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Abstract
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1 Introduction

Reliability and capacity requirements remain major invariants in the evolu-
tion of network and node architecture for optical-fiber-based transport net-
works over the past two decades. Drawing upon stringent historical voice traf-
fic requirements, availability targets are specified in terms of the maximum
expected period of downtime per year that a network, point-to-point link,
or piece of equipment may experience. Consequently, equipment designed to
meet the strict “carrier-grade” availability requirements is expected to offer at
least 99.999% availability, or no more than 5 minutes of downtime per year.

Wavelength Division Multiplexing (WDM), Dense WDM (DWDM) technol-
ogy, and optical amplifier technologies are responsible for meeting capacity
and scalability requirements in a cost effective manner. Individual wavelengths
may carry signals at data rates exceeding 10Gbps, and available commercial
systems multiplex up to 164 wavelengths inside the same fiber strand. Such
large capacities increase manifold the magnitude of the disruption caused by
physical link failures in a transport network. Thus, the failure of a single fiber
strand could potentially affect millions of users leading to large revenue losses.

Network survivability is the ability of a telecommunications network to con-
tinue to provide service in the event of failures, and comprises both plan-
ning and operations aspects. The planning aspects involve different protection

schemes for allocating spare capacity to the network, which is to be used
upon the occurrence of a failure event. From a network operations standpoint,
protection schemes are implemented via restoration mechanisms which are ac-
tivated to restore service to affected customers when failure events happen.
This manuscript introduces the reader to the basic optimization models devel-
oped for allocating spare capacity in a telecommunications network in order
to ensure its survivability. Our focus is on the problem of optimally allocating
spare capacity to implement a given protection scheme and restoration mech-
anism in an existing network. The models presented in this paper assume that
decisions about the topology of the network have already been made. These
models are based on variations of the classical multi-commodity flow problem
and before we present them, we briefly discuss the complexity of representing
an actual telecommunications network with an abstract network flow model.

The capacity planning models presented in this manuscript can be adapted
to support node architecture configurations in which nodes provide cross-
connection at the electrical level (in which case the basic unit of capacity
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is the SONET STS-1 51.84Mbps signal), or at the optical level (when the
basic unit of capacity is an individual opaque wavelength). The term opaque
refers to the fact that the nature of the signal carried by that wavelength is not
relevant from the point of view of the capacity models presented here. In both
cases, either additional modularity constraints need to be considered for the
capacity models, or the solution needs to be rounded up to valid permissible
values.

Figure 1 illustrates the multi-layered node architecture of a fiber-optics based
telecommunications networks. Different layers of equipment are required to
handle electrical and optical domain multiplexing, and the conversion be-
tween the electrical and optical domains. Clients’ traffic demand requirements
are expressed in different units, depending upon the type of network consid-
ered. Several multiplexing hierarchies may be involved: SONET/SDH legacy
services along with DWDM multiplexing. The fiber link between two cross-
connects (OXC) comprises multiple elements such as multiplexers (MUXs),
amplifiers, and regenerators. The complexity of the underlying node architec-
ture influences the set of failure scenarios which need to be considered.

Figure 1 About Here

This figure illustrates how a physical fiber cut may affect different equipment
at the same time and may trigger near-simultaneous restoration efforts at mul-
tiple layers. The loss of signal triggered by the physical fiber cut is detected
at the individual OXC layer, as well as the SONET and IP router layers,
since the signals carried will no longer be present. Typically, recovery efforts
initiated at various layers in response to a physical failure take place on dif-
ferent time scales. Recovery at the optical/SONET level happens faster than
the reaction time required by routers at the IP level. While certain failure
patterns may be “masked” to the upper layers by the quick intervention of
optical or SONET-based recovery mechanisms, there may be instances where
that is not the case. Complex coordination between layers is required, made
more difficult by the lack of standard interfaces (both signaling and data car-
rying) between equipment made by different vendors. A different, yet similar
problem is that of failure patterns which are not detectable at the optical layer
directly: a transponder laser failure is a typical example of this at the interface
between IP and optical or SONET equipment. Patching errors may actually
trigger failure detection at the OXC layer, but in a pattern which affects only
a subset of the wavelengths carried on the fiber.

Notwithstanding these complexities, optical-fiber-based transport networks
can be abstractly modeled as undirected graphs in which nodes correspond to
locations where active equipment is placed, and edges represent optical fiber
links. The remainder of this paper discusses optimization models based on the
abstract graph representation of the network. However, the reader is advised
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that any practical application of the methods surveyed will need to carefully
consider node architecture, failure scenarios, and the extent to which restora-
tion at various layers inter-operate. The algorithms, techniques and solution
approaches surveyed in this paper were originally designed with particular
choices about the node architecture, failure scenarios, etc in mind, but may
also apply to other practical scenarios, provided an accurate “translation” is
achieved.

The degree of a node is the number of links incident to the node. For this
survey, a connected graph in which every node has degree 2 is called a ring. A
graph is said to be two-connected if there are at least two node-disjoint paths
between every pair of nodes. Every survivable network must be 2-connected.
The problem of selecting a minimum cost set of edges to ensure that a network
is two-connected is a fundamental problem in network design and has been
studied extensively. Khuller [44] presents approximation results this and a
series of related NP-hard network design problems. For surveys of the integer
programming literature related to this problem see Grötschel et al. [24], Soni
et al. [66], and Fortz et al. [21].

For this survey, a two-connected graph with at least one node with degree
greater than 2 is called a mesh. Hence, all two-connected networks can be
classified as having either a ring or mesh architecture. A ring is the simplest
network topology that is 2-connected and it also makes service restoration
relatively easy to implement: if a direct link between two nodes in a ring fails,
one can simply send the traffic the link was carrying in the other direction
around the ring. Hence, rings have been used extensively in the design of
survivable networks. In a ring-based architecture, a large network is composed
of a collection of smaller ring networks and this architecture is best suited for
situations where the network can be constructed in such a way that most of
the traffic it carries is between pairs of nodes on the same ring (i.e., there
is relatively little intra-ring traffic). However, most backbone networks are
more densely connected and use mesh architectures, with point-to-point traffic
distributed over many pairs of nodes. Ramaswami and Sivarajan [60] note that
typical North American backbone networks have approximately 50 nodes with
an average node degree between 3 and 4, and a few of the nodes will have degree
in the range 5 to 10. For networks of this type, mesh protection architectures
usually require substantially less spare capacity than ring architectures.

Grover [25] presents an example where the total capacity of a mesh design
was less by a factor of 2.75 (400 versus 160) than the total capacity needed
for a ring design for the same traffic demand. The RingBuilder algorithm
(Slevinsky et al. [64], Grover et al. [27]), the SONET Toolkit (Attanasio and
Hoffman [3]), and the heurisitics in Gardner et al. [22], and Wuttisittikulkij
and O’Mahony [72], do much better than the procedure described in [25], but
still incur a large penalty to require building blocks with a ring structure. Due
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to fast 60ms restoration offered by rings, they were used extensively during
the 1990s. However, since the 60ms restoration time is not a hard number and
the processing power available to implement mesh protection has dramatically
increased, the research community is seeing a resurrection of mesh protection
schemes. While ring design techniques are important for any design tool, this
manuscript presents the basic mathematical programming models for mesh-
based survivable networks. See Ramaswami and Sivarajan [60], and Wu [71]
for detailed discussions of ring-based protection schemes, Chow and Lin [13]
and Smith et al. [65] for a recent survey of mathematical programming models
for ring-network designs.

2 Working Capacity Allocation Models

The simplest telecommunications network design problem is to determine the
least capacity needed to satisfy a set of given point-to-point demands. This
is called the working capacity allocation problem and can be modeled as an
integer linear program (ILP) using either a node-arc or an arc-path formula-
tion. Both models will be given in this section. For this presentation, a link

denotes the bi-directional connection between a pair of nodes. For a modern
DWDM telecommunications network, a link connecting nodes i and j consists
of many pairs of fiber optic cable co-located in a single fiber optic duct. One
member of the pair is for traffic from i to j while the other is for traffic in
the opposite direction. In practice most large carriers use a separate cable for
each direction of transmission.

2.1 The Node-Arc Model

Let [N, L] be a graph where N = {1, . . . , n} denotes the set of nodes and L

denotes unordered pairs of nodes corresponding to links. Let E = {(i, j), (j, i) :
{i, j} ∈ L} be a set of ordered pairs called arcs corresponding to the links.
Flow on arc (i, j) implies that flow is from i to j. Flow in the opposite direction
must be on arc (j, i). The directed graph (network) is given by G = [N, E].
Let dij denote the demand for traffic with origin node i and destination node
j. Traffic demand need not be symmetrical (i.e., it’s possible that dij 6= dji),
and it’s assumed that dii = 0 for i = 1, . . . , n. The corresponding matrix
is called the demand or traffic matrix. Since all the traffic prescribed by the
demand matrix must share the same network represented by G = [N, E], the
problem is a member of the class of multicommodity network flow problems.
An individual commodity can be expressed as either an (i, j) pair for each
(i, j) such that dij > 0 or an origin (destination) node for each i ∈ N . Usually
smaller models result from the second strategy which is adopted here. Hence,
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there will be |N | = n commodities, each having up to n − 1 destinations,
corresponding to each of the other nodes in N rather than (as many as)
n2 − n commodities corresponding to each demand pair in the traffic matrix.
Note that this approach sets up a multi-commodity flow problem, where each
commodity has a single “source” and multiple “sinks” corresponding to the
nodes of a given commodity’s demand matrix.

Let the n-component requirement vector ek for commodity k ∈ N be given by

ek
i =











∑

j∈N dkj, if i = k

−dki, otherwise.

For a given commodity, a node requirement greater than zero corresponds to
a supply node, a node requirement less than zero corresponds to a demand
node, and a node requirement of zero corresponds to a transshipment node.
For each arc (i, j), let the variable gk

ij denote the flow of commodity k on
arc (i, j). Let the variable cij denote the capacity of link {i, j}. The node-arc

formulation of the working capacity allocation model is stated mathematically
as follows:

minimize Total Working Capacity:
∑

{i,j}∈L

cij

subject to Flow Conservation:
∑

(i,j)∈E

gk
ij −

∑

(j,i)∈E

gk
ji = ek

i , ∀i ∈ N, ∀k ∈ N

subject to Capacity in Normal Direction:
∑

k∈N

gk
ij ≤ cij, ∀{i, j} ∈ L

subject to Capacity in Reverse Direction:
∑

k∈N

gk
ji ≤ cij, ∀{i, j} ∈ L

subject to Nonnegativity and Integrality:

cij ≥ 0, ∀{i, j} ∈ L

gk
ij ≥ 0 and integer, ∀k ∈ N, ∀(i, j) ∈ E
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This model assumes symmetrical capacity, so that the capacity of cij on link
{i, j} can accommodate a simultaneous flow of cij in both directions. In the
classical multicommodity network flow problem as defined in Kennington and
Helgason [37], the capacities are constant and need not be identical in both
directions.

A software implementation of all the models presented in this manuscript and
the data file for the test case illustrated in Figure 2 may be found in [36].
This code was used to solve the example problem illustrated in Figure 2 with
following demand matrix:

1 2 3 4 5 6

1 - 10 0 10 10 0

2 0 - 10 10 10 10

3 0 0 - 0 10 10

4 0 0 0 - 10 0

5 0 0 0 0 - 10

6 0 0 0 0 0 -

The solution is illustrated in Figure 3a.

The advantage of this model is that it requires very little input data and im-
plicitly considers all possible paths for every demand pair. One slight disad-
vantage is that some additional analysis or post processing of the LP solution
is required to find the paths and flow for a given demand pair. This can be
easily accomplished with a procedure similar to that suggested by Dijkstra
[16] for finding shortest paths. Also some of the paths in the optimal solution
may use a large number of arcs. The number of arcs in a path is known as the
hop count and this can not be restricted in the node-arc model.

Figures 2 and 3 About Here

2.2 The Arc-Path Model

A directed path from node s to node t in the network G = [N, E] is a sequence of
nodes and arcs p = {ii, (i1, i2), i2, (i2, i3), i3, . . . , i`, (i`, i`+1), i`+1}, where i1 =
s, i`+1 = t, and each arc and node are distinct. Let D denote the set of demand
pairs. That is, (i, j) ∈ D implies that dij > 0. Let Qij denote the set of directed
paths from i to j in G = [N, E] for all (i, j) ∈ D, and let T = ∪(i,j)∈DQij. Let
Aij denote the set of paths that contain arc (i, j) ∈ E, and let yp denote the
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flow on path p. The arc-path formulation of the working capacity allocation

model is stated mathematically as follows:

minimize Total Working Capacity:

∑

{i,j}∈L

cij

subject to Demand:

∑

p∈Qij

yp = dij, ∀(i, j) ∈ D (1)

subject to Capacity in Normal Direction:

∑

p∈Aij

yp ≤ cij, ∀{i, j} ∈ L (2)

subject to Capacity in Reverse Direction:

∑

p∈Aji

yp ≤ cij, ∀{i, j} ∈ L (3)

subject to Nonnegativity and Integrality:

cij ≥ 0, ∀{i, j} ∈ L (4)

yp ≥ 0 and integer, ∀p ∈ T (5)

One advantage of this model is that the hop count for all paths can be re-
stricted. Paths that exceed the hop count do not appear in the sets Qij. A
disadvantage is that the cardinality of the sets Qij can be very large. For most
applications Qij is replaced with Q̄ij ⊂ Qij where only a few of the shortest
paths from i to j appear in Q̄ij. When this substitution is made, however, there
is no guarantee that the arc-path model will give as good a solution as the
node-arc model. The solution for the example problem is illustrated in Figure
3b. Note that the total working capacity is identical for both the node-arc and
arc-path formulations, but the individual link capacities are different.
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3 Spare Capacity Allocation Models

This section presents optimization models for the spare capacity allocation
problem in a mesh telecommunications network. Since the users of these net-
works require high reliability, these networks are designed to continue to op-
erate even when a single link failure occurs. It is generally assumed that the
probability of multiple link failures during the time required to repair a failure
is so small that network designers plan restoration strategies based on single
link failures. Designers have identified two basic strategies to protect a net-
work against single link failures: dedicated protection and shared protection. A
discussion of each strategy follows.

The simplest idea for protecting the links in a path is to provision a node-
disjoint backup path. This is also called 1+1 protection since each working
path (the path(s) a demand normally takes when all links are functioning) has
a backup path in reserve that will be used whenever, and only when, a link
in the working path fails (see [60]). While this strategy may be required for
some applications, it is generally the most expensive of the various protection
strategies. In shared protection schemes, the spare capacity on a link is not
dedicated to any given demand pair and may be used in the restoration of
various demand pairs. Shared protection schemes come in two varieties: link

restoration and path restoration. Models for each follow.

3.1 Link Restoration

In link restoration, it is assumed that each node has the capability of detecting
link failures and implementing a rerouting algorithm around the defective link.
If link {s, t} fails, then restoration requires that all working traffic that uses
link {s, t} be rerouted on the reduced graph [N, L \ {s, t}]. For the network
illustrated in Figure 3b, 10 units of spare capacity on links in one or more
paths from node 1 to node 2 must be available to protect link {1, 2}. Likewise,
20 units of spare capacity on links in one or more paths from node 1 to node
4 must be available to protect link {1, 4}. Of course, the failure of link {1, 4}
implies the loss of both the working capacity and spare capacity on that link.
That is, the working capacity and the spare capacity are both assigned to
fibers that are carried in the same duct. A catastrophic failure usually refers
to a cut that destroys all fiber in a duct. However, the spare capacity used
to restore {1, 2} is also available for the restoration of {1, 4}. Link restoration
models come in node-arc, arc-path, and p-cycle varieties.
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3.1.1 The Node-Arc Model for Link Restoration

Let cij for all {i, j} ∈ L denote the known volume of working traffic on link
{i, j}. Suppose link {s, t} fails. Then cst units of flow must be rerouted from
node s to node t and vice versa. In the node-arc model for link restoration,
the requirement at node i is given by

rst
i =



























cst, if i = s

−cst, if i = t

0, otherwise.

Let the variable hij denote the spare capacity assigned to link {i, j} and the
variable f st

ij denote the restoration flow on arc (i, j) when {s, t} fails. The node-

arc formulation of the link restoration version of the spare capacity allocation

model is stated mathematically as follows:

minimize Total Working Plus Spare Capacity:

∑

{i,j}∈L

(cij + hij)

subject to Flow Conservation:

∑

(k,j)∈E

f st
kj −

∑

(i,k)∈E

f st
ik = rst

i , ∀k ∈ N, ∀{s, t} ∈ L

subject to Capacity in Normal Direction:

f st
ij ≤ hij, ∀{i, j} ∈ L, ∀{s, t} ∈ L

subject to Capacity in Reverse Direction:

f st
ji ≤ hij, ∀{i, j} ∈ L, ∀{s, t} ∈ L

subject to Link Failures:

f st
st + f st

ts = 0, ∀{s, t} ∈ L

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L

f st
ij ≥ 0 and integer, ∀{s, t} ∈ L, ∀(i, j) ∈ E
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where cij for all {i, j} ∈ L are fixed (usually to values determined by solving
a working capacity allocation model).

This model assumes symmetrical working and spare capacity. That is, the ca-
pacity is the same in both directions on all links. This model also assumes that
the working traffic was routed separately prior to determining the routing for
restoration. In Section 4 we discuss models where the working and restored
traffic are routed jointly. The solution of the problem instance given in Figure
3b is illustrated in Figure 4a. Note that 100 units of spare capacity are re-
quired to protect 110 units of working capacity. This is typical for this type of
problem. The first investigations of the node-arc formulation for this problem
may be found in Whitler [70] and Kennington and Whitler [42].

Figure 4 about here.

A clever, but different linear programming model for this problem can be found
in Sakauchi et al. [62]. Their model is based on the concept of a cut and we
call it the spare capacity cutset model. Let s and t be distinct nodes in N , and
let S̄ and T̄ be a partition of the nodes such that s ∈ S̄, t ∈ T̄ , S̄ ∩ T̄ = ∅, and
S̄ ∪ T̄ = N . The cutset C(s, t) = {{i, j} ∈ L : i ∈ S, j ∈ T, or i ∈ T, j ∈ S}.
By numbering the links in L, 1, . . . , m = |L|, every cutset C(s, t) can be
represented by an m-component vector q where q` = 1 if link ` is in C(s, t)
and 0; otherwise. Suppose link {s, t} fails and define Bst as the binary matrix
whose rows are cutset vectors corresponding to all s-t cuts in [N, L \ {{s, t}}].
Then the spare capacity vector h must satisfy Bsth ≥ cst1, where 1 is a vector
of all 1s. Since this must hold for each link in L, the spare capacity cutset

model is minimize {1′h : Bsth ≥ cst1, ∀{s, t} ∈ L, h ≥ 0}.

Of course, the disadvantage of this formulation is that it is very difficult to
generate all cutsets for a given link. However, such a model is amenable to a
decomposition scheme, and one such algorithm can be found in Herzberg [30].
Herzberg also presents an extension of the basic spare capacity cutset model
along with pre-processing rules that can speed convergence. A distributed
real-time algorithm for finding a backup path for link restoration has been
presented by Chow et al. [12]. It is a real-time version of the efficient two-
tree procedure examined in Helgason et al. [29]. The problem of finding k

successively shortest link-disjoint paths in the context of service restoration in
telecommunications networks has been investigated by MacGregor and Grover
[48]. Their algorithm will quickly find restoration paths for a failed link in a
centralized (as opposed to distributed) control environment.

3.1.2 The Arc-Path Model for Link Restoration

The arc-path model for link restoration uses the set Zst for all {s, t} ∈ L to
denote the set of directed paths from node s to node t excluding the direct
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arc (s, t). Therefore, the set of all potential backup paths is given by T =
∪{s,t}∈LZst. The variable hij for all {i, j} ∈ L denotes the spare capacity on
link {i, j} and the variable wst

p denotes the restoration flow on path p when
link {s, t} fails. The arc-path formulation of the link restoration version of the

spare capacity allocation model may be stated as follows:

minimize Total Working Plus Spare Capacity:

∑

{i,j}∈L

(cij + hij)

subject to Lost Working Capacity:

∑

p∈Zst

wst
p = cst, ∀{s, t} ∈ L

subject to Link Capacities Normal Direction:

∑

p∈Aij

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}}

subject to Link Capacities Reverse Direction:

∑

p∈Aji

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}}

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L

wst
p ≥ 0, ∀{s, t} ∈ L, ∀p ∈ T

were cij for all {i, j} ∈ L are fixed. The solution for the test problem is
illustrated in Figure 4b. Note that the total spare capacity is 110 as opposed
to 100 in Figure 4a. This is due to the fact that not all paths are included in
Zst.

Using a similar model that included a hop limit to reduce the size of each Zst,
Herzberg and Bye [31] proposed a heuristic procedure to find the optimal inte-
gral spare capacity. A generalization of this model can be found in Herzberg et
al. [32]. In a distributed, real-time algorithm used to implement link restora-
tion, the solution can be obtained using the max flow criteria. However, this
criteria is difficult to implement in a distributed environment and the sim-
pler k-successively shortest link-disjoint path criteria has been adopted. In an
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empirical investigation of these two procedures, Dunn et al. [20] found that
the penalty for using the simpler procedure was only about 1%. Hence, they
recommend using k-shortest paths for real-time, distributed restoration.

3.1.3 The P-Cycle Model for Link Restoration

The objective of the p-cycle concept is to obtain the restoration speed of
self-healing rings (which use 1+1 protection) while simultaneously retaining
the total capacity reduction offered by the shared protection paradigm. This
novel idea is developed in the following series of manuscripts: Grover and
Stamatelakis [28], Stamatelakis and Grover [67,68], and Grover [26].

A directed cycle containing arc (i, j) is a directed path from j to i followed
by the arc (i, j). In this application, the set of links that correspond to any
directed cycle is called a p-cycle which is equivalent to a ring. Since a p-cycle
is composed of bi-directional links, restoration flow in any p-cycle can be in
either a clockwise or a counter-clockwise direction. A link {i, j} in L is said
to be a chord-link of a given p-cycle if the p-cycle contains nodes i and j,
but does not contain arc (i, j) or arc (j, i). The P-cycle model requires that
every link that carries working traffic be protected by a p-cycle. That is, there
must be a p-cycle containing both of the nodes incident to the link. The link
{2, 6} in Figure 5a is a chord-link and is protected by two backup paths,
{2, (2, 1), 1, (1, 5), 5, (5, 6), 6} and {2, (2, 3), 3, (3, 6), 6}, each with a capacity
of 5. The link {1, 2} in Figure 5b is a member of the p-cycle and is protected
by the single backup path {1, (1, 5), 5, (5, 6), 6, (6, 3), 3, (3, 2), 2}. Note that a
solution using p-cycles typically consists of multiple cycles. For example if all
the links in Figure 2 carry working traffic, then a possible solution would be
to use two p-cycles: {1, (1, 2), 2, (2, 5), 5, (5, 4), 4, (4, 1), 1} protecting links
{1, 2}, {1, 4}, {1, 5}, {2, 5}, and {4, 5}, and {2, (2, 3), 3, (3, 6), 6, (6, 5), 5,
(5, 2), 2} protecting the remaining links.

Figure 5 about here

Let Rst for all {s, t} ∈ L denote the set of potential p-cycles (rings) that
contain (s, t) as a link and Sst for all {s, t} ∈ L denote the set of potential
p-cycles that contain {s, t} as a chord-link. The set of potential p-cycles that
can protect {s, t} is F st = Rst ∪ Sst and the set of all potential p-cycles is
given by U = ∪{s,t}∈LF st. Let Cp for all p ∈ U denote the set of links in p-
cycle p. The variable vp for all p ∈ U denotes the capacity of p-cycle p, and hij

denotes the spare capacity of link {i, j}. Let xst
p denote the restoration flow

on p-cycle p when link {s, t} fails, and let zst
p be a binary variable that is one

if xst
p > 0 and is zero, otherwise. The p-cycle spare capacity allocation model

may be stated mathematically as follows:
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minimize Total Working Plus Spare Capacity:

∑

{i,j}∈L

(cij + hij)

subject to Restoration Flow:

∑

p∈Rst

xst
p + 2.0

∑

p∈Sst

xst
p = cst, ∀{s, t} ∈ L

subject to the Relationship Between x and z:

xst
p ≤ cstz

st
p , ∀{s, t} ∈ L, ∀p ∈ F st

subject to One Cycle for Restoration:

∑

p∈F st

zst
p = 1, ∀{s, t} ∈ L

subject to Cycle Capacity Number 1:

xst
p ≤ vp, ∀{s, t} ∈ L, ∀p ∈ Rst

subject to Cycle Capacity Number 2:

0.5xst
p ≤ vp, ∀{s, t} ∈ L, ∀p ∈ Sst

subject to Link Capacity:

vp ≤ hij, ∀p ∈ U, {i, j} ∈ Cp

subject to Nonnegativity and Integrality:

zst
p ∈ {0, 1}, ∀{s, t} ∈ L, ∀p ∈ F st

hij ≥ 0, ∀{i, j} ∈ L

xst
p ≥ 0, ∀{s, t} ∈ L, ∀p ∈ F st

vp ≥ 0, ∀p ∈ U

The nine potential p-cycles given in Table 1 along with the given working
capacities were used to solve the problem illustrated in Figure 3b. An optimal
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solution using p-cycles 2, 3, 6, 8, and 9 is illustrated in Figure 6. The total
spare capacity is 140 compared to the 110 units required for the arc-path link
restoration model.

Figures 5 and 6 and Table 1 about here

3.2 Path Restoration

Failure of a link may affect one or more paths that are used to carry working
traffic. Therefore, restoration requires allocation of spare capacity to a set of
paths that do not use the failed link. The distinction between path restora-
tion and link restoration is that path restoration uses alternative routes from
the origins to the destinations of the demand pairs affected by the failed link
rather than simply taking a “detour” around it. Thus it is a distinction be-
tween “global” and “local” rerouting. Notice that p-cycles reroute all of the
traffic affected by a link failure on one or two paths around the link whereas a
path restoration scheme may distribute the rerouted traffic over a larger num-
ber of backup paths. Thus, path restoration will generally require less total
spare capacity than either link or p-cycle restoration at the expense of a more
sophisticated restoration scheme. The set V st

ij is the set of paths available for
restoration from i to j when link {s, t} fails. That is, V st

ij is the set of directed
paths from i to j that do not use link {s, t}. Let V̄ st

ij be the set of directed
paths from i to j that are not available for working traffic when link {s, t} fails.
That is, V̄ st

ij = {p ∈ Qij : (s, t) ∈ Pp or (t, s) ∈ Pp}. The arc-path formulation

of the path restoration version of the spare capacity allocation model may be
stated mathematically as follows:

minimize Total Working Plus Spare Capacity:

∑

{i,j}∈L

(cij + hij) (6)

subject to Spare Demand 1:

∑

p∈V st
ij

wst
p =

∑

p∈V̄ st
ij

yp, ∀{s, t} ∈ L, ∀(i, j) ∈ D (7)

subject to Spare Demand 2:

∑

p∈V st
ji

wst
p =

∑

p∈V̄ st
ji

yp, ∀{s, t} ∈ L, ∀(i, j) ∈ D (8)
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subject to Spare Capacity Normal Direction:

∑

p∈Aij

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}} (9)

subject to Spare Capacity Reverse Direction:

∑

p∈Aji

wst
p ≤ hij, ∀{s, t} ∈ L, ∀{i, j} ∈ L \ {{s, t}} (10)

subject to Nonnegativity:

hij ≥ 0, ∀{i, j} ∈ L (11)

wst
p ≥ 0, ∀{s, t} ∈ L, ∀p ∈ T (12)

where cij and yp are constants determined by solving the arc-path formulation
of the working capacity allocation model.

When this model is applied to the example problem, the total spare capacity
needed was only 95 compared to 140 and 110 for p-cycle and link restora-
tion, respectively. The solution is illustrated in Figure 7. Of course, a more
sophisticated restoration procedure is needed to achieve these savings.

Chujo et al. [14] present a path-based heuristic for spare capacity assignment
along with a distributed algorithm for real-time restoration. They begin with
an initial assignment using shortest-time routes. Alternative paths are exam-
ined in an attempt to reduce total spare capacity. This continues until a pre
specified objective is reached. Doverspike and Wilson [19] compared link and
path restoration in the presence of node as well as link failures. While path
restoration was superior, the difference was small for networks with low levels
of congestion. The difference increased as a function of traffic congestion.

In path restoration, it is possible to release the surviving parts of a work-
ing path and use them for restoration. This option is known as stub release.
Iraschko et al. [33,34] found that path restoration with stub release yielded a
19% capacity reduction over link restoration. In a similar investigation, Mu-
rakami and Kim [56] found the savings to range from a low of 3% to a high of
55%. Xiong and Mason [73] also compared link and path protection with and
without stub release. They found that stub release and path protection could
be quite beneficial for large sparse networks (i.e., networks with small average
node degree).
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4 Joint Capacity Planning Models

A joint model is one in which both working and spare capacity can be de-
termined in a single model. In the previous sections, working capacity was
determined with one model and then spare capacity was determined to pro-
tect the optimal working capacity against single link failures. Of course, the
amount of working capacity on a link determines the amount of spare capac-
ity needed elsewhere to provide for restoration, so joint optimization should
require less total capacity.

One of the first investigations using a joint model was by Murakami and
Kim [53]. A column-generation technique was used to obtain new variables as
needed. They experimented with a pair of problems from the literature achiev-
ing a 10% cost savings for their joint model. A full report of their investigation
can be found at Murakami and Kim [55]. Joint capacity models have also been
investigated by Saito et al. [61] and Iraschko et al. [34].

The joint model is a combination of the arc-path formulation of the working

capacity allocation model and the arc-path formulation of the path restoration

version of the spare capacity allocation model. The model is stated mathemat-
ically as minimize (6) subject to (1)-(5) and (7)-(12). When applied to the
example problem, the total capacity needed was 176 compared to 205 for the
two-phase approach. This solution is illustrated in Figure 8. The routing for
the traffic demands in the absence of failure is split across multiple paths,
which results in a smaller overall spare capacity requirement than was the
case with the two-stage approaches considered earlier. The reduction in spare
capacity when using a joint model is significant, but comes at the expense of
splitting the working traffic routing and, possibly, an increase in the overall
working traffic requirements (see Table 3 for a larger example problem which
illustrates this point). Table 2 gives a summary of the results of running the
code in [36] on this model, as well as those presented in the preceding sections,
on the test case illustrated in Figure 2.

5 Limitations and Enhancements

The optimization models presented in this survey are abstractions of real net-
works. The value of any model-based design is dependent on how well the
optimization model represents the actual design environment. The more ac-
curately the model represents the designers’ problem the better the resulting
design. However, more accurate modelling often comes at the expense of in-
creased computational difficulty and for large networks even the basic models
can prove challenging to solve with straight-forward applications of off-the-
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shelf ILP solvers. This manuscript focuses on the modelling part of network
design, as opposed to specialized algorithms required to solve such models. To
help demonstrate the computational tractability, the models have been solved
for the European network defined in Figure 4 of [38]. This network has 18
nodes and 35 links, and the capacity allocation problem has 72 demand pairs,
610 paths, and 25 candidate p-cycles. The computational results are given in
Table 3. The run was made using AMPL and CPLEX 8.00 on a Compaq DS10
running at 667 MHZ with 1280 MB of RAM. The p-cycle model was the most
difficult to solve taking approximately 10 seconds of CPU time. The num-
ber of variables and constraints are those reported after preprocessing which
can reduce the number of both. In addition, some integer variables were con-
verted to binary variables. Limitations inherent in the presented formulations
along with proposed modelling and algorithmic enhancements complete this
manuscript.

5.1 Modelling Enhancements

Several of the models presented here allow for demand splitting,but in practice
some clients insist that their traffic be routed on a single path. Disallowing
working traffic demand splitting may come at the expense of the potential
capacity savings that using a joint model may yield and must be modelled
at the expense of additional integer variables — as the number of integer
variables becomes large, computational efficiency becomes an issue. The case
for using integer programming to handle a variety of design issues is made
by Birkan et al. [9]. The models presented in this exposition provided for
restoration at the lowest level (the physical layer). Anderson et al. [1] explored
various techniques and capabilities for providing fast restoration at the ATM
layer. In certain test cases, they found that ATM layer protection resulted
in significant improvement over physical layer protection. The advantages of
ATM layer protection are also touted by Kawamura et al. [35] and Murakami
and Kim [54].

The problem of simultaneously selecting link capacities and point-to-point
routes so that the queuing delays are acceptable and the design cost is min-
imal has been addressed by Gavish and Neuman [23]. Queuing delays are
converted to dollars and balanced with additional link capacity. Their model
is a nonlinear binary program that is quite challenging to solve.

Network topology is also important in determining the type of restoration
strategy that is best. Doverspike et al. [18] show that the spare capacity needed
in a mesh design is highly sensitive to the average node degree. Sparse net-
works require significantly more capacity than dense networks. A heuristic
procedure that addresses the issue of network topology has been developed by
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Kershenbaum et al. [43]. MacGregor and Grover [49] address the issue of node
failures.

The models presented assume that all point-to-point demands are known with
certainty at the design stage. Sen et al. [63] present a two-stage stochastic
linear program for a problem with point-to-point demands represented by a
multi-dimensional random variable. A special algorithm and specialized soft-
ware was constructed to obtain solutions. Andrade et al. [2] present a two-stage
mixed integer stochastic programming model for the node-arc version of the
working capacity allocation problem when the number of demand pairs in each
scenario has a Poisson distribution and the capacity required for each demand
follow normal or log-normal distributions. The robust optimization method-
ology of Mulvey et al. [52] has been used to model uncertain demands by
Laguna [46] and Kennington et al. [38]. Reliability issues have been addressed
by Chamberland and Sanso [11].

In the models presented in this manuscript, it was assumed that the traffic
could be physically routed along the paths specified. With wavelength division
multiplexing (WDM) an added complication arises. A given node may trans-
mit optical signals on different wavelengths that are multiplexed onto a single
fiber. A lightpath is a logical connection between a pair of nodes in the network
and is composed of a sequence of links. The assignment of wavelengths along
the lightpaths used to satisfy the point-to-point demands must be distinct. The
basic design problem posed by this complication is known as the routing and
wavelength-assignment problem (RWA), (see Zang et al. [75] and Ramaswami
and Sivarajan [60]), which may be stated as follows: given a network topology
and a set of point-to-point demands, determine a lightpath and wavelength
assignment for each demand using the minimum number of wavelengths. The
difficulty involves the restriction that two lightpaths must not be assigned the
same wavelength on the same link. In addition, RWA comes in two versions,
with and without wavelength conversion. Investigations of this problem can be
found in Zhang et al. [76], Kennington et al. [41], and Kennington and Olinick
[40]. A comprehensive model that involves dimensioning of the network com-
ponents, routing of the ligthpaths, and wavelength assignment can be found
in Zymolka et al. [77]. A model for joint routing and wavelength assignment
can be found in Chamberland et al. [10].

Many of the models presented permit arbitrary capacity values on the links
and they implicitly assume that capacity has a linear cost function (i.e., they
minimize total capacity rather than total cost). However, in today’s networks
capacity is typically available only in discrete, modular values. For example
the industry-standard values for optical networks are OC-3, OC-12, OC-48,
OC-96, and OC-192. An OC-12 link has four times the capacity of and OC-3
link, and an OC-48 link has four times the capacity of an OC-12 link, and
so forth. The per-unit cost of capacity decreases from one OC level to the
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next level, but not necessarily in a linear fashion (i.e., there is an economy of
scale). This complication can be modelled by using additional integer variables
and has been addressed by Balakrishnan et al. [4], Bienstock and Günlük
[8], Doucette et al. [17], Kennington and Lewis [39], and Lewis [47]. Other
examples of recent of models that take the cost of hardware configuration into
account are Kröeller and Wessäely [45] and Melián et al. [50,51].

5.2 Algorithmic Enhancements

The modelling enhancements described in the preceding subsection result in
models that are more difficult to solve and call for novel solution techniques.
To illustrate the computational difficulty of solving the enhanced models de-
scribed above and to give a sense of the size of problems that can be reasonably
solved, we now briefly discuss some algorithmic enhancements developed to
solve three of the models presented earlier when modular capacities are con-
sidered.

Bienstock and Günlük [8] developed cutting plane algorithms for the node-arc
version of the working capacity allocation problem when capacity is installed
in two modular sizes and reported results for two problem sets: one derived
from a network with 15 nodes and 22 links, and the other from a network
with 16 nodes and 49 links. In both cases the demand matrix is fully dense
with demand between all pairs of nodes in the network. Using CPLEX 2.1 on
a SPARC 10-51 to solve the basic ILP formulation the solution times ranged
from 12 seconds to several hours for problems in the first data set. However,
by using the cutting plane algorithms to add inequalities violated by the LP
relaxation of the basic model, and then solving the resulting ILP with CPLEX,
the total solution time dropped to under two minutes in all cases. Their cutting
plane procedure took considerably longer to solve the problems in the second
data set, but CPLEX was unable to solve these problems when given the basic
ILP without any the cuts.

Balakrishnan et al. [4] present an extensive computational study of LP-based
heuristics for the node-arc formulation of the link restoration version of the
spare capacity allocation model using multiple modular capacity sizes. Us-
ing their heuristics they find good solutions (within 10% of the LP bound)
to problems with up to 50 nodes, 150 links, and three modular capacities.
CPLEX 3.0, running on a Sun Sparc workstation, was unable to solve many
of these problems. However in the cases where CPLEX solutions were found,
the heuristic solutions are often within 0.5% of optimality. Kennington and
Lewis [39] propose a novel, modular branch-and-bound scheme for the node-
arc formulation of the path restoration version of the spare capacity allocation
model. A software implementation of this scheme was found to be substan-
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tially faster than CPLEX 6.5.3. on a test suite of related problems, having up
to 50 nodes, 87 links, 200 demand pairs, and three modular capacities. Their
branch-and-bound scheme obtained solutions guaranteed to be within 4% of
optimality in five minutes of CPU time on a DEC AlphaStation.

Survivable network design has received considerable attention in the opti-
mization literature and due to the steady adoption of new technology in the
telecommunications industry, we expect it to continue to be an active area
of research. A wide array of advanced integer programming techniques have
been proposed to tackle these challenging problems. For example, Dahl and
Stoer [15] employ row and column generation techniques in a cutting plane
procedure for minimizing the cost of adding capacity to a network to meet
survivability requirements for a given demand matrix. In addition to the work
of Murakami and Kim [53,55] discussed in Section 4, some other examples
of applying column generation to solve arc-path formulations include Poppe
and Demeester [58], and Orlowski and Wessäly [57] who use it in conjunction
with a branch-and-cut algorithm to study the effect of using hop limits to con-
strain the number of available paths for each demand. Stidsen and Thomadsen
[69] present an algorithm using column generation rather than a fixed, pre-
determined set of the candidate p-cycles as required by the model presented
here. Belotti and Malucelli [6] present decomposition approaches based on La-
grangian relaxation for shared protection models with path restoration. This
is only a small sampling of the literature on survivable network design. Recent
surveys may be found in Ben-Ameur and L. Gouveia [7], Rajan and Atamtürk
[59], Belotti [5], and Yuan [74].
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Fig. 1. Stacked Node

4

321

5 6

Fig. 2. Example Problem

Table 1
P-cycles for Example Problem

Links Cycles Working

1 2 3 4 5 6 7 8 9

(1,2) x x x x x 10

(1,4) x x x 20

(1,5) x x x x 10

(2,3) x x x 10

(2,5) x x x x 10

(2,6) x x x x 10

(3,6) x x x 20

(4,5) x x x 10

(5,6) x x x x x 10
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a. Solution to Node−Arc Formulation of the Working Capacity Allocation Model (Total Working Capacity is 110)
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b. Solution to Arc−Path Formulation of the Working Capacity Allocation Model (Total Working Capacity is 110)

10

20

10

10

10

Fig. 3. Solution to Working Capacity Allocation Models
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[10, 10]
[20, 10]

4a. Solution to the Node−Arc Formulation of the Link Restoration Version of the Spare Capacity Allocation Model

[20, 10]

[working capacity, spare capacity]

[10, 10]

4b. Solution to the Arc−Path Formulation of the Link Restoration Version of the Spare Capacity Allocation Model

[10, 20]

[10, 0]

[10, 20] [10, 10]

[20, 10]
[10, 10]

[10, 0] [10, 20]

[10, 10]

[10, 20] [10, 10]

[20, 10]
[10, 20] [10, 10]

Fig. 4. Solution to Link Restoration Models

24



5 6
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65

1 2

321

b. Link (1, 2) Protected by a P−Cycle with Capacity of 10

a. Link (2, 6) Protected By a P−cycle with Capacity of 5

c12 = 10

c26 = 10

Fig. 5. Example of P-cycle Protection

1
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32
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20

10

20 20 0 20 20

Fig. 6. Optimal Solution for P-Cycle Protection (Total Spare Capacity = 140)

6

3

4

21

5

[working capacity, spare capacity]

[10, 5] [10, 20]

[10, 15]

[10, 20]

[20, 10]

[10, 5]

[20, 10]
[10, 5] [10, 5]

Fig. 7. Solution to the Arc-Path Formulation of the Path Restoration Version of the
Spare Capacity Allocation Model (Spare Capacity = 95)

25



6

3

4

21

5

[working capacity, spare capacity]

[10, 5] [8, 12]

[10, 10]

[7, 13]

[12, 8]

[10, 5]

[13, 7]
[20, 3] [20, 3]

Fig. 8. Solution to the Joint Model (Working Capacity = 110 and Spare Capacity
= 66)

Table 2
Summary of Results Example Problem: |N | = 6, |L| = 9, |D| = 11, |T | = 110, |E| =
18, |U | = 9

Model Working Capacity Spare Capacity Total Capacity

Node-Arc Formulation of the

Working Capacity Allocation Model 110 — —

Arc-Path Formulation of the

Working Capacity Allocation Model 110 — —

Node-Arc Formulation of the

Link Restoration Version of the 110 100 210

Spare Capacity Allocation Model

Arc-Path Formulation of the

Link Restoration Version of the 110 110 220

Spare Capacity Allocation Model

P-Cycle Spare Capacity

Allocation Model 110 140 250

Arc-Path Formulation of the

Path Restoration Version of the 110 95 205

Spare Capacity Allocation Model

Joint Working and Spare Capacity Model 110 66 176
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Table 3
Test Run With The European Problem: |N | = 18, |L| = 35, |D| = 72, |T | = 610, |E| = 70, |U | = 25

Model Variables Const. CPU Capacity

Integer Binary Continuous Seconds Working Spare Total

Node-Arc Formulation of the

Working Capacity Allocation Model 1,260 0 35 394 1 271 — —

Arc-Path Formulation of the

Working Capacity Allocation Model 425 5 35 106 1 271 — —

Node-Arc Formulation of the

Link Restoration Version of the 2,380 0 35 3,010 7 271 206 477

Spare Capacity Allocation Model

Arc-Path Formulation of the

Link Restoration Version of the 0 0 21,303 2,412 2 271 251 522

Spare Capacity Allocation Model

P-Cycle Spare Capacity

Allocation Model 0 165 225 549 10 271 335.75 606.75

Arc-Path Formulation of the

Path Restoration Version of the 0 0 10,096 2,470 2 271 233 504

Spare Capacity Allocation Model

Joint Working and Spare Capacity Model 425 5 11,147 2,857 3 289 168 457
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A The AMPL Models

# All Models - J Kennington Jun 2005

set N; # N denotes the set of nodes

set L within {N,N}; # L denotes the set of links

param NP; # NP denotes the number of paths (must be even)

param NPD2; # NPD2 = NP/2

set T := 1..NP; # T denotes the set all all paths

set P{T} within {N,N}; # P[p] denotes the arcs in path p

# That is, paths are directed.

set Q{N,N} within T; # Q[a,b] denotes the paths that can be used

# to satisfy demand pair (a,b)

param d{N,N} default 0.0; # d[a,b] denotes the demand with origin node a

# and destination node b

param NC; # denotes the number of cycles

set U := 1..NC; # U denotes the set of cycles

set C{U} within L; # C[k] denotes the links in cycle k

data data.txt;

display N;

display L;

let NPD2 := NP/2;

display NP, NPD2;

display T;

display P;

for {p in 1..NPD2} {

let P[p+NPD2] := {};

for {(i,j) in P[p]} let P[p+NPD2] := P[p+NPD2] union {(j,i)};

}

display P;

display Q;

display U;

display d;

display NC;

display C;

for{i in N}

for {j in N: i < j} {

let Q[j,i] := {};

for {p in Q[i,j]}

let Q[j,i] := Q[j,i] union {p+NPD2};

} # j

display Q;

set E within {N,N}; # E denotes the set of arcs
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# if (i,j) in L, then both (i,j) and (j,i) are in E

let E := L;

for {(i,j) in L} let E := E union {(j,i)};

set A {E} within {1..NP}; # A[i,j] denotes the set of paths that use arc (i,j)

for {(i,j) in E} {

let A[i,j] := {};

for {p in {1..NPD2}} {

if (i,j) in P[p] then {

let A[i,j] := A[i,j] union {p};

}

if (j,i) in P[p] then {

let A[i,j] := A[i,j] union {p+NPD2};

}

} # p

} # (i,j)

display A;

set D within {N,N}; # D denotes the set of demand pairs

let D := {};

for {a in N}

for {b in N: a<>b}

if d[a,b] > 0.0 then let D := D union {(a,b),(b,a)};

display D;

set V{E,D} within T; # V[s,t,a,b] denotes the paths from a to b

# that do not contain either arc (s,t) or arc (t,s)

for {(s,t) in E}

for {(a,b) in D}

let V[s,t,a,b] := Q[a,b] diff (A[s,t] union A[t,s]);

display V;

set W within {N}; # nodes in a given cycle

set R{L} within U; # R[i,j] denotes the cycles that contain link (i,j)

set S{L} within U; # S[i,j] denotes the cycles that contain link (i,j)

# as a chord link

set F{L} within U; # F[i,j] = R[i,j] union S[i,j]

for {(i,j) in L} {

let R [i,j] := {};

let S[i,j] := {};

for {p in U}

if (i,j) in C[p] then let R[i,j] := R[i,j] union {p};

else {

let W := {};

for {(ii,jj) in C[p]} let W := W union {ii,jj};

if i in W and j in W then let S[i,j] := S[i,j] union {p};
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}

let F[i,j] := R[i,j] union S[i,j];

}

display R; display S; display F;

param M default 1000000.0;

# denotes the maximum working capacity;

param r {L,N} default 0.0;

param e {N,N} default 0.0;

# e[k,i] denotes the requirement at node i

# for commodity k

set Z{L} within T; # Z[s,t] denotes the set of paths from s to t

# excluding the direct path

var g{N,E} >= 0 integer;

# g[k,i,j] denotes the flow in arc (i,j) for

# commodity k

var y{T} >= 0 integer;

# y[p] denotes the flow on path p

var c{L} >= 0; # c[i,j] denotes the capacity of link (i,j)

var w {T,L} >= 0; # w[p,s,t] denotes the restoration flow on path p when

# (s,t) fails

var h{L} >= 0; # h[i,j] denotes the spare capacity on link (i,j)

var x {(i,j) in L, F[i,j]} >= 0;

# x[i,j,p] denotes the flow on cycle p required to

# protect the failure of link (i,j)

var z {(i,j) in L, F[i,j]} binary;

# z[i,j,p] = 1, if cycle p is used to protect link (i,j)

# z[i,j,p] = 0, otherwise

var v{U} >= 0; # v[p] denotes the capacity of cycle p

var f{L,E} >= 0.0 integer;

# f[s,t,i,j] denotes the restoration flow on arc (i,j)

# when link (s,t) fails

minimize WorkingCapacity: sum {(i,j) in L} c[i,j];

minimize TotalCapacity: sum {(i,j) in L} (c[i,j] + h[i,j]);

minimize BackupPaths: sum {p in T, (i,j) in L} w[p,i,j];

subject to FlowCons {i in N, k in N}:

sum {(i,j) in E} g[k,i,j] - sum {(j,i) in E} g[k,j,i] = e[k,i];

subject to CapacityND {(i,j) in L}:

sum {k in N} g[k,i,j] <= c[i,j];
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subject to CapacityRD {(i,j) in L}:

sum {k in N} g[k,j,i] <= c[i,j];

subject to WorkingDemand {(i,j) in D}:

sum {p in Q[i,j]} y[p] = d[i,j];

subject to WorkingCapacityNormalDirection {(i,j) in L}:

sum {p in A[i,j]} y[p] <= c[i,j];

subject to WorkingCapacityReverseDirection {(i,j) in L}:

sum {p in A[j,i]} y[p] <= c[i,j];

subject to SpareDemand1 {(s,t) in L, (i,j) in D: i < j}:

sum {p in V[s,t,i,j]} w[p,s,t] =

sum{p in Q[i,j]: (s,t) in P[p] or (t,s) in P[p]} y[p];

subject to SpareDemand2 {(s,t) in L, (i,j) in D: i < j}:

sum {p in V[s,t,j,i]} w[p,s,t] =

sum{p in Q[j,i]: (s,t) in P[p] or (t,s) in P[p]} y[p];

subject to SpareDemand3 {(s,t) in L}:

sum {p in Z[s,t]} w[p,s,t] = c[s,t];

subject to SpareCapacityNormalDirection {(s,t) in L, (i,j) in L diff {(s,t)}}:

sum {p in A[i,j]} w[p,s,t] <= h[i,j];

subject to SpareCapacityReverseDirection {(s,t) in L, (i,j) in L diff {(s,t)}}:

sum {p in A[j,i]} w[p,s,t] <= h[i,j];

subject to RestorationFlow {(s,t) in L}:

sum {p in R [s,t]} x[s,t,p] +

2.0*sum {p in S[s,t]} x[s,t,p] = c[s,t];

subject to Relationship_x_z {(s,t) in L, p in F[s,t]}:

x[s,t,p] <= c[s,t]*z[s,t,p];

subject to OneCycleRestoration {(i,j) in L}:

sum {p in F[i,j]} z[i,j,p] = 1;

subject to CycleCapacity1 {(s,t) in L, p in R[s,t]}:

x[s,t,p] <= v[p];

subject to CycleCapacity2 {(s,t) in L, p in S[s,t]}:

x[s,t,p]/2.0 <= v[p];

subject to LinkCapacity {p in U, (i,j) in C[p]}:
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v[p] <= h[i,j];

subject to FlowConservation {(s,t) in L, k in N}:

sum{(k,j) in E} f[s,t,k,j] -

sum{(i,k) in E} f[s,t,i,k] = r[s,t,k];

subject to CapNormalDirection {(s,t) in L, (i,j) in L}:

f[s,t,i,j] <= h[i,j];

subject to CapReverseDirection {(s,t) in L, (i,j) in L}:

f[s,t,j,i] <= h[i,j];

subject to LinkFailures {(s,t) in L}:

f[s,t,s,t] + f[s,t,t,s] = 0;

problem NodeArcWorkingCapacity:

g, c,

WorkingCapacity,

FlowCons,

CapacityND, CapacityRD

;

problem ArcPathWorkingCapacity:

y, c,

WorkingCapacity,

WorkingDemand, WorkingCapacityNormalDirection,

WorkingCapacityReverseDirection

;

problem NodeArcSpareCapacityLinkRestoration:

f, h,

TotalCapacity,

FlowConservation, CapNormalDirection, CapReverseDirection,

LinkFailures

;

problem ArcPathSpareCapacityLinkRestoration:

w, h, c,

TotalCapacity,

SpareDemand3,

SpareCapacityNormalDirection, SpareCapacityReverseDirection

;

problem Pcycle:

x, z, v, c, h,

TotalCapacity,

RestorationFlow, Relationship_x_z, OneCycleRestoration,
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CycleCapacity1, CycleCapacity2, LinkCapacity

;

problem ArcPathSpareCapacityPathRestoration1:

c, y, w, h,

TotalCapacity,

SpareDemand1, SpareDemand2,

SpareCapacityNormalDirection, SpareCapacityReverseDirection

;

problem ArcPathSpareCapacityPathRestoration2:

c, w, h,

BackupPaths,

SpareDemand1, SpareDemand2,

SpareCapacityNormalDirection, SpareCapacityReverseDirection

;

problem Joint:

y, c, w, h,

TotalCapacity,

WorkingDemand,

WorkingCapacityNormalDirection, WorkingCapacityReverseDirection,

SpareDemand1, SpareDemand2,

SpareCapacityNormalDirection, SpareCapacityReverseDirection

;

printf"\n\nBegin Node-Arc Working Capacity Model\n\n";

for {k in N}

for {i in N}

if i == k then let e[k,i] := sum{j in N} d[k,j];

else let e[k,i] := -d[k,i];

problem NodeArcWorkingCapacity;

solve NodeArcWorkingCapacity;

display c;

for {k in N}

for {(i,j) in E}

if g[k,i,j] > 0.0 then

printf"g[%2d,%2d,%2d] = %8.2lf\n",k,i,j,g[k,i,j];

param NodeArcWorkingCapacityOBJ;

let NodeArcWorkingCapacityOBJ := WorkingCapacity;

printf"\n\nBegin Arc-Path Working Capacity Model\n\n";

problem ArcPathWorkingCapacity;

solve ArcPathWorkingCapacity;

for {p in T} {

if y[p] > 0.0 then printf"y[%3d] = %8.2lf\n",p, y[p];

}
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display c;

param ArcPathWorkingCapacityOBJ;

let ArcPathWorkingCapacityOBJ := WorkingCapacity;

printf"\n\nBegin Spare Capacity: Link Model Node-Arc Version\n\n";

for {(s,t) in L} {

let r[s,t,s] := c[s,t];

let r[s,t,t] := -c[s,t];

}

display r;

problem NodeArcSpareCapacityLinkRestoration;

solve NodeArcSpareCapacityLinkRestoration;

display h;

for {(s,t) in L, (i,j) in E}

if f[s,t,i,j] > 0.0 then

printf"x[%2d,%2d,%2d,%2d] = %8.2lf\n",s,t,i,j,f[s,t,i,j];

param NodeArcSpareCapacityLinkRestorationOBJ;

let NodeArcSpareCapacityLinkRestorationOBJ := TotalCapacity;

printf"\n\nBegin Spare Capacity: Link Model Arc-Path Version\n\n";

for {(s,t) in L} {

let Z[s,t] := {};

for {p in Q[s,t]}

if (s,t) not in P[p] then let Z[s,t] := Z[s,t] union {p};

}

problem ArcPathSpareCapacityLinkRestoration;

fix c;

solve ArcPathSpareCapacityLinkRestoration;

for {p in T}

if y[p] > 0.0 then

printf"y[%3d] = %8.2lf\n",p,y[p];

display h;

for {p in 1..NP, (i,j) in L}

if w[p,i,j] > 0.0 then

printf"w[%3d,%2d,%2d] = %8.2lf\n",p,i,j,w[p,i,j];

param ArcPathSpareCapacityLinkRestorationOBJ;

let ArcPathSpareCapacityLinkRestorationOBJ := TotalCapacity;

printf"\n\nBegin Spare Capacity: P-Cycle Model\n\n";

let M := 0.0;

for {(i,j) in L} if c[i,j] > M then let M := c[i,j];

display M;

problem Pcycle;

fix c;
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solve Pcycle;

display c;

display h;

for {(i,j) in L, p in F[i,j]}

if x[i,j,p] > 0.0 then

printf"x[%2d,%2d,%2d] = %8.2lf\n",i, j, p, x[i,j,p];

for {(i,j) in L, p in F[i,j]}

if z[i,j,p] > 0.0 then

printf"z[%2d,%2d,%2d] = %8.2lf\n",i, j, p, z[i,j,p];

display v;

param PcycleOBJ;

let PcycleOBJ := TotalCapacity;

printf"\n\nBegin Spare Capacity: Path Model\n\n";

problem ArcPathSpareCapacityPathRestoration1;

fix c;

fix y;

solve ArcPathSpareCapacityPathRestoration1;

display c;

for {p in T}

if y[p] > 0.0 then

printf"y[%3d] = %8.2lf\n",p,y[p];

display h;

for {p in 1..NP, (i,j) in L}

if w[p,i,j] > 0.0 then

printf"w[%3d,%2d,%2d] = %8.2lf\n",p,i,j,w[p,i,j];

param ArcPathSpareCapacityPathRestoration1OBJ;

let ArcPathSpareCapacityPathRestoration1OBJ := TotalCapacity;

printf"\n\nBegin Spare Capacity: Path Model With Only Paths Needed\n\n";

problem ArcPathSpareCapacityPathRestoration2;

fix h;

solve ArcPathSpareCapacityPathRestoration2;

display c;

for {p in 1..NP}

if y[p] > 0.0 then

printf"y[%3d] = %8.2lf\n",p,y[p];

display h;

for {p in 1..NP, (i,j) in L}

if w[p,i,j] > 0.0 then

printf"w[%3d,%2d,%2d] = %8.2lf\n",p,i,j,w[p,i,j];

printf"\n\nBegin Spare Capacity: Joint Model\n\n";

problem Joint;
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unfix c;

solve Joint;

display c;

for {p in 1..NP}

if y[p] > 0.0 then

printf"y[%3d] = %8.2lf\n",p,y[p];

display h;

for {p in 1..NP, (i,j) in L}

if w[p,i,j] > 0.0 then

printf"w[%3d,%2d,%2d] = %8.2lf\n",p,i,j,w[p,i,j];

param JointOBJ;

let JointOBJ := TotalCapacity;

printf"\n\n";

display NodeArcWorkingCapacityOBJ;

display ArcPathWorkingCapacityOBJ;

display NodeArcSpareCapacityLinkRestorationOBJ;

display ArcPathSpareCapacityLinkRestorationOBJ;

display PcycleOBJ;

display ArcPathSpareCapacityPathRestoration1OBJ;

display JointOBJ;
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B Data File

# Appendix B. Data File

param d :=

2 4 10

3 5 10

1 2 10

1 4 10

1 5 10

2 3 10

2 5 10

2 6 10

3 6 10

4 5 10

5 6 10

;

set N := 1 2 3 4 5 6;

set L := (1,2) (1,4) (1,5) (2,3) (2,5) (2,6) (3,6) (4,5) (5,6);

param NP := 100;

set P[1] := (1,2);

set P[2] := (1,5) (5,2);

set P[3] := (1,2) (2,3);

set P[4] := (1,2) (2,6) (6,3);

set P[5] := (1,5) (5,6) (6,3);

set P[6] := (1,4);

set P[7] := (1,5) (5,4);

set P[8] := (1,5);

set P[9] := (1,2) (2,5);

set P[10] := (1,4) (4,5);

set P[11] := (1,2) (2,6);

set P[12] := (1,5) (5,6);

set P[13] := (1,2) (2,3) (3,6);

set P[14] := (1,2) (2,5) (5,6);

set P[15] := (1,4) (4,5) (5,6);

set P[16] := (2,3);

set P[17] := (2,6) (6,3);

set P[18] := (2,1) (1,4);

set P[19] := (2,5) (5,4);

set P[20] := (2,5);

set P[21] := (2,6) (6,5);

set P[22] := (2,1) (1,5);

set P[23] := (2,6);
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set P[24] := (2,3) (3,6);

set P[25] := (2,5) (5,6);

set P[26] := (3,2) (2,1) (1,4);

set P[27] := (3,2) (2,5) (5,4);

set P[28] := (3,6) (6,5) (5,4);

set P[29] := (3,2) (2,5);

set P[30] := (3,6) (6,5);

set P[31] := (3,6);

set P[32] := (3,2) (2,6);

set P[33] := (4,5);

set P[34] := (4,1) (1,5);

set P[35] := (4,5) (5,6);

set P[36] := (4,1) (1,5) (5,6);

set P[37] := (4,1) (1,2) (2,6);

set P[38] := (5,6);

set P[39] := (5,2) (2,6);

set P[40] := (5,2) (2,3) (3,6);

set P[41] := (1,4) (4,5) (5,2);

set P[42] := (1,2) (2,5) (5,4);

set P[43] := (2,5) (5,6) (6,3);

set P[44] := (2,3) (3,6) (6,5);

set P[45] := (2,1) (1,4) (4,5);

set P[46] := (3,2) (2,5) (5,6);

set P[47] := (4,1) (1,2) (2,5);

set P[48] := (4,1) (1,2) (2,5) (5,6);

set P[49] := (4,1) (1,2) (2,3) (3,6);

set P[50] := (4,1) (1,5) (5,2) (2,6);

set Q[1,2] := 1 2 41;

set Q[1,3] := 3 4 5;

set Q[1,4] := 6 7 42;

set Q[1,5] := 8 9 10;

set Q[1,6] := 11 12 13 14 15;

set Q[2,3] := 16 17 43;

set Q[2,4] := 18 19;

set Q[2,5] := 20 21 22 44 45;

set Q[2,6] := 23 24 25;

set Q[3,4] := 26 27 28 ;

set Q[3,5] := 29 30;

set Q[3,6] := 31 32 46;

set Q[4,5] := 33 34 47;

set Q[4,6] := 35 36 37 48 49 50;

set Q[5,6] := 38 39 40;
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param NC := 9;

set C[1] := (1,2) (1,5) (2,5);

set C[2] := (1,4) (1,5) (4,5);

set C[3] := (2,3) (2,6) (3,6);

set C[4] := (2,5) (2,6) (5,6);

set C[5] := (1,2) (1,4) (2,5) (4,5);

set C[6] := (1,2) (1,5) (2,6) (5,6);

set C[7] := (2,3) (2,5) (3,6) (5,6);

set C[8] := (1,2) (1,5) (2,3) (3,6) (5,6);

set C[9] := (1,2) (1,4) (2,6) (4,5) (5,6);
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[21] B. Fortz, M Labbé, and F. Maffioli. Solving the two-connected network with
bounded meshes problem. Operations Research, 48:866–877, 2000.

[22] L. Gardner, M. Heydari, J. Shah, I. Sudborough, I. Tollis, and C. Xia.
Techniques for finding ring covers in survivable networks. Proceedings of IEEE
GLOBECOM ’94, 3:1862–1866, 1994.

[23] B. Gavish and I. Neuman. A system for routing and capacity assignment in
computer communication networks. IEEE Transactions on Communications,
37(4):360–366, 1989.

[24] M. Grötschel, C. Monma, and M. Stoer. Polyhedral and computational
investigations for designing communication networks with high survivability
requirements. Operations Research, 43(6):1012–1024, 1995.

41



[25] W. Grover. Case studies of survivable ring, mesh and mesh-arc-hybrid networks.
Proceedings of IEEE GLOBECOM ’92, 1:633–638, 1992.

[26] W. Grover. Mesh-based Survivable Networks: Options and Strategies for Optical,
MPLS, SONET and ATM Networks. Prentice Hall PTR, Upper Saddle River,
New Jersey, 2004.

[27] W. Grover, J. Slevinsky, and M. MacGregror. Optimized design of ring-based
survivable networks. Canadian Journal of Electrical and Computer Engineering,
20(3):139–149, 1995.

[28] W. Grover and D. Stamatelakis. Cycle-oriented distributed pre-configuration:
Ring-like speed with mesh-like capacity for self-planning network restoration.
In Proceedings IEEE International Conf. Commun. ’98, pages 537–543, 1998.

[29] R. Helgason, J. Kennington, and B. Stewart. Computational comparison of
sequential and parallel algorithms for the one-to-one shortest path problem.
Computational Optimization and Applications, 1:47–75, 1993.

[30] M. Herzberg. A decomposition approach to assign spare capacity channels in
self-healing networks. Proceedings of IEEE GLOBECOM ’93, pages 1601–1605,
1993.

[31] M. Herzberg and S. Bye. An optimal spare capacity assignment model for
survivable networks with hop limits. Proceedings of IEEE GLOBECOM ’94,
3:1601–1606, 1994.

[32] M. Herzberg, S. Bye, and A. Utano. The hop-limit approach for spare-capacity
assignment in survivable networks. IEEE/ACM Transactions on Networking,
3(6):775–784, 1995.

[33] R. Irashcko, M. MacGregor, and W. Grover. Optimal capacity placement
for path restoration mesh survivable networks. In IEEE International
Communications and Conference (ICC’96), volume 3, pages 1568–1574, 1996.

[34] R. Irashcko, M. MacGregor, and W. Grover. Optimal capacity placement
for path restoration in STM or ATM mesh survivable networks. IEEE/ACM
Transactions on Networking, 6(3):325–336, 1998.

[35] R. Kawamura, K. Sato, and I. Tokizawa. Self-healing ATM networks based
on virtual path concept. IEEE Journal on Selected Areas in Communications,
12(1):120–127, 1994.

[36] J. Kenningtion, E. Olinick, and G. Spiride. Basic mathematical programming
models for mesh-based survivable networks. Technical Report 05-EMIS-02,
Southern Methodist University, Dallas, TX 75275, 2005. Available on line at
http://www.engr.smu.edu/∼olinick/webarchive/survey.pdf.

[37] J. Kennington and R. Helgason. Algorithms for Network Programming. John
Wiley & Sons, New York, NY, 1980.

[38] J. Kennington, K. Lewis, E. Olinick, A. Ortynski, and G. Spiride. Robust
solutions for the WDM routing and provisioning problem: Models and
algorithms. Optical Networks Magazine, 4(2):74–84, 2003.

42



[39] J. Kennington and M. Lewis. The path restoration version of the spare capacity
allocation problem with modularity restrictions: Models, algorithms, and an
empirical analysis. INFORMS Journal on Computing, 13(3):181–190, 2001.

[40] J. Kennington and E. Olinick. Wavelength translation in WDM networks:
Optimization models and solution procedures. INFORMS Journal on
Computing, 16(2):174–187, 2004.

[41] J. Kennington, E. Olinick, A. Ortynski, and G. Spiride. Wavelength routing
and assignment in a survivable WDM mesh network. Operations Research,
51(1):67–79, 2003.

[42] J. Kennington and J. Whitler. An efficient decomposition algorithm to optimize
spare capacity in a telecommunications network. INFORMS Journal on
Computing, 11(2):149–160, 1999.

[43] A. Kershenbaum, P. Kermani, and G. Grover. MENTOR: An algorithm for
mesh network topological optimization and routing. IEEE Transactions on
Communications, 39(4):503–513, 1991.

[44] S. Khuller. Approximation algorithms for finding highly connected subgraphs.
In D. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems,
pages 236–265. PWS Publishing Company, Boston, MA, 1997.
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