
Integrated photonic coupler based on
frustrated total internal reflection

Nathan R. Huntoon,1 Marc P. Christensen,1,* Duncan L. MacFarlane,2

Gary A. Evans,1 and C. S. Yeh1

1Department of Electrical Engineering, Southern Methodist University, P.O. Box 750338 Dallas, Texas 75275-0338, USA
2Eric Jonsson School of Engineering and Computer Science, University of Texas Dallas,

P.O. Box 830688 EC33, Richardson, Texas 75083-0688, USA

*Corresponding author: mpc@engr.smu.edu

Received 16 May 2008; accepted 14 August 2008;
posted 4 September 2008 (Doc. ID 96340); published 16 October 2008

An optical coupler for integrated photonic circuits is presented and analyzed. The coupler is based on
frustrated total internal reflection (FTIR) and offers high efficiency in a compact footprint. Analytic ex-
pressions for the transmission and reflection coefficients of the coupler are obtained using a plane-wave
theory and experimentally verified. Finite-difference time-domain modeling of FTIR is discussed and
modeling results of the coupler are presented. A parametric discussion of the FTIR coupler provides de-
sign tools for making 3dB couplers. © 2008 Optical Society of America
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1. Introduction

Key components of large-scale photonic integrated
circuits (PICs) are couplers that split optical signals
in a waveguide into multiple waveguides with high
efficiency and minimal backreflection. A conven-
tional approach to this problem is the adiabatically
tapered “Y” coupler [1–3] that achieves very high
efficiencies with virtually no backreflection, but re-
quires a length of several hundreds of micrometers.
Resonant structures may also be included in Y-type
couplers to reduce the size but not necessarily the
group delay of the device [4]. Parallel waveguide-
based directional couplers have also been realized
in a variety of material systems [5–7] and, in these
structures, gratings may be included to provide wa-
velength selectivity and shorter length scales [8–11].
Recently, compact “air trench” tapers have been de-
monstrated for low index contrast systems with effi-
ciencies in the high 90% range that occupy areas of
approximately 30 μm× 30 μm[12]. The large foot-

prints of each of these coupler types put limitations
on their utility in integrated optical circuits.

In this paper a coupler based on frustrated total
internal reflection (FTIR) is presented. FTIR has
been discussed in depth in the literature. Reference
[13] provides a historical review of the development
of FTIR as well as an elegant derivation of the plane-
wave reflection and transmission coefficients. Inves-
tigation of the Goos–Hanchen phase shift led to the
discovery of power flow between the mediums at a
totally internally reflecting (TIR) interface [14].
The Goos–Hanchen shift is intimately coupled to
the underlying operation of FTIR; power is trans-
ferred from the first interface to the second, thus
frustrating the power reflected off the first interface.
FTIR is currently being utilized inQmodulators [15],
laser cavity resonators [16], and microscopy [17].

Consider a photonic integrated circuit that in-
cludes a waveguide. There will be a well-established
mode propagating in that waveguide. If a wide ver-
tical trench of lower index intersects the waveguide
at an angle, there will be a reflection off the first face
of the trench. If the angle of the trench with respect
to the waveguide direction of propagation exceeds
the critical angle for the relative index change, then
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there will be total internal reflection and all of the
power will be reflected. This has been used with thick
trenches in photonic integrated circuits to turn tight
corners [18]. At a TIR interface there is an exponen-
tially decaying evanescent field extending perpendi-
cularly into the trench. If the trench is narrow
enough that this decaying field has nonnegligible
amplitude at the far trench wall, then FTIR will oc-
cur and a portion of the power will continue to pro-
pagate beyond the trench. Provided that the trench
extends into the waveguide such that it encompasses
the whole optical mode and the trench walls are
smooth, this coupling mechanism is lossless. The
coupler is readily integrated in photonic circuits
and can have a footprint on the order of the optical
mode cross section with efficiencies in the high 90%
range.
This paper develops analytic expressions for an

FTIR coupler using a plane-wave approach to evalu-
ate coupling between two waveguides. This model
is verified through experimentation and finite-
difference time-domain (FDTD) waveguide analysis.
Finally, a parametric analysis of the 3dB coupler is
presented.

2. Plane-Wave Model of FTIR

In this section an analytic model of a propagating
plane wave in a high-index material incident on an
angled trench of low index is developed. While the
actual mode is a summation of multiple plane waves
that share a common propagation vector, if the mode
propagation vector β is close to the wave propagation
vector k, for many waveguide geometries it can be
well approximated by a singe plane wave traveling
parallel to the waveguide. Assuming a single plane
wave allows analysis of the trench with only a single
angle of incidence.
The boundary conditions of this setup for a trench

of width w are presented below.

EI
transverseðx; y; z ¼ 0−; tÞ ¼ EII

transverseðx; y; z ¼ 0þ; tÞ;
ð1Þ

HI
normalðx; y; z ¼ 0−; tÞ ¼ HII

normalðx; y; z ¼ 0þ; tÞ; ð2Þ

EII
transverseðx; y; z ¼ w−; tÞ ¼ EIII

transverseðx; y; z ¼ 0þ; tÞ;
ð3Þ

HII
normalðx; y; z ¼ w−; tÞ ¼ HIII

normalðx; y; z ¼ wþ; tÞ: ð4Þ

To solve the wave equation with these boundary con-
ditions, standard forms of the solution are assumed.
In region I the assumed form is a sum of propagating
waves in theþz and −z directions. In region III a pro-

pagating wave in þz is assumed. Region II is as-
sumed to have the form of a sum of exponentially
decaying evanescent waves, one decaying in þz
and one decaying in −z. To simplify the problem,
two separate cases are considered. The first is when
the electric field is transverse to the plane of inci-
dence on the trench (TE), and the second is when
the magnetic field is transverse to the plane of inci-
dence on the trench (TM). The general solution to the
problem is a superposition of these two cases.

A. Transverse Electric

The first case discussed is when the electric field is
transverse to the trench. For an incident plane wave
transverse to the trench, field equations describing
the incident wave are the well-known Eqs. (5)–(7):

Hxðx; y; tÞ ¼ x̂ cosðθiÞ
E0

η1
exp½−jk0ðx sinðθiÞ

þ z cosðθiÞÞ�; ð5Þ

Hzðx; y; tÞ ¼ −ẑ sinðθiÞ
E0

η1
exp½−jk0ðx sinðθiÞ

þ z cosðθiÞÞ�; ð6Þ

Eyðx; y; tÞ ¼ ŷE0 exp½−jk0ðx sinðθiÞ þ z cosðθiÞÞ�: ð7Þ

Applying these equations to the boundary conditions
of Eqs. (1)–(4) results in four simultaneous equations
with five unknowns:

EI
incðx; yÞ þ EI

ref ðx; yÞ ¼ EIIþðx; yÞ þ EII
−
ðx; yÞ; ð8Þ

EIIþ expð−jk0n2 cosðθ2ÞwÞ þ EII
−
expðþjk0n2 cosðθ2ÞwÞ

¼ EIII
tran expð−jk0n2 cosðθ2ÞwÞ; ð9Þ

n1 cosðθ1ÞðEI
inc − EI

ref Þ ¼ n2 cosðθ2ÞðEIIþ − EII
−
Þ; ð10Þ

n2 cosðθ2ÞEIþ expð−jk0n2 cosðθ2ÞwÞ
þ EII

−
expðjk0n2 cosðθ2ÞwÞ

¼ n1 cosðθ1ÞEIII
tran expðjk0n2 cosðθ2ÞwÞ; ð11Þ

where EI
inc is the incident field in region I, EI

ref is the
reflected field in region I, EIIþ is the evanescent field
decaying in the þz direction in region II, EII

−
is

the evanescent field decaying in the −z direction in
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region II,EIII
tran is transmitted field propagating in the

þz direction in region III, n1 is the index of refraction
of regions I and III, n2 is the index of refraction of
region II, θ1 is the incident angle from region I to re-
gion II, θ2 is the angle of the evanescent field in re-
gion II, thus the angle of incidence of the fields from
region II to region III, and k0 is the free-space wave
vector of the incident wave.
Because this is an under-specified problem, a di-

rect solution for all of the fields is not possible. How-
ever, what can be found is the ratio between two
fields. The useful quantities for a device are: the ratio
between the transmitted field in region III and the
incident field in region I and the ratio between the
reflected field in region I and the incident field in re-
gion I. Solving Eqs. (8)–(11) for these two ratios leads
to Eqs. (12) and (13):

EIII
tran

EI
inc

¼ −4αTEβTE exp½jk0wðn2 cosðθ2Þ − n1 cosðθ1ÞÞ�
α2TEðexpðδÞ − 1Þ þ β2TEðexpðδÞ − 1Þ − 2αTEβTEðexpðδÞ þ 1Þ ; ð12Þ

EI
ref

EI
inc

¼ α2TEðexpðδÞ − 1Þ þ β2TEð1 − expðδÞÞ
α2TEðexpðδÞ − 1Þ þ β2TEðexpðδÞ − 1Þ − 2αTEβTEðexpðδÞ þ 1Þ ; ð13Þ

where

αTE ¼ n1 cosðθ1Þ; ð14Þ

βTE ¼ n2 cosðθ2Þ; ð15Þ

δ ¼ jk0n22w × cosðθ2Þ: ð16Þ

Taking the magnitude squared of Eqs. (12) and (13)
yields the power transmission coefficient and power
reflection coefficient, respectively.
Figure 1 shows the TE transmission and reflection

coefficients for a plane wave with wavelength
1:55 μm incident at 45° upon an air trench separating
two slabs of material with index of 3.22 as the trench
width varies from 0 to 300nm. Using either Eq. (12)
or Eq. (13) it is possible to numerically solve for a
trench width that will provide a desired reflection
or transmission coefficient for a TE plane wave.

B. Transverse Magnetic

The second case discussed is when the magnetic field
is transverse to the trench. The well-known field
equations for a TM wave are

Hyðx; y; tÞ ¼ ŷH0 exp½−jk0ðx sinðθiÞ þ z cosðθiÞÞ�; ð17Þ

Exðx; y; tÞ ¼ −x̂ cosðθiÞH0η exp½−jk0ðx sinðθiÞ
þ z cosðθiÞÞ�; ð18Þ

Exðx; y; tÞ ¼ ẑ sinðθiÞH0η exp½−jk0ðx sinðθiÞ
þ z cosðθiÞÞ�: ð19Þ

Applying boundary conditions (1)–(4) again and sol-
ving for the desired field ratios yields

EIII
tran

EI
inc

¼ 4αβðexpðδ=2Þ − 1Þ
α2TMðexpðδÞ − 1Þ þ β2TMðexpðδÞ − 1Þ þ 2αβðexpðδÞ þ 1Þ ; ð20Þ

Fig. 1. Reflection and transmission coefficients for a plane wave
as gap width varies from 0 to 300nm. Waveguide index ¼ 3:22,
trench index ¼ 1, wavelength ¼ 1:55 μm, angle of incidence ¼ 45°.
Dashed curves, transverse electric; solid curves, transverse
magnetic.
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EI
ref

EI
inc

¼ ðβ2TM − α2TMÞðexpðδ=2Þ þ 1Þ
α2TMðexpðδÞ − 1Þ þ β2TMðexpðδÞ − 1Þ þ 2αTMβTMðexpðδÞ þ 1Þ ; ð21Þ

where

αTM ¼ n1 cosðθ2Þ; ð22Þ

βTM ¼ n2 cosðθ1Þ: ð23Þ
and δ is again defined by Eq. (16).
Figure 1 also shows the TM transmission and

reflection coefficients for the same material descrip-
tion given above as the trench width varies from
0–300nm. Using either Eq. (20) or Eq. (21) it is pos-
sible to numerically solve for a trench width that will
give any desired reflection or transmission coefficient
for a TM wave.

3. Experimental Verification in the Millimeter Wave
Regime

It is common practice to prototype nanoscale struc-
tures in the millimeter wave region. For example,
the first photonic bandgap crystals were validated
in the millimeter wave region [19] and early studies
in negative refractive index materials benefited from
this approach [20]. Equivalent structures and mate-
rials are fabricated at an increased wavelength by a
factor of ∼1000. This allows precise measurement of
small (relative to the wavelength) structures. Such
an approach allows novel concepts to be validated
by removing the risk associated with the uncertainty
involved in manufacturing errors. In this work, an
experiment was done to verify the model of evanes-
cent coupling presented above. An 88:2GHz radio
frequency (RF) source (free-space wavelength of
3:44mm) was coupled into an alumina dielectric wa-
veguide (n ¼
3:13) of dimensions 1mm × 3:2mm. The single-mode
waveguide was cut at 45° and the two waveguide
pieces were translated from touching to a 700 μm
gap. Figure 2 shows the experimental setup of the
millimeter wave experiment. The power coupled into
the second waveguide was measured every 50 μm as
the gap increased. The collected data was then com-
pared to the developed theory. Figure 3 shows the
good agreement between experimental data and
the plane-wave model.

4. Finite-Difference Time-Domain Modeling of FTIR

In addition to the millimeter wave experiment pre-
sented above, the coupler was studied using the
FDTD numerical modeling technique. FDTD is
based on a discretization of time and space, solving
Maxwell’s equations using finite-difference deriva-
tives, and employs a time marching scheme to propa-
gate electromagnetic waves. The behavior of FDTD

simulations is well understood and documented
[21]. However, care must be taken when modeling
evanescent fields. In particular, the selection of the
spatial resolution ðΔx;Δy;ΔzÞ has two additional
considerations that must be taken into account.
The first is the effect of electrically small features
on evanescent fields; the second is the numerical dis-
persion inherent in FDTD modeling.

In general, physical features smaller than 1=10 a
wavelength do not have appreciable effects on propa-
gating electromagnetic waves. Because of this, in
FDTD models, it is standard practice to make the
spatial resolution slightly smaller than 1=10 of a
wavelength. The coupler is dependent upon evanes-
cent fields, though, and the concept of a wavelength
is not appropriate when dealing with evanescent
fields. Instead, the decay rate of the field strength
is the important scale of measure. When modeling
evanescent fields, the spatial resolution must be
selected such that accurate sampling of the field is
done before it decays to a negligible strength. Spatial
resolutions of the order of 1=50 of a free-space wave-
length are not unreasonable.

Inherent in the FDTD algorithm is a well-docu-
mented numerical dispersion phenomenon [22].
While there are simulation parameters that reduce
the numerical dispersion of propagating waves to
zero, evanescent fields have no such parameter
set. The best that can be is to set the spatial and

Fig. 2. Photograph of RF experimental setup verifying coupler
design. 3:4mm radiation is launched into a dielectric waveguide
with a 45° cut. The gap width is varied to determine the power
that evanescently couples across the gap.
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temporal resolution to as fine as is computational
feasible to minimize the dispersion error [23].
The stability criteria for FDTD simulations relates

the spatial and temporal resolutions by

cΔt ¼ 1

ðΔx2 þΔy2 þΔz2Þ1=2 : ð24Þ

Because of this, as the spatial resolution increases, so
too must the temporal resolution.
These sampling constraints, particularly for the

three-dimensional FDTD simulations performed in
this study, set a formidable demand on the computa-
tional requirements. Specifically, the computational
memory requirements increase as the cube of the
spatial resolution and the computational time re-
quired for a simulation increase linearly with the
temporal resolution. A multiple computer cluster
dedicated to FDTD modeling was used for all of
the following simulations.

A. FDTD Simulation of Millimeter Wave Experiment

The first series of numerical calculations performed
were analysis on the millimeter wave experiment
described above. The physical waveguide setup de-
scribed in Section 4 was modeled. The fundamental
propagating mode of the waveguide was numerically
solved for and launched down the waveguide. Multi-
ple runs were done, changing the gap between the
waveguide with every run. As with the experiment,
the transmitted power was recorded for gap widths
ranging from 0 to 700 μm. Figure 4 shows the experi-
mental and numerical results. The close correlation
verifies that FDTD is a viable technique for modeling
problems involving evanescent coupling as long as
appropriate modeling parameters are chosen. By
having experimental data with which to compare
the results, high confidence in FDTD as a modeling
technique for FTIR couplers was achieved.

B. FDTD Simulation of Optical FTIR Coupler

With FDTD verified as an accurate modeling techni-
que for FTIR couplers, numerical calculations on a

3dB coupler were done. Two ridge waveguides inter-
secting in a “T” with a narrow trench inserted at an
angle of 45° across the intersection wasmodeled. The
base material is InP with an active quantum well
layer in the substrate. The ridge is 2:4 μm tall and
3:5 μm wide. This structure has a fundamental mode
for light at 1:55 μm that is transverse magnetic to the
plane of incidence on the trench and is approximately
7 μm in width. To have total mode overlap, the trench
must be slightly longer than 7 μm. This gives the cou-
pler a physical footprint smaller than 10μm × 10μm,
nearly an order of magnitude smaller than previous
couplers. The effective index of the waveguide for the
fundamental mode is 3.22. Figure 5 shows a view
looking down at the waveguide intersection.

To improve accuracy in modeling the trench width,
the model is rotated 45°. This puts the trench paral-
lel to a major grid axis, which provides several ben-
efits. The simulation setup can be better controlled
because precise boundaries of the trench can be de-
termined, as well as the exact number of numerical
simulation points inside the trench. Placing the
trench parallel to a major axis also ensures that
the evanescent fields inside the trench will be or-
iented along a major axis. This provides the best case
for numerical dispersion.

The fundamental mode is launched from the bot-
tom left leg, is reflected into the bottom right leg,
and is transmitted to the top right leg. Power meters
are placed to record the simulated reflected, trans-
mitted, and scattered power. Three separate power
meters measure scattered power; the first is in the
launching waveguide measuring backscatter, the
second is above the waveguide measuring radiated
power, and the third is buried in the substrate below
the waveguide measuring radiated power. Solving
Eq. (21) numerically with an air-filled trench for a
reflection coefficient of 0.5 for the above structure
yields a trench width of 25nm. Figure 6 shows the
steady state Hz field for a trench of 25nm.

A series of numerical calculations were done on the
model shown in Fig. 5 and presented above to inves-
tigate the reflection and transmission coefficients as

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

Trench Width (mm)

Γ

Fig. 4. Numerical and experimental results of RF evanescent
coupling experiment. Dots, experimental; squares, numerical.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

Trench Width (mm)

Γ

Fig. 3. Experimental and analytical results of RFevanescent cou-
pling experiment. Dots, experimental; solid curve, analytical.
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functions of the trench width. The width of the trench
was scanned from 0–200nm in steps of 20nm.
Figure 7 shows the good agreement between the ana-
lytical and numerical results at each trench width.
No appreciable power was detected in any of the
power meters looking for scattered power. This sup-
ports the claim that the coupler is highly efficient.

5. Design of FTIR 3dB Coupler

There is good agreement among experiment, numer-
ical simulation, and the analytical model presented
in Section 1. Designing a device based upon the ana-
lytical model can be done with high confidence. In-
spection of Eqs. (12), (13), (20), and (21) shows
that, for a given wavelength, there are three vari-
ables that dictate the trench width required for a
3dB coupler. These three variables are the wave-
guide index of refraction, the trench index of refrac-
tion, and the angle of incidence on the trench. A
designer will often have control over at least one
of these, if not more. The behavior of the optical
3dB coupler is presented in the following as these
values are varied over typical ranges. All of the pre-
sented results are based on a free-space wavelength
of 1:55 μm.

The first variable to be examined is the index of
refraction of the waveguide. In many optical systems
this value will be set by other factors, but if the op-
tical coupler is to be an integral part of the optical
system, the behavior of the coupler needs to be con-
sidered. Figure 8 shows the trench widths required
for a 3dB coupler as the index of the waveguide var-
ies from 1.5 to 3.5 if the trench is filled with air and
the angle of incidence is 45°. This range covers most
silicon-based systems up to III–V semiconductor sys-
tems. A 3dB coupler based on FTIR can thus be in-
tegrated into many common integrated photonic
circuits without having to change base materials.
A notable point in Fig. 8 is the waveguide index
where the TE and TM curves intersect. A coupler
designed at this point would be polarization
insensitive.

Because of the requirement that the trench extend
deep enough into the waveguide that it totally over-
laps the mode, trench depths can often be of the order
of micrometers. Examination of Fig. 8 shows that the
trench widths required for 3dB is of the order of hun-
dreds of nanometers. As the index of the waveguide
approaches 2, it is less than 100nm. This can lead to

Fig. 6. Hy field distribution after FDTD run. The run proceeds
long enough for steady state fields to settle. The trench is
25nmwide filled with air, n ¼ 1. Note the Goos–Hanchen shift evi-
dent in the reflected field distribution.

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

Trench Width (   m)µ

Γ

Fig. 7. Analytical and numerical results for transmission
and reflection coefficients. Wavelength ¼ 1:55 μm, angle of
incidence ¼ 45°, index of trench n ¼ 1, trench width 0–200nm. So-
lid curves, analytic; squares, numerical.

Fig. 5. FDTD model of optical FTIR coupler. The fundamental
mode is launched from bottom left leg toward the “T” intersection.
Reflected light travels into the bottom right leg while transmitted
light travels into the top right leg. The waveguide is InP with a
3:5 μm ridge. The fundamental mode index is n ¼ 3:22. The trench
is at a 45° angle to the waveguide direction of propagation.
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the requirement for trenches that have a depth-to-
width ratio greater than 20 to 1. Fabricating trenches
with aspect ratios this high is approaching the cur-
rent state of the art [24].
A method for increasing the trench width is to in-

crease the index of refraction in the trench. Figure 9
shows the trench widths required for a 3dB coupler
as the index of the trench is varied from air, n ¼ 1, to
n ¼ 2:5. The index of the waveguide is 3.22 and the
angle of incidence is 45°. In some instances, it may be
easier to fabricate a wider trench and backfill the
trench with a higher-indexmaterial. Atomic layer de-
position (ALD) has been successfully used to fill
spaces of the order of 100nm [25]. As with Fig. 8,
a notable point in Fig. 9 is the point where the TE
and TM curves intersect. This, again, is where a po-
larization-independent device is possible.
For the design of a 3dB coupler with an angle of

incidence of 45° and a wavelength of light of
1:55 μm, Figs. 10 and 11 summarize the above results
for many common waveguide and fill materials.
Figure 10 is for fields that are TE to the gap and
Fig. 11 is for fields that are TM to the gap.
The final parameter to be investigated is the angle

of incidence. Because FTIR depends upon an angle of
incidence higher than the critical angle, this becomes
the lower limit of possible angles. The upper limit on
possible angles is where the trench is parallel to the
waveguide. Figure 12 plots the trench widths re-
quired for 3dB coupling as the angle of incidence
is swept from the critical angle to 90°. Again, it is
noted that the coupler will operate independent of
polarization where the TE and TM curves intersect.
Figure 12 shows that both TE and TMhave regions

where small changes in angle of incidence lead to
large variations in coupling coefficients. This varia-
tion in coupling coefficients will manifest itself as
a change in the mode shape on the far side of the
trench, which will not match a propagating mode
for the waveguide. The new power distribution will
then radiate a portion of its power away and resolve
back into a propagating mode. The radiated power

will be seen as loss through the coupler. Since modes
in waveguides do not propagate parallel to the direc-
tion of the waveguide, but at the angle defined by the
propagation vector, the angle of the trench on the
waveguide will not be the angle of incidence seen
by the mode. It is thus desirable to design a wave-
guide whose fundamental mode has a propagation
vector well away from the regions where small angles
lead to large variations in coupling coefficients.

In the optical coupler presented in Section 4, the β
vector of the fundamental mode propagates at an an-
gle of 19:2°. This makes the angle of incidence of the
mode upon the trench values of either 25:8° or 64:2°.
Both of these values are outside of the asymptotic re-
gion of operation for the coupler.

6. Conclusion

A compact, high-efficiency optical coupler based on
FTIR was presented. Because of its compact foot-
print, the coupler lends itself to integration into
existing photonic circuit fabrication techniques. In-
creasing photonic integration will reduce size and
cost and increase production yields and performance.
Optical signal processors based on such PICs will
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Fig. 9. Trench width required for 50% coupling as the index of
refraction of the trench varies from n ¼ 1 to n ¼ 2:5. Dashed curve,
TE; solid curve, TM.

Fig. 8. Trench width required for 50% coupling as the index of
refraction of the waveguide varies from n ¼ 1:5 to n ¼ 3:5. Dashed
curve, TE; solid curve, TM.
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Fig. 10. Trench width required for 50% coupling of TE field as
waveguide index varies for multiple trench index fills. Air, n ¼ 1;
PMMA, n ¼ 1:48; SU-8, n ¼ 1:57; sapphire, n ¼ 1:75; Zr02, n ¼ 2:1.
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benefit from reduced response times and increased
bandwidths.
From the parametric investigation of the coupler

some interesting trends are seen. The first is the dif-
ference between TE and TM responses to parameter
changes. Figures 1 and 8–12 show that while both TE
and TM have regions of nonlinear behavior, the TE
trend lines, in general, have a smaller slope. From
this it is noted that TE polarized light is less sensi-
tive to small changes in the design of the coupler.
This makes TE a better choice for a coupler that is
stable under a wide variety of operating conditions.
TE’s lack of sensitivity to coupler parameters is also
important when considering fabrication tolerances.
The manufacturing of large quantities of couplers
with equivalent behavior requires less rigorous toler-
ances if TE polarization is used.
The higher sensitivity of TM light makes it an ap-

pealing choice for some applications. In particular,
using the coupler as an integrated optical sensor is
an area currently being investigated by the authors.
It can be beneficial for sensors to operate in regimes

where small changes of a parameter induce large
changes in output.

As was pointed out in Section 5, it is also possible
to design a coupler that is polarization independent.
Through careful selection of waveguide, the trench
index of refraction, and the angle of incidence, a cou-
pler can be designed which has the same trench
width for 3dB coupling for both TE and TM polariza-
tion. For multimode systems in particular, this is
very beneficial.

The authors acknowledge the support of the De-
fense Advanced Research Projects Agency (DARPA)
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authors would like to thank Dr. Jerome Butler for
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