table 3 is the
disparity in the PL/CLK area/speed comparisons between the
Artisan and UMC libraries. For the UMC 0.18µ libraries, the EE
versions of the PL designs achieved speedup; for Artisan libraries,
no speedup was obtained. The reason for this disparity is that the
Artisan designs had much shorter combinational paths in terms of
total gates as a result of more efficient technology gate mapping.
The longer combinational paths in the UMC designs reduced the
effective DFF and latch delay overhead in those netlists. This
reinforces the point that low latency DFFs and latches in
micropipeline designs can significantly increase performance.
Neither Artisan or UMC had particularly fast DFFs; in both
libraries the ratio of DFF clock-to-Q delay to a typical gate delay
was a 4X to 5X factor.
The effect of partitioning at the top level is seen in the
performance difference between designs (f) and (g) for the
Artisan library. In design (f), the three blocks at the top level were
all barrier blocks, which forced the insertion of splitter blocks by
the mapping tool to break barrier-to-barrier block paths. In design
(g), the top level included combinational blocks between stages.
This removed the need for splitter block insertion, and also
allowed the mapper to take advantage of time borrowing between
the thru and barrier blocks during delay block creation.

6. CONCLUSIONS
This paper describes the first coarse-grain PL designs mapped to
commercial standard cell libraries. These results show that more
work needs to be done in terms of improving wrapper designs,
adding automatic partitioning of top level netlists to remove the
partitioning burden from the designer, and experimentation with
larger designs.

7. REFERENCES
[1] Linder, D.H. and Harden J.C. 1996. Phased Logic:

Supporting the Synchronous Design Paradigm with Delay-
insensitive Circuitry, IEEE Transactions on Computers, Vol.
45, No 9, 1031-1044.

[2] Reese. R.B., Thornton, M.A., and Traver, C. A Coarse-
grained Phased Logic CPU, Ninth International Symposium
on Advanced Research in Asynchronous Circuits and
Systems (ASYNC 2003), Vancouver, BC, Canada, May
2003, pp 2-13.

[3] Wallander, W. A VHDL Implementation of a MIPS, Project
Report, Dept. of Computer Science and Electrical
Engineering, Luleå University of Technology,
http://www.ludd.luth.se/~walle/projects/myrisc.

[4] Commoner, F., Holt, A.W, Even, S., and Pneuli, A. 1971.
Marked Directed Graphs, Journal Computer and System
Sciences, Vol. 5, No 5, 511-523.

[5] Reese. R.B., Thornton, M.A., and Traver, C. A Fine-grain
Phased Logic CPU. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, Tampa, FL, February
2003, 70-79.

[6] Wuu, Toy-Yung Wuu and Vrudhula, S. B. A Design of a
Fast and Area Efficient Multi-Input Muller C-element, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, Vol 1, No. 2, June 1993.

[7] Reese, R.B., Thornton, M.A., and Traver, C. Arithmetic
Logic Circuits using Self-timed Bit-Level Dataflow and
Early Evaluation, In Proceedings of the International
Conference on Computer Design, Austin, Texas, September
2001, 18-23.

[8] Ligthart, M., Fant, K., Smith, R., Taubin, A., and
Kondratyev, A. Asynchronous Design Using Commercial
HDL Synthesis Tools, In Proceedings of the Seventh
International Symposium on Asynchronous Circuits and
Systems, Eilat, Israel, April 2000, 114-125.

[9] Furber, S. and Day P. Four-phase micropipeline latch control
circuits, In IEEE Transactions on VLSI Systems, Vol. 4, No.
2, June 1996, 247-253.

[10] Blunno I., Cortadella J., Kondratyev A., Lavagno L., Lwin
L., and Sotiriou, C. Handshake Protocols for de-
synchronization, In Proceedings of the Tenth International
Symposium on Asynchronous Circuits and Systems, Crete,
Greec, April 2004, 149-158.

[11] I. Sutherland, Micropipelines, Communications of the ACM,
Vol 32, No. 6, June 1989, pp. 720-738.

[12] A.Yakovlev, M. Kishinevskh, A. Kondratyev, L. Lavagno,
“On the models for asynchronous circuit behavior with OR
causality”, Technical Report Series No. 463, Computing
Science, University of Newcastle upon Tyne, November
1993.

Table 3: DP FP Clip Operator Mapping/Simulation Results

IBM 0.13 cells area
PL/clk
(area)

clk cyc
(ps) finish(ns)

PL/Clk
(time)

Min.
Margin

Borrow
Margin

a. Mcycle clk 2332 38075 2359 6725
(1 blk) PL 2456 39912 1.05 n/a 8322 1.24 11.4% n/a
b. Mcycle clk 2441 39254 2225 6343
(1blk, EE) PL 2564 42621 1.09 n/a 6540 1.03 13.3% n/a
c. Mcycle clk 2266 36446 1483 4230
(2 blk) PL 2678 42306 1.16 n/a 5151 1.22 14.4% n/a
d. Mcycle clk 2266 36446 1483 4230
(2 blk + EE) PL 2753 42801 1.17 n/a 5031 1.19 17.4% n/a
e. Mcycle clk 2266 36446 1483 4230
(2 blk + EE, buff) PL 3613 55568 1.52 n/a 4865 1.15 17.4% n/a
f. 3-stg pipe clk 2822 50152 1411 1421
(3 blks+2 splitter) PL 4396 72878 1.45 n/a 2219 1.56 13.2% n/a
g. 3-stg pipe clk 2902 50102 1411 1422
(5 blks, time brw) PL 3898 62518 1.25 n/a 2038 1.43 16.1% 10.9%
h. 3-stg pipe clk 2902 50102 1411 1424

(5 blks, time brw,EE) PL 4020 63190 1.26 n/a 1884 1.32 16.1% 15.5%

UMC 0.18
a. Mcycle clk 1920 63200 4542 12954
(1 blk) PL 2031 73441 1.16 n/a 15922 1.23 19.7% n/a
b. Mcycle clk 1872 62683 3801 10838
(1blk, EE) PL 2016 74229 1.18 n/a 9114 0.84 16.4% n/a
c. Mcycle clk 2091 65025 4274 12198
(2 blk) PL 2414 84162 1.29 n/a 15424 1.26 22.3% n/a
d. Mcycle clk 2091 65025 4274 12198
(2 blk + EE) PL 2493 89276 1.37 n/a 10375 0.85 18.3% n/a
e. Mcycle clk 2091 65025 4274 12198
(2 blk + EE, buff) PL 3149 113890 1.75 n/a 9914 0.81 18.3% n/a
f. 3-stg pipe clk 2295 82481 4110 4143
(5 blks) PL 3488 135113 1.64 n/a 5810 1.4 16.9% n/a
g. 3-stg pipe clk 2548 84862 4110 4145
(5 blks, time brw) PL 3405 126904 1.50 n/a 5730 1.38 29.3% 20.2%
h. 3-stg pipe clk 2548 84862 4110 4149
(5 blks, time brw,EE) PL 3535 135364 1.60 n/a 3434 0.83 20.4% 15.3%

