[ G 0
Gn B [Gn—l Gn—l]

Also, GG} and GY are triangular and G% may also be used to recursively define ¢/, as
follows:

S
" G, 0
Since (7 and G5 are triangular and (7, may derived in terms of GG,_1, by induction, GG,
is also triangular since it is formed with submatrices, G,,_1, along its diagonal with the all
zero submatrix in one quadrant. a
Proof for lemma 3 As mentioned previously, the coefficient matrices, G, and G/,

contain only 1 and 0 elements. Also, these matrices are triangular with diagonals consisting
of all 1’s. Hence:

det(G,) = det(Gl) =1
It is desired to solve the equation:

GR=F

Where G* represents either (,,, or /.. The solution to this equation is well known and
may be expressed in terms of the cofactors of G* as:

E — G*—IE
[det(G*)][cofactor(G*)|E
= [l][cofactor(G*)]F

Since the cofactor matrices are formed with no division operations, the matrix, [cofactor(G*)],
contains only integers. Since the matrix, G*, always has a determinant of 1, the solution
vector, R, is formed as a vector-matrix multiplication of the integer matrix, [cofactor(G™)],

and the integer vector, '. Hence the solution vector always contains integer components.

O

Proof for Theorem 1 From lemma 3, R has the property that each r; € Z. From
lemma 1, the function, f(x) = x(mod2) forms a ring morphism between R’ and . Hence,
the application of f(x) to each component in the vector, R, isomorphically maps R to B. O
Proof for Corollary 1 From lemma 2 it was proven that all G, and G/, matrices are
triangular. From definition 1 it was noted that all ¢g;; = ¢/, = 1. Hence the determinant
of the coefficient matrices is 1, guaranteeing a unique matrix inverse exists. Since R and B

from theorem 1 are isomorphic and R is unique due to the existence of a unique inverse of
(i and (', then B also is unique. O
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fla+bd) = f@Cn+14+2m+1)
= [2(n+m+ 1) mod 2
=0
(2n + 1) mod 2 & (2m + 1) mod 2
= 141
=0

Jla) @ J(b)

Lfla4b) = fla)® f(b)

flaxb) = fl2n+1) % @m0
(2nm +n +m) + 1] mod 2

[
=1
fla)-f(b) = (2n+1)mod2-(2m + 1) mod 2
- 1.1
1
flax b) = f(a) 1)
Case 3:
Let @ =2n and b = 2m + 1:
fla+bd) = f@Cn+2m+1)
= [2(n+m)+ 1] mod 2
= 1
fla)®d f(b) = (2n) mod 26 (2m + 1) mod 2
= 041
1

~Jla+b) = f(a) @ f(b)
flaxb) = f2n x (2m+1)]

= [2(2nm + n)] mod 2
= 0
fla)- f(b) = (2n) mod2-(2m + 1) mod 2
= 0-1
0
~flaxb) = f(a)- f(b)
Since equations 5 and 6 hold for all 3 cases, f(z) = x mod 2 forms a ring morphism
between R and R. O

Proof for Lemma 2: The trivial matrix, G; = [1], is triangular. Also, from definition
1, G5 is also seen to be triangular. Higher ordered matrices, (&,,, may be recursively defined

using (&3 as a kernel since all functions, ¢g;, are AND functions or literal values themselves.

The following definition holds:



5 Appendix

Proof for Lemmma 1: To prove this lemma, we demonstrate that the following relationships
exist:

fla+b) = fla)d f(b) (5)
flaxb) = f(a)- f(b) (6)
for the following three cases:
Case 1 : (a,b) €0
Case 2 : (a,b) € 1
Case3 :ac,bel
Case 1:
Let @ = 2n and b = 2m:
flath) = f2n+2m)
= [2(n +m)] mod 2
= 0
fla)® f(b) = (2n) mod 2 & (2m) mod 2
= 040
0
fla+b) = fla) & f(b)
flaxb) = f(2n x2m)
= (4nm) mod 2
= 0
fla)- f(b) = (2n) mod 2-(2m) mod 2
— 0.0
0

“flaxb) = f(a) (0
Case 2:
Let a=2n+1 and b =2m + 1:
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Solving this system in the real field yields the following solution vector:

RT:[10—1011—10

Mapping this vector, from £’ to R using f(x), we obtain:

ET:[10101110

Each element of the solution vector corresponds to a specific r; resulting in a realization

of the Reed-Muller form as given in 1. The resulting function is:

f(:z;) =1 2P roxs B 2970 P 120 (4)

Currently, we have implemented an experimental version of this code using FORTRAN
and C. It is apparent, however, that due to the well-defined nature of the (¢, and G/, matrices,
it is not necessary to compute a linear equation solution for each synthesis. In fact, a more
efficient method would consist of accessing a database of the inverses of (&, or G, and simply
performing a vector-matrix multiplication for each synthesis task.

The input to the experimental algorithm is the output vector of the function to be
synthesized. However, it would be very easy to incorporate a Boolean expression parser,
resulting in defining the input in terms of an equation or a truth table.

The output of our program is of the form of a a structural Hardware Description Language
(HDL). By choosing this form for output, the corresponding circuit is easily verified and may
be piped into any automated synthesis tool that supports structural HDL input.

4 Conclusions

A numerical technique for Reed-Muller circuit synthesis has been developed and presented.
It has been shown that this technique is equivalent to determining the solution to a set of
linear equations in the real field. An example of this technique was provided with a brief
description of implementation issues.

Further investigations into numerical techniques for logic synthesis are ongoing. In par-
ticular, we are investigating the use of heuristics for the reduction of the synthesis algorithm
complexity (both space and time) and the use of generalized linear transformation techniques
in general.



This lemma establishes the fact that the solution of equation 3 is performed over the
Boolean ring, $’. This result along with the previous definitions and lemmas allow the

following theorem to be stated and proved:

Theorem 1 Given any Boolean function, f, and a binary vector, B = [by, by, bs, ..., b,]T
such that f = bygy @ baga P ... D b,g,, then there exists a vector, R with each r; € Z, such
that GR = F and (R) mod 2 = B. Where F is the binary vector formed from the output
column of the truth table of the function, f. a

Corollary 1 FEvery Boolean function has a unique complement-free ring sum form of the

Reed-Muller expansion. a

This section has presented the mathematical justification for the synthesis technique.
The following section will provide a numerical example and a discussion of implementation

issues.

3 Example

Consider the Boolean function specified by the following truth table:

=
=)
~

=
o
=

[ e e o e B e B e B )
[ e S e S e S e = s B Y Y

—_ 0 = O = O = O
— = O = = O =

Figure 1: Truth Table Contents of the Function to be Synthesized

The resulting matrix equation is given as:

10000000 1
1100000 0 1
1010000 0 0
Lt1r1o0000| o |1
10001000]| — 1
11001100 0
10101010 1
1111111 1




Consider the smallest possible (G matrix, denoted as (5, where the subscript indicates the

number of function inputs.

Jdo 91 92 93
10 00
Gy = 11 00
10 1 0
1 1 11

Where the constituent functions are defined as:

g = 1

g = o

g2 = I3

gs = ZTo 1

Likewise, the matrix G is defined as:

9% 9 9 93
1111
G = 1010
1100
1000

Where the constituent functions are defined as:

g = 1
g = T
g = T
g5 = T} )

Lemma 2 The coefficient matrices, G and G' are triangular matrices with all g;; = g, = 1.
O

Next, we will show that the solution vector, R, always contains components that are

members from the field of positive and negative integers, Z. Where 7 is defined as:
Z=A{..,-3,-2,-1,0,1,2,3,...}

Lemma 3 The solution vector, R, in the equation, GR = F', contains only integer compo-

nents. a



Next, the Reed-Muller form is presented with a 3-variable example as motivation for the
following mathematical results. The complement-free ring sum formulation of the canonical

Reed-Muller form for a three-variable function may be expressed as:

f@) =10 B ridy B rods B rads G rad1@s @ rsd1ds @ redads & red 12 (1)

Where the dotted variables represent function inputs that are either all complemented,
or, none are complemented. The r; terms are Boolean constants that have value 71”7 or 70”.
Equation 1 contains operations and elements from the Boolean ring, R (the omission of a
binary operator between two consecutive variables in 1 implies that the operation denoted

by - occurs). Equation 1 is rewritten in the following form:

fl@) =rogo B r1ig1 B 1r2ga P rags B rags B rsgs B rege b rrgr (2)

Where the r; are Boolean constants described above, and each g¢; is the AND (product)
of a subset of the function’s literals. Each particular realization of the complement-free ring
sum of the Reed-Muller form is then simply a specified set of r; values that will be referred
to as the vector, R. The set of functions, ¢;, will be referred to as the ”constituent functions”

of f(x). It is convenient to rewrite equation 2 in vector matrix form as:

GR=1I (3)

Where the elements of the function vector, £, and the constituent function matrix, GG, are
known (or are easily computed), and the elements of the R vector specify the complement-free
ring sum formulation of the Reed-Muller canonical form. The column vectors formed from
all possible outputs of the constituent functions, ¢;, are concatenated to form the coefficient
matrix, (¢, and the corresponding function outputs are concatenated to form the function
vector, F.

The two forms for the complement-free ring sum expression were given in equation 1.
This implies that two different coefficient matrices exist for 3, denoted by G and G’. The
matrix, (7, is used when all #; = x; and G’ is used when all @, = 2/ (" indicates the application
of the complement function to a Boolean variable). In the following, we define the coefficient

matrix, G formally.

Definition 1 The matriz, G, is a concatenation of the output column vectors of the con-

stituent functions, g;, with no inverted inputs. a



including the specific solution vector, are provided. Also, implementation concerns are dis-
cussed including the Input/Output and efficiency issues. Finally, we a discuss the advantages
and implementation issues of this technique. Problems related to complexity reduction and
incorporation of the synthesis algorithm into existing development environments are men-
tioned. In section 4 we conclude the results of this research. The appendix contains the

proofs of theorems and lemmas in this paper.

2 Mathematical Formulation

The development of the mathematical foundations of this technique rely upon the concepts
of rings and morphisms.

The Boolean ring satisfies the all of the properties of a general ring along with the
idempotence property [BLR62]. The familiar Boolean algebra is equivalent to the Boolean
ring, R, defined as follows:

R {0717@7'}

Where 0 and 1 denote the logic values of zero and one, the addition operator, &, denotes
the binary XOR operation, and the multiplicative operator, -, denotes the binary AND
function. Clearly, the set, R, forms a Boolean ring since all of the properties of a general
ring are satisfied [VL75] along with the idempotence property.

Next, consider an alternative set, R’. This set contains the following elements:
RO, 1+, x}
Where:
0 =1{0,4£2,44,46,...,425,...}
and
I={£1,43,£5,....,£(2i + 1),...}

Thus, () and I are the sets of all even integers (including 0) and all odd integers (excluding
0), respectively. The two operators in the set, /', are the additive operator, +, and the
multiplicative operator, x. These operators perform real addition and real multiplication,
respectively. R’ also satisfies the properties of a Boolean ring.

The following lemma establishes the relationship between the two rings  and R’ (proofs

to the theorems and lemmas in this paper are provided in the appendix):

Lemma 1 The function, f(x) = x(mod2), forms a ring morphism from R to R. O
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Abstract

A numerical computation based circuit synthesis technique is presented for the
Reed-Muller canonical form. The synthesis methodology is reduced to the problem of
finding a solution to linear system of equations in the real-field. The mathematical
formulation for this technique is developed and it is shown that a unique solution
exists. A synthesis example is presented along with a discussion on implementation
issues. Finally, a discussion on the complexity of the technique is provided.

1 Introduction

As the complexity of VLSI circuitry increases, testability concerns tend to grow proportion-
ally. The well-known properties of the Reed-Muller canonical form make it an attractive
candidate for testable circuit implementations [SR72]. Previously, the automated synthesis
of Reed-Muller logic circuits was accomplished via symbolic Boolean algebra manipulations
[DM54] [MS70]. In this paper, we present an alternative approach based upon numerical
techniques to solve the synthesis problem for the Reed-Muller form. Specifically, it is shown
that the Reed-Muller synthesis methodology can be reduced to solving a system of linear
equations over the real-number field.

By reducing the Reed-Muller logic circuit realization problem into a numerical calcu-
lation, we are able to take advantage of the vast amount of results available in the areas
of numerical analysis and linear system theory (such as LINPACK [DBMT78]). Numerical
techniques using spectral information have been proposed for general logic circuit synthesis
in the past [TN93] [CET7]. The approach presented here differs in that we formulate the
problem as determining a solution of a general linear system rather than using spectral, or
correlation, computations.

The organization of this paper is as follows. First, the mathematical foundations of this
technique are developed and all of the necessary intermediate results are derived. Following

the mathematical formulation, a synthesis example is given. The details of the synthesis,



