
Fast and EÆcient Equivalence Checking based on NAND-BDDs

Rolf Drechsler Mitch Thornton

Institute of Computer Science Elec. and Computer Engineering

Albert-Ludwigs-University Mississippi State University

79110 Freiburg, Germany Mississippi State, Mississippi

drechsle@informatik.uni-freiburg.de mitch@ece.msstate.edu

Abstract

Ordered Binary Decision Diagrams (BDDs) are a data

structure commonly used for the representation and

manipulation of Boolean functions as used in VLSI

CAD applications. BDDs are used in many equiva-

lence checking tools due to their canonicity. Typically,

BDD packages are based on ITE synthesis operations.

By restricting the ITE-based packages to a single oper-

ation (in this example, the Boolean NAND) simpli�ca-

tion of the implementation of the software often results

in a speedup of the BDD construction process. Exper-

iments show that signi�cant improvements in terms of

runtime can be achieved. In some cases more than a

95% increase in runtime improvement is noted.

1 Introduction

Decision Diagrams (DDs) are often used in VLSI CAD

systems for eÆcient representation and manipulation

of Boolean functions. The most popular data struc-

tures are ordered Binary Decision Diagrams (BDDs)

[2, 3]. They have been used in various applications due

to their canonical representation and ease of manipu-

lation. Particularly in the case of formal veri�cation,

BDDs have been integrated in almost all tools used to

date [4, 9]. These BDD packages are based on recur-

sive operations that make use of a three operand func-

tion commonly known as ITE [1]. For details on the ef-

�cient implementation of BDD packages see [1, 8, 11].

Most BDD packages allow for many types of syn-

thesis operations such as AND and OR; however, vari-

able substitution and quanti�cation operations which

are used extensively in sequential equivalence checking

are also included. On the contrary, for Combinational

Equivalence Checking (CEC), it is only necessary to

determine whether two given circuit implementations

realize the same Boolean function. Many of the op-

erations included in standard packages are not used

for CEC applications. The check for combinational

function equivalence needs to be performed very fast

since, if CEC is applied to large designs, it is often

the case that several million comparisons are carried

out. In such comparisons no dynamic variable order-

ing (as proposed in [10]) is invoked since this often

can become very time consuming and slows down the

overall CEC veri�cation process. For an overview of

the general veri�cation ow of an equivalence checker

see [7].

A BDD package is presented that is tuned for fast

and eÆcient CEC. Instead of using the three-operand

ITE operation, the basic synthesis algorithm is the

two-operand Boolean NAND. This simpli�es the im-

plementation of the software and also has advantages

regarding the hit rate of the computed table. The

package does not free nodes once they are allocated

and also does not support dynamic variable reorder-

ing. The implementation is kept as simple as possible

to allow a very fast operation. Experiments show that

signi�cant improvement over ITE based packages can

be observed. Up to a 95% reduction in runtime, while

the memory consumption as measured in the number

of nodes allocated only increases slightly.

This paper is structured as follows: In Section 2

BDDs are de�ned and the ITE operator is briey re-

viewed. NAND-BDDs are introduced in Section 3 and

di�erences with respect to the ITE operator are dis-

cussed. Experiments are presented in Section 4. Fi-

nally, the results are summarized.

2 Preliminaries

A brief de�nition of BDDs and a review of the ITE

operation is presented to provide context for the pre-

sentation of the NAND based implementation as de-

scribed here.

1



ite(F,G,H) f
if (terminal case) return result;

if (computed-table entry (F,G,H) exists) return result;

let xi be the top variable of fF,G,Hg;

THEN = ite(Fxi
; Gxi

; Hxi
) ;

ELSE = ite(Fxi
; Gxi

; Hxi
) ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and sons THEN and ELSE

R = Find or add unique table(xi,THEN,ELSE);

// Store computation and result in computed table

Insert computed table(fF,G,Hg,R);

return R;

g

Figure 1: ITE-algorithm

2.1 Binary Decision Diagrams

As is well-known a Boolean function f : Bn ! B can

be represented by a Binary Decision Diagram (BDD)

which is a directed acyclic graph where a Shannon

decomposition

f = xifxi=0
+ xifxi=1

(1 � i � n)

is carried out in each node.

A BDD is called ordered if each variable is encoun-

tered at most once on each path from the root to a

terminal node and if the variables are encountered in

the same order on all such paths. A BDD is called

reduced if it does not contain isomorphic subgraphs

nor a vertex with both exiting edges pointing to the

same node. Reduced and ordered BDDs are a canoni-

cal representation since for each Boolean function the

BDD is uniquely speci�ed.

For functions represented by reduced and ordered

BDDs eÆcient manipulations are possible [2]. In the

following, only reduced and ordered BDDs are consid-

ered and for brevity these graphs are called BDDs.

2.2 If-Then-Else Operation

The typical synthesis operation employed in most

BDD software packages is given a brief overview here.

The synthesis of two BDDs is carried out by perform-

ing a recursive call on subgraphs. A sketch of the re-

cursive If-Then-Else (ITE) algorithm from [1] is given

in Figure 1.

3 NAND-BDDs

In the approach considered here the synthesis algo-

rithm is restricted to one operation only, the Boolean

NAND. The resulting algorithm is shown in Figure 2.

As can be seen, the overall ow is exactly the same

as for the ITE algorithm, however, only two instead

of three operands are required. This improves the hit

rate of the computed table and also reduces its' size.

It is noted that a restriction to other operators such

as the Boolean NOR can also be used analogously. In

addition, the use of a few operators is possible using

di�erent computed tables for each of them. For sim-

plicity, the prototype software described here is re-

stricted to use only the NAND function.

It is well known that the NAND operation (f � g)
is suÆcient to realize all possible Boolean functions of

2 variables. For completeness the list of all possible

operations is given in Table 1. For readability of the

table the negation operation is still allowed since it

can easily be mapped to

a = NAND(a; a) = NAND(a; 1):

The current implementation described here does

not use complemented edges (see [1, 8]). This can be

2



NAND(F,G) f
if (terminal case) return result;

if (computed-table entry (F,G) exists) return result;

let xi be the top variable of fF,Gg;

THEN = NAND(Fxi
; Gxi

) ;

ELSE = NAND(Fxi
; Gxi

) ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and sons THEN and ELSE

R = Find or add unique table(xi,THEN,ELSE);

// Store computation and result in computed table

Insert computed table(fF,Gg,R);

return R;

g

Figure 2: NAND-algorithm

integrated directly and would likely lead to a further

reduction of runtime and memory requirements.

The realization of the package described here is

based on the principle that all operations that are not

relevant for the computation of the BDD are avoided.

Due to this approach, the technique described here

is not a \full" BDD package since other features are

missing. In particular, it is noted that the following

features are not included.

Dynamic Variable Ordering (DVO): Variable

re-ordering is a very e�ective technique for re-

ducing the number of nodes in BDDs. In terms

of fast CEC applications, DVO can become very

time consuming. By avoiding this feature the im-

plementation is simpli�ed signi�cantly and addi-

tional runtime is not expended in an attempt to

reduce the size of a BDD.

Memory management: Nodes are only allocated

and are never freed during a comparison run.

Therefore, no garbage collection is carried out.

The advantage is that the package is very mem-

ory eÆcient since no reference count [1] needs to

be stored. The number of nodes that are cre-

ated is a �xed quantity which, if exceeded, simply

causes the package to return with a \insuÆcient

memory" error.

The lack of inclusion of these features actually has

the advantage that the package only performs oper-

ations that are relevant for constructing a BDD as

fast as possible and within speci�ed memory limits.

In practice it is better to get a fast result so that

the BDD approach to CEC does not give a solution

when the maximum allowable node count is exceeded

rather than wasting an excessive amount of runtime

that could be better used by other CEC techniques

based on principles such as SAT-solvers or term re-

writing.

3.1 ITE vs. NAND

In this section the main di�erences between NAND-

BDDs and standard implementations based on ITE

operations are compared.

� NAND-BDDs are easier to implement. This re-

sults from the simplicity of the synthesis opera-

tion and the fact that DVO and memory man-

agement is not supported. This also results in

simpli�cation of debugging the code.

� Usually more nodes are allocated since the map-

ping to NAND only results in more synthesis op-

eration calls; however, memory is also saved by

avoiding the reference count function and the re-

duction of the computed table size due to two

instead of three operands.

3



Table 1: Realization of operators by NAND

function name expression NAND-call

0000 0 0 0

0001 AND f � g NAND(NAND(f; g); 1)

0010 f > g f � g NAND(NAND(f; g); 1)

0011 f f f

0100 f < g f � g NAND(NAND(f; g); 1)

0101 g g g

0110 XOR f � g NAND(NAND(a; b); NAND(a; b))

0111 OR f + g NAND(f; g)

1000 NOR f + g NAND(NAND(f; g); 1)

1001 XNOR f � g NAND(NAND(NAND(a; b); NAND(a; b)); 1)

1010 NOT g g

1011 f � g f + g NAND(f; g)

1100 NOT f f

1101 f � g f + g NAND(f; g)

1110 NAND f � g NAND(f; g)

1111 1 1 1

� Only two operands are used in the synthesis oper-

ation. This improves the hit-rate in the computed

table. Since the computed table is the key to fast

BDD algorithms [6], this has a direct impact on

the overall performance of the BDD software.

� NAND-BDDs are useful for fast CEC and in this

sense they are not a \full" BDD package since

operations that are important for other applica-

tions such as quanti�cation, DVO and garbage

collection are not realized as eÆciently as in other

packages.

4 Experimental Results

In this section experimental results are given that

show the behavior of NAND-BDDs as compared to an

ITE realization using well known benchmark exam-

ples. The experimental results were carried out using

a SUN Ultra 1 with 256 MBytes. All times are given

in units of CPU seconds.

The prototype of the software has been written in

C + +. In order to provide a fair comparison, the

ITE and NAND-BDD packages are implemented in

the same environment in that both packages do not

use a memory manager and both are implemented

without the use of complemented edges. Both pack-

ages only make use of the simple terminal case and

do not consider techniques like case normalization or

ITE constant as described in [1].

Benchmarks from ISCAS85 and the combinational

part of ISCAS89 are used in the experimental results

as presented in Table 2. For both packages the same

static variable ordering using a method similar to that

described in [5] is used and a hard upper node limit

of 250.000 is used. The only benchmarks reported

here are those for which a result was obtained within

this node limit and within 1 CPU hour. Furthermore,

we focus on \non-trivial" examples which take longer

than 1 CPU second. The benchmark function c0880

has been included since it was one of the few where

ITE showed better performance regarding runtime.

For all other larger examples, NAND-BDDs outper-

formed ITE.

The results are given in Table 2. The name of the

benchmark is given in the �rst column. In columns

ITE and NAND, nodes and time denotes the number

of nodes allocated during the BDD construction and

the time needed, respectively. The last two columns of

the table give the relative improvement for the num-

ber of nodes and the runtime needed. As can be seen,

the number of nodes is never more than 50% larger

for NAND-BDDs as compared to the ITE based im-

plementation while the runtime in some cases can be

reduced by more than 99% (see c1908). During CEC

the runtime is usually more critical and the maximum

amount of memory that is used can easily be controlled

by the hard limit on the number of nodes set by the

user.

4



Table 2: ITE vs. NAND for BDD construction

name ITE NAND improvement

nodes time nodes time nodes time

cs01423 87987 2.34 117833 1.04 1.3392 0.4444

cs05378 47583 15.20 52375 12.47 1.1007 0.8269

c0432 28656 190.81 35591 5.48 1.2420 0.0287

c1908 162035 264.24 185989 2.43 1.1478 0.0091

c5315 116416 10.36 186178 1.80 1.5992 0.1737

c0880 50843 0.35 60326 0.52 1.1865 1.4857

c0499 136821 264.14 146193 84.67 1.0684 0.3205

5 Conclusions

A technique for the implementation of a BDD pack-

age that �nds application in fast combinational logic

equivalence checking is presented. The prototype

package discussed here only makes use of one synthesis

operation; the NAND instead of the ITE based one.

Due to the simplicity of the implementation discussed

here, the experimental outcomes have resulted in sig-

ni�cant computer runtime speedup in terms of BDD

construction time.

It is focus of future work to include the use of com-

plemented edges, since this would allow for further

simpli�cation of the synthesis calls and it can also be

expected that the number of nodes will decrease more

than the ITE based packages, since negation is used

intensively during the construction process.

Acknowledgments

This work was motivated by the talks of Geert Janssen

and Andreas K�uhlmann at the Dagstuhl Seminar

Computer Aided Design and Test - BDDs versus SAT

in February 2001.

References

[1] K.S. Brace, R.L. Rudell, and R.E. Bryant. EÆ-

cient implementation of a BDD package. In De-

sign Automation Conf., pages 40{45, 1990.

[2] R.E. Bryant. Graph - based algorithms for

Boolean function manipulation. IEEE Trans. on

Comp., 35(8):677{691, 1986.

[3] R.E. Bryant. Symbolic Boolean manipulation

with ordered binary decision diagrams. ACM,

Comp. Surveys, 24:293{318, 1992.

[4] J.R. Burch and V. Singhal. Tight integration of

combinational veri�cation methods. In Int'l Conf.

on CAD, pages 570{576, 1998.

[5] H. Fujii, G. Ootomo, and C. Hori. Interleaving

based variable ordering methods for ordered bi-

nary decision diagrams. In Int'l Conf. on CAD,

pages 38{41, 1993.

[6] A. Hett, R. Drechsler, and B. Becker. MORE:

Alternative implementation of BDD packages by

multi-operand synthesis. In European Design Au-

tomation Conf., pages 164{169, 1996.

[7] A. Kuehlmann, M. Ganai, and V. Paruthi.

Circuit-based Boolean reasoning. In Design Au-

tomation Conf., 2001.

[8] S. Minato, N. Ishiura, and S. Yajima. Shared

binary decision diagrams with attributed edges

for eÆcient Boolean function manipulation. In

Design Automation Conf., pages 52{57, 1990.

[9] V. Paruthi and A. Kuehlmann. Equivalence

checking combining a structural SAT-solver,

BDDs, and simulation. In Int'l Conf. on Comp.

Design, pages 459{464, 2000.

[10] R. Rudell. Dynamic variable ordering for ordered

binary decision diagrams. In Int'l Conf. on CAD,

pages 42{47, 1993.

[11] F. Somenzi. EÆcient manipulation of decision di-

agrams. Software Tools for Technology Transfer,

2001.

5


