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Abstract

A method for computing the spectral coe�cients of a Boolean function represented

in a structural form is introduced� This result is important since spectral coe�cients

may be used in many areas of digital systems engineering including synthesis� veri�ca�

tion� and fault detection� In the past� e�cient methods for computing the spectrum

of a Boolean function required the function to be represented as a binary decision di�

agram or a set of cubes that provide a complete cover� The methodology described

here allows the computations to be performed directly using the topology of a logic

diagram representation� By using the structural form of representation� the spectral

coe�cients of certain classes of Boolean functions are computed more e�ciently than

previous methods allowed�

� Introduction

There are many problems in the �eld of digital systems engineering that may be solved

elegantly using spectral methods� However there have not been e�cient methods for com

puting the spectral coe�cients of a Boolean function until recently� This paper introduces

a methodology for computing a spectral coe�cient directly from a structural representation

of a logic function� This result is signi�cant since past methods for e�cient computation

of the spectral coe�cients required the logic function to be represented as a set of product

terms covering the function or as an ordered binary decision diagram �OBDD
�

The ability to compute the spectrum directly from a structural representation is im

portant since recent e�cient methods for spectrum computation rely upon binary decision

diagrams �BDDs
 as input� Unfortunately� it has been proven that some Boolean functions

exist that may not be represented in BDD form unless the number of vertices is proportional

to �n��� where n is the number of input variables in the function���� In these cases� the

methods for the computation of the spectrum of a Boolean function fail to be e�cient due

to the large size of the BDD�
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The interest in computing the spectrum of a combinational logic function in structural

form arises because many logic synthesis systems describe the function in terms of a logic

diagram� netlist� or PLA table after the minimization phase ���� Following minimization�

the technology mapping task of the system must then deal with a structural form of rep

resentation as input� Most technology mapping subsystems consist of a partitioning task

followed by a matching or library binding phase� Although the library binding problem is

coNP complete� a signi�cant amount of work has been done to streamline this aspect of the

technology mapping portion of logic synthesis systems ��� �	� ��� ��� ���� In particular� many

e�orts have utilized the properties of NPNequivalence which classify circuits into disjoint

sets where any one member may be used to provide the output of another member by possi

ble inversion and permutation of some inputs� and perhaps� inverting the output� The theory

of NPNequivalence and its relation to certain spectral coe�cients has been studied exten

sively ��� ��� ����� Therefore� the ability to e�ciently determine spectral coe�cients from a

structural representation of a circuit will allow spectralbased Boolean matching techniques

to be easily included in this class of existing logic synthesis systems�

Another area of application of the use of logic diagrams to compute spectral coe�cients

is veri�cation� This problem is the determination of whether or not two representations of a

Boolean function are equivalent� The most common use of veri�cation tools is to check that

a speci�cation of a digital logic circuit is equivalent to a proposed circuit� Typically� the

speci�cation is provided in the form of a functional description of a Boolean expression such

as a binary decision diagram or behavioral hardware description language �HDL
 and the

proposed circuit is in the form of a netlist or schematic diagram� Veri�cation methods form

an integral part of modern day synthesis systems since they are used to determine �design

correctness�� It has been proven that the problem of determining if two logic speci�cations

are exactly equivalent is a member of the set of problems whose solutions are NP complete

����� For this reason� the methodology of determining the solution for the veri�cation prob

lem is approached by two di�erent means� �Formal veri�cation� techniques guarantee the

equivalence of two logic functions and therefore are costly to compute� The less costly meth

ods employ heuristics or statistical methodologies for nonexhaustive veri�cation solutions�

It is the statistical methodologies that may be improved by using spectral coe�cients� By

determining that a spectral coe�cient is equal when computed from two di�erent repre

sentations of a Boolean function� the probability of their equivalence increases� Since the

veri�cation process typically involves at least one of the representations in structural form�

the spectral calculation method presented here can greatly improve the e�ciency of the

overall statistical veri�cation process�

Closely related to the synthesis and veri�cation problems is the analysis of a circuit for

fault detection� The theory provided in ���� provides a large amount results concerning the

determination of the detection of various classes of faults based upon the spectral coe�cients

�



of a Boolean function� These results provide motivation for the ability to compute spectral

coe�cients directly from a structural representation of a given Boolean function since fault

detection analyses are normally carried out for existing circuitry�

The remainder of this paper is organized as follows� Section � will brie�y review the prop

erties of spectral coe�cients that are relevant to the development of the new computation

technique� Section � will provide the details of the computation of output probabilities of

logic circuits� The new technique for computation of the spectral coe�cients is presented in

section 	� In Section � a discussion of the implementation of this method and the associated

computational complexity is discussed� The last section will provide conclusions and future

related areas of research�

� Properties of Spectral Coe�cients

Spectral techniques have generally not received much attention due to the large complexity

associated with obtaining the spectral vector� However� several research groups have recently

developed new techniques for the computation of spectral values that are much more e�cient

than the direct implementation of a vectormatrix product ���� ���� ��	� ���� ���� ���� ����� In

particular� we have developed a methodology that allows a single coe�cient to be computed

using the ordered binary decision diagram �OBDD
 ���� of the candidate circuit as input ����

�����

In this section� the ideas used to develop the e�cient spectral computation technique in

���� ���� are used to create a similar computational method using a structural representation

of a Boolean function as input� This result is important since it will allow a spectral coe�cient

to be computed directly from a diagram of a circuit without resorting to forming a Boolean

expression� the circuits� output vector� or� the OBDD corresponding to a circuit diagram�

Also� a simpli�cation is noted for the method proposed in ���� ���� that allows the spectral

coe�cients to be computed by reducing the calculations to onehalf those required in these

initial works� This simpli�cation applies to the method using OBDDs given in ���� ���� as

well as the new method described here that utilizes structural representations�

Before the method for computing the spectral coe�cients is given� a brief review of the

various forms of spectral coe�cients will be described with some key concepts pointed out�

The following notation and de�nitions will be used in the remainder of this paper�

� Small case variables such as x�� x�� etc� denote Boolean variables that have logic values

of ��� or ����

� Upper case variables such as X��X�� etc� denote the probability that the corresponding

lower case Boolean variables are equal to a logic ��� value� These quantities are real

and exist in the interval ��� ���
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� The operator symbol� ���� will refer to the Boolean OR function or the addition of

real numbers depending upon the context of the equation in which it is used�

� The operator symbol� ���� will refer to the Boolean AND operation� The absence of

an operator between two adjacent values in a Boolean equation implies the presence

of the ��� operator�

� The operator symbol� ���� will refer to the multiplication of two real values� The

absence of an operator between two adjacent values in a realvalued equation implies

the presence of the ��� operator�

� The operator symbol� ���� will refer to the Boolean XOR operation�

� The operator� ��fg�� denotes the probability transform operator whose argument is a

Boolean function� It will yield the probability that its argument is a logic ���� Unless

otherwise noted� it is assumed that the input variables to the Boolean function are

equally likely to be ��� or ����

� Cf �fc� refers to the spectral coe�cient of function f with respect to the constituent

function� fc� as originally de�ned by Chow�

� Sf �fc� refers to the spectral coe�cient of function f with respect to the constituent

function� fc� as is more commonly de�ned for general spectral coe�cients of a Boolean

function�

There are varying de�nitions of the spectrum of a Boolean function� These di�erent

spectra are classi�ed based upon the transformation matrices that are used for their com

putation� As discussed in ����� the transformation matrices may be viewed as a collection

of �constituent� functions whose output vectors are used as row vectors in the transforma

tion matrix� Most of the commonly used transformation matrices always include constituent

functions that correspond to the constant function �either fc� � �� or� fc� � �
 and functions

that are equal to each primary input �fci � xi for i � � � � � n
� The particular subset of

spectral coe�cients that correspond to these n � � constituent functions are referred to as

the Chow parameters ���� As an example� the following transformation matrix could be used

to compute the Chow parameters of a threeinput function�

�
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Notice that the constituent functions corresponding to each row vector of the transfor

mation matrix are shown to the left of the matrix� As an example of the calculation of the

Chow parameters� consider the circuit whose logic diagram is shown in Figure ��

x1
x2

x3

f(x)

A
B

C

D
E

G

Figure �� Logic Circuit Example for Chow Parameter Computation
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The computation in Equation � is representative of the original de�nition of the Chow

parameters as given in ���� In this form� the Chow parameters yield information regarding

the total number of minterms present in the circuits canonical sumofproducts �SOP
 form

of its logic equation �given by the coe�cient corresponding to fc� � �
� and� the number of

minterms in which each primary input� xi� appears in an uncomplemented form �given by

each respective fci � xi
�

Since the Chow parameters were originally studied for the purposes of function classi�ca

tion� other researchers found that a modi�ed version of these parameters was more convenient

for the analysis of linear threshold functions ���� The modi�ed version is usually referred

to as the �modi�ed Chow parameters� ���� and they range in value of ���n��� �n���� This

form has the desirable feature that the coe�cient corresponding to a particular xi is always

zerovalued if that xi is a redundant input� However� the fact that a particular coe�cient is

computed to be � does not necessarily imply that the corresponding xi is redundant� This

property is formally proven in the work ����

Many common transformation matrices are more general in that they contain only the

real values of � and �� This allows the �valued intermediate products to accumulate thus

providing more information about the function being transformed� Typically� the logic ���

values are replaced with � and the logic ��� values are replaced with ��� For this reason�
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it is often the case in the literature that the Chow parameters are computed in this more

general way� As an example� the Chow parameters computed in Equation � would become�
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It is useful to derive the algebraic equations that transform the Chow parameters from

their original de�nition to the form in Equation �� Note that the �thordered spectral coe�

cient in Equation � corresponds to the constituent function� fc� � �� while the same spectral

coe�cient in Equation � corresponds to fc� � �� In order to de�ne algebraic relationships

between the form of the Chow parameters in Equation � and those in Equation � we will

denote them as fCf �fc��� Cf �fc��� Cf �fc��� � � �Cf �fcn�g and fSf �fc��� Sf �fc��� Sf �fc��� � � � Sf �fcn�g

respectively� The relationships are given as�

Sf �fc�� � �n � �Cf �fc�� ��


Sf �fci� � 	Cf �fci�� �Cf �fc�� �	


In fact� Equations � and 	 hold for more complex constituent functions as well� Therefore

any arbitrary spectral coe�cient may be computed using Equation 	 by replacing fci� with

any general constituent function� fc� that corresponds to a higher ordered spectral coe�

cient� For example� the set of �n spectral coe�cients that are formulated using all possible

noninverted� singlevariable input XOR functions and the Chow parameters are commonly

known as the Walsh spectrum coe�cients� By de�ning a single coe�cient in terms of its

constituent function� fc� any generalized spectral coe�cient may be computed using the

technique described in this paper�

By carefully examining the way in which the Chow parameters are computed using the

original de�nition as illustrated in Equation �� it is seen that their value depends upon the

number of times the constituent function and the function to be transformed are simultane

ously equal to a logic ��� value� This quantity is denoted as Nm�� Further� if the percentage

of times that both functions simultaneously equal logic ��� �denoted by pm�
 were known�

then Nm� � �n � pm��
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� Output Probabilities of Boolean Circuits

The main idea behind the spectral coe�cient calculation scheme is the relationship between

the output probability expression �OPE
 of a circuit and a spectral coe�cient� OPEs were

�rst introduced in ���� where they were used to perform analysis for the e�ectiveness of

random testing schemes� In ����� we derived the relationship between a circuit output prob

ability and a spectral coe�cient by using the values pm� and Nm� discussed in the preceding

section�

The OPE of a combinational logic circuit is an algebraic expression that expresses the

probability that the circuit output is a logic ��� given the probabilities that the input

variables have the value of logic ���� It is possible to compute the OPE for a given circuit by

transforming its Boolean equation representation or by calculating the OPE from a schematic

diagram representation ����� The rules for transforming a Boolean equation to its equivalent

OPE are given in Table �� In this table� the rules are given for �input logic gates only� but

the expressions for functions with more than �inputs or with di�erent gate types may be

easily derived�

Table �� Rules for Transforming Boolean Operations to Probability Expressions

FUNCTION BOOLEAN EXPRESSION PROBABILITY EXPRESSION

Inversion x� ��X�

OR x� � x� X� �X� � �X� �X�


XOR x� � x� X� �X� � ��X� �X�


AND x� � x� X� �X�

Idempotence Property x� � x� X�

An algorithm for the computation of the OPE of a Boolean function using its logic

diagram representation as input is also given in ����� In this OPE calculation technique�

each primary input� each internal interconnection� and the output is assigned a unique

variable name� Using the rules in Table �� each internal node is expressed as a function

of the primary inputs� This step is performed through subsequent substitutions until an

expression is derived for the output variable in terms of the primary input variables thus

forming the OPE� As an example� consider the logic diagram illustrated in Figure � that is

a realization of the Boolean equation�

f�x
 � x�x�x�x� � x�x�x�x� � x�x�x�x� � x�x�x�x� � x�x�x�x� ��


Using the variables assigned to each interconnection as shown in Figure � and the rules

in Table �� the OPE is derived as follows�
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Figure �� Logic Circuit Example for OPE Computation

First� the rule for the Inversion operator is applied�

F � � �C ��


Next� the rule for the InclusiveOR operator is used�

E � A�B �AB ��


G � B �D �BD ��


H � E � F �EF ��


Simplifying the equation for H by substituting Equations � � into Equation ��

H � �� C �AC �BC �ABC ���


Finally� the rules for the AND and Inversion operations are used�

I � ��HG ���


This equation is simpli�ed and the corresponding input probability variables are substi

tuted resulting in the OPE�

I � ��X� �X� �X�X� �X�X� �X�X�X� �X�X�X� �X�X�X�X� ���


Once the OPE has been computed� the probability that the output is equivalent to a

logic ��� value is expressed as a function of the probabilities that the primary inputs are at

a logic ��� value� For a fully speci�ed Boolean function each primary input will be at logic ���

precisely �n�� times� hence the overall percentage of the time the logic function is equivalent

to a logic ��� may be obtained by substituting ��� for all primary input probabilities�
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� Relation of Output Probabilities and Spectral Co�

e�cients

From our earlier work ����� we have proven that the relationship between the OPE and a

spectral coe�cient is given by�

Sf �fc�x
� � �n�� � ���ff � fcg � �ff � fcg
� ���


Where f is the function whose spectral coe�cient is desired� fc is the constituent function

used to compute the particular spectral coe�cient� and� �fg denotes the operator that

transforms a Boolean expression to its equivalent OPE and then evaluates the OPE for all

Xi � ���� Thus� the only requirement for computing the spectral coe�cient is to form

equivalent circuit diagrams for f � fc and f � fc�

However� this method for computing the spectral coe�cients can be simpli�ed by using

the relationships given in Equations � and 	� The simpli�cation arises because the values�

C�fc�� and C�fci� may be computed using only pm�� therefore it is not necessary to form

a circuit diagram �or OBDD
 for the function f � fc �the percentage of times f and fc

simultaneously equal logic ���� pm� is not needed
� This result requires only the formation

of a single equivalent circuit diagram �or OBDD
 to compute a spectral coe�cient� The key

idea is to always compute the �th coe�cient �rst since it is needed to compute the remaining

values� Since the coe�cients� C�fc�� and C�fci� may be formulated in terms of pm�� the use

of Equations � and 	 allow S�fc�� and S�fci� to be formulated in terms of pm� as follows�

S�fc�� � �n��� �pm�
 ��	


S�fci� � �n�	pm� � �
 � S�fc�� ���


Equations �	 and �� show that it is only necessary to compute pm� for each constituent

function in order to determine the corresponding spectral coe�cient� These equations are

general in that any fc may be used �hence any desired spectral coe�cient may be obtained
�

The following example illustrates how a spectral coe�cient may be computed using logic

diagrams� If OBDDs are to be used� the reader is referred to reference ���� for a similar

example�

In order to formulate pm� for a corresponding constituent function� fc� a theoretical logic

circuit is formed by �ANDing� the constituent function logic circuit output with that of the

circuit whose spectral coe�cient is desired� This resulting �composite� logic diagram will

yield a logic output of ��� only when both the original and constituent functions simultane

ously output a logic ���� The determination of pm� is obtained by computing the OPE of the

composite circuit and then setting each variable equal to ���� It is not necessary to compute
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the entire OPE for successive spectral coe�cients of the same original circuit� Rather the

OPE of the original circuit may be computed initially and stored� Then all that is required

is the computation of the OPE of each constituent function and the two OPEs are combined

using �ANDoperation� rule given in Table �� If the constituent functions are simple then

the corresponding computation of each spectral coe�cient is e�cient�

As an example� consider the function in Figure � whose OPE was computed and given

in Equation ��� First� the �thordered coe�cient� C�fc��� is computed� By de�nition the

corresponding constituent function is fc� � �� This means the composite circuit is formed

by ANDing fc� � � with the function to be transformed� Since f � � � f � the value of pm�

in this case is obtained by simply evaluating the OPE of the original circuit with each input

probability set equal to ���� The result is�

pm� � �� ��� � ��� � ���� � ���� � ���� � ���� � o��� � ������ ���


Using Equation �	� the �thordered spectral coe�cient is computed as�

Sf �fc�� � ����� ��������
� � � ���


To complete the example� the Chow parameter corresponding to fc � x�� will be com

puted� First the composite OPE will be formulated by ANDing the OPE for fc �denoted by

OPEc
 with that of the original function� f � This composite OPE �denoted by OPEcomp


is given by multiplying Equation �� by OPEc � X� and obeying the idempotence rule in

Table �� The result is�

OPEcomp � X� �X�X� �X�X�X� �X�X�X�X� ���


To determine the pm� value associated with the constituent function� fc � x�� the value

of ��� is used for all input probabilities in Equation ��� This substitution yields the value�

pm� � ������� Using this quantity in Equation �� yields the spectral coe�cient�

Sf �fc�� � ���	�������
 � �� � � � � ���


This example has demonstrated how spectral coe�cients may be computed directly from

their logic diagram description�

� Implementation and Complexity

A directed acyclic graph �DAG
 representing the topology of the circuit is used as input

in this implementation� In the DAG� there are one or more edges entering each node in

the graph that represent logic gate inputs and a singular directed edge leaving the node

representing the logic gate output� Each node contains an identi�cation �eld that indicates
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the type of logic gate it represents� Before any spectral coe�cients can be computed� it

is necessary to compute the OPE of the logic circuit represented by the DAG� The OPE

expression may be represented as a sum of realvalued product terms� In the worst case�

there can be �n product terms since all possible combinations of the input variables may be

used to formulate a single term� Fortunately� due to the idempotence rule in Table �� there

are no variables present in the OPE with a power greater than unity� In addition� most

logic circuits have OPEs with signi�cantly fewer product terms than the maximum possible

number of �n� The number of product terms in an OPE for a particular logic function is

similar to the number of minterms in a SOP form of a logic circuit� although there is no

readily apparent relation between the two for a given circuit�

The most general form of the OPE of an arbitrary circuit is given in Equation ���

OPE � a� � a�X� � a�X� � � � �� anXn

�a��X�X� � a��X�X� � � � �� a�nX�Xn

�a��X�X� � a��X�X� � � � �� a�nX�Xn

���

�a������nX�X� � � �Xn

���


From Equation ��� it is apparent that the maximum possible number of nonzero terms�

Tmax� is given by�

Tmax �
nX

i��

�
n

i

�
� �n ���


In this implementation� the OPE is stored in the form of a linked list with each node

in the list containing a �product term identi�er� �PTI
 indicating which input variable

combinations are present� a nonzero coe�cient� ai� and a pointer to the next term in the

expression� By storing only those terms with nonzero coe�cients� �n memory locations are

only used in the worst case� The PTI is implemented as a positive integer whose values have

the range ��� �n������ Using this range ensures that each PTI is unique since in binary form

the PTI has bit bi � � only if Xi is present in the product�

Once the OPE is formulated for the circuit whose spectral coe�cients are desired �denoted

as OPEf 
� each coe�cient in OPEf is computed by multiplying the stored OPE of the

constituent function �denoted by OPEc
 by OPEf � Then the resulting composite OPE

�denoted by OPEcomp
 is evaluated with each Xi � ��� resulting in pm� which is substituted

into Equation 	 to yield the spectral coe�cient� Therefore the amount of computation

required to obtain each spectral coe�cient has a worst case complexity of O��n
� since at

most each node in the linked list will be visited to compute OPEcomp and evaluate it for all

Xi � ���� Thus� the overall worst case computational complexity of this approach is O�m�n


for the computation of m spectral coe�cients�
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It is illuminating to point out that the methods proposed by Cooley and Tukey ����

originally used to compute the �FastFourier Transform� and later extended for use for

digital data ����� have the same complexity as the worst case of this approach if it is desired

to compute �n coe�cients� However� the approach in this paper has three main advantages

over the CooleyTukey method� They are�

� The CooleyTukey approach always has complexityO�n�n
 for computing the spectrum

of a Boolean function while O�n�n
 is a worst case complexity arising rarely in this

approach due to the fact that most OPEcomp functions have fewer terms than �n�

� The types of transformations suitable for implementation using the methods of Coo

ley and Tukey are limited to those with transformation matrices that are recursively

de�ned in order to develop a �butter�y� structure� In the method proposed here

any transformation matrix may be used regardless of the size of the rowspace or its

structure�

� As many or as few spectral coe�cients as desired may be computed with our technique�

Thus� if fewer than �n coe�cients are needed� the worst case complexity becomes

O�m�n
 where m � n�

The complexity of this implementation is comparable to those that compute spectral

coe�cients from a set of cubes covering the logic function ���� ���� ��	�� However� it is quite

possible that the number of product terms in the OPE of a given logic function may vary

signi�cantly from the corresponding number of SOP terms in a covering expression� Further�

there have been other methods for computing spectral coe�cients directly from OBDDs of

logic functions with a complexity equivalent to the number of edges in the OBDD ���� �����

However� it has been shown that for certain types of logic functions� the minimal possible

number of edges in the corresponding OBDD is exponential with respect to the number of

input variables in the function ���� In these cases the method presented in this paper may

provide clear advantages over other methods for computing spectral coe�cients�

	 Conclusion

In this work we have provided a technique for computing a spectral coe�cient directly from

a structural representation of a Boolean function� This result is important since it can

provide a more e�cient method for computing spectral coe�cients for certain classes of

logic functions� In particular� those functions that have a small number of product terms in

their OPEs� or� those that may not be compactly expressed in OBDD form� The ability to

compute spectral coe�cients e�ciently is very important since they have many applications

��



in several di�erent areas of digital systems engineering such as synthesis� design veri�cation�

and fault detection�

An area of future research is to develop methods to determine the complexity of a given

Boolean function in terms of the size of its BDD� or� the number of product terms required

in its OPE so that the most optimal method for the computation of its spectral coe�cients

may be chosen among the several that have been recently proposed�
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